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A Computational Interpretation of Compact Closed
Categories: Reversible Programming with Negative and
Fractional Types
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Compact closed categories include objects representing higher-order functions and are well-established as
models of linear logic, concurrency, and quantum computing. We show that it is possible to construct such
compact closed categories for conventional sum and product types by defining a dual to sum types, a negative
type, and a dual to product types, a fractional type. Inspired by the categorical semantics, we define a sound
operational semantics for negative and fractional types in which a negative type represents a computational
effect that “reverses execution flow” and a fractional type represents a computational effect that “garbage
collects” particular values or throws exceptions.
Specifically, we extend a first-order reversible language of type isomorphisms with negative and fractional
types, specify an operational semantics for each extension, and prove that each extension forms a compact
closed category. We furthermore show that both operational semantics can be merged using the standard
combination of backtracking and exceptions resulting in a smooth interoperability of negative and fractional
types. We illustrate the expressiveness of this combination by writing a reversible SAT solver that uses back-
tracking search along freshly allocated and de-allocated locations. The operational semantics, most of its
meta-theoretic properties, and all examples are formalized in a supplementary Agda package.
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1 INTRODUCTION
Compact closed categories [Kelly and Laplaza 1980; Kelly 1972] have found numerous applica-
tions in mathematics, physics, and computer science. Examples of compact closed categories in-
clude models of multiplicative linear logic [Abramsky and Jagadeesan 1994], models of concur-
rency [Abramsky et al. 1996], and models of quantum computing [Abramsky and Coecke 2004;
Fiore 2015].
A compact closed category is a symmetric monoidal category [Bénabou 1963, 1964; MacLane 1963]
in which every object has a dual. As a concrete example, the categorification of the monoid of
natural numbers under addition (N,+, 0) is a symmetric monoidal category. One way to make
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9:2 Chao-Hong Chen and Amr Sabry

this category into a compact closed one is to add objects corresponding to negative numbers. In
the resulting category, the following algebraic proof of a = a would be represented in the standard
notation of string diagrams as the “zigzag” or “snake” dotted line below. The coherence conditions
of compact closed categories require this morphism to be equal to the identity morphism thus
matching the categorical semantics with the underlying algebraic proof of a = a:

The main problem we solve is the computational interpretation of such morphisms. The shape of
the diagram suggests that it would correspond to a program involving a form of backtracking but
making this precise is quite subtle. To appreciate the difficulties, consider replacing the additive
monoid (N,+, 0) by the multiplicative one (N,∗, 1) and modifying the diagrammutatis mutandis.
The same intuition suggests that some form of backtracking is also present in the multiplicative
case but clearly it must be distinguished from the one present in the additive version.
Our main contribution is a formalization of these two notions of backtracking: we show that nega-
tive types can be interpreted as “reversing time” (i.e., reversing the control flow) and that fractional
types can be interpreted as “reversing space” (i.e., reclaiming storage holding particular values or
throwing exceptions). The formalization takes the form of an operational semantics satisfying the
coherence conditions for compact closed categories. The operational semantics and most of its
properties are formalized in a supplementary Agda package.
Our secondary, but quite significant, contribution is to show that these dualities have interesting
applications in programming. Specifically, starting from a first-order reversible language in which
all programs witness type isomorphisms between finite types, we show that the extension with
negative and fractional types enriches it in several dimensions. First as an immediate consequence
of forming compact closed categories, each duality defines a corresponding notion of higher-order
functions. In the additive case, the type −A + B internalizes functions as terms that convert a
demand of a value of type A (flowing backwards) to the production of a value of type B (flowing
forwards). In the multiplicative case, the type 1/v × B for some v ∶ A internalizes the action of a
function on a particular argumentv that trades the space used byv for the space used by the result
of type B. Second, we suggest with several examples how negative and fractional types put the
management and optimization of space and time resources under programmer control. Finally, we
illustrate, via a full implementation of a reversible SAT solver, that negative and fractional types
can be used to implement, in a reversible programming language, advanced control abstractions
such as backtracking search.
Along the way, our third major contribution is a technique for proving the termination of a large
class of reversible abstract machines. Remarkably, under mild conditions, no state ever repeats
during the execution of this class of reversible abstract machines. The fully formalized Agda proof
of this statement reduces the termination property of an abstract machine to the much simpler
question of whether the set of reachable states from a start state is finite.
The paper is accompanied by approximately 5000 lines of Agda code implementing all the abstract
machines, interpreters, and examples. 1 The code additionally includes proofs of all the theorems
except for two combinatorial proofs in Sec. 5 and Sec. 7. The two proofs are tedious to formalize
but are conceptually straightforward asserting that, for the abstract machines in question, the set

1https://doi.org/10.5281/zenodo.4070034
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Negative and Fractional Types 9:3

of states reachable from a start state is finite. This finiteness property is used in just two theorems
(Thm. 19 and Thm.42) which are the only two theorems that are only partially formalized.

Related Work. Our work builds on extensive research in at least three areas:

• Compact closed categories and their applications. Excellent entry points to the most relevant
material are Selinger’s survey [2011] and Heunen and Vicary’s book [2019]. Our work is how-
ever not category-theoretic in nature but is rather building bridges. First, we formalize connec-
tions between dual objects in category theory and the duality of values and computations in
programming languages [Curien and Herbelin 2000; Filinski 1989; Selinger 2001; Wadler 2003,
2005]. Second, following a long tradition [Aman et al. 2020; Glück and Kaarsgaard 2018; James
and Sabry 2012a,b, 2014; James et al. 2013], we design and implement reversible programming
languages that match the categorical models.

• Type Theory and Logic of Continuations. The idea of “negative types” and their connection to
continuations has appeared many times in the literature. Rauszer [1974a; 1974b; 1980] intro-
duced a logic which contains a dual to implication. Her work has been distilled in the form of
subtractive logic [Crolard 2001] which has been related to coroutines [Crolard 2004] and delim-
ited continuations [Ariola et al. 2009]. Filinski [1992] uses the negative types of linear logic to
model continuations. Reddy [1991] generalizes this idea by interpreting the negative types of
linear logic as acceptors, which are like continuations in the sense that they take an input and
return no output. Acceptors however are also similar in flavor to logic variables: they can be
created and instantiated later once their context of use is determined. Our flavor of negative
types is arguably simpler exactly matching the algebraic notion of negative numbers and the
computational interpretations of linear logic [Abramsky et al. 2002; Abramsky and Jagadeesan
1994; Girard 1989; Mackie 1995, 2011].

• Type Isomorphisms. In the finitary setting, type isomorphisms provide a perfect, sound and
complete, foundation for reversible programming languages [Fiore 2004; Fiore et al. 2006; James
and Sabry 2012a]. This simple model can be extended by relaxing the isomorphisms to be par-
tial — giving models for Turing-complete reversible languages [Bowman et al. 2011; James
and Sabry 2012a; Kaarsgaard and Veltri 2019] and by incorporating reversible effects such as
state [Heunen et al. 2018; Heunen and Karvonen 2015].The simple model of type isomorphisms
was also recently extended by Chen et al. [2020] with the same fractional types we use in this
paper. That extension investigated several semantics of fractional types and their applications
to the safe management of ancilla bits (which are bits used for temporary storage). Our se-
mantics for fractional types matches one of theirs but instead of focusing on extracting safe
programs, we focus on formalizing the meta-theoretic properties of the semantics including
the fact that it forms a compact closed category. Our work also shares motivations, examples,
and some constructions with widely-circulated unpublished papers on “negative and fractional
types” [James and Sabry 2012b; James et al. 2013]. Regarding the technical details and contri-
butions, however, our work differs from, and significantly improves upon them: (i) the unpub-
lished semantics of fractional types assumed logical variables and unification while we have
a different semantics that makes no such assumptions; (ii) the unpublished semantics of neg-
ative types uses the same intuition of reversing execution flow but was only presented using
an abstract machine and without proving any properties in contrast to our semantics which
is specified using both an abstract machine and an equivalent interpreter with exceptions and
handlers; and (iii) our semantics of both negative and fractional types are formalized with ter-
mination proofs, reversibility proofs, and proofs that the constructions form compact closed
categories.
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id↔ ∶ A ↔ A ∶ id↔

unite+l ∶ 0 +A ↔ A ∶ uniti+l
swap+ ∶ A+ B ↔ B +A ∶ swap+
assocl+ ∶ A+ (B +C) ↔ (A+ B) +C ∶ assocr+

unite∗l ∶ 1 ×A ↔ A ∶ uniti∗l
swap∗ ∶ A× B ↔ B ×A ∶ swap∗
assocl∗ ∶ A× (B ×C) ↔ (A× B) ×C ∶ assocr∗

absorbr ∶ 0 ×A ↔ 0 ∶ factorzl
dist ∶ (A+ B) ×C ↔ (A×C) + (B ×C) ∶ factor

⊢ c1 ∶ A ↔ B ⊢ c2 ∶ B ↔ C

⊢ c1 # c2 ∶ A ↔ C

⊢ c1 ∶ A ↔ B ⊢ c2 ∶ C ↔ D

⊢ c1 ⊕ c2 ∶ A+C ↔ B + D

⊢ c1 ∶ A ↔ B ⊢ c2 ∶ C ↔ D

⊢ c1 ⊗ c2 ∶ A×C ↔ B × D

Fig. 1. Π-terms, combinators, and their types.

Outline. Sec. 2 introduces a first-order reversible language Π that is universal for combinational
circuits. In Sec. 3 we state and prove the “no-repeating” lemma allowing us to conveniently prove
the termination of all our abstract machines. In Sec. 4 we explain how the additive structure of
the language models logical time, how the multiplicative structure of the language models space
resources, and how the language allows arbitrary trade-offs between these two resources. In Sec. 5
and Sec. 6 we formalize the additive and multiplicative duals separately defining Π

m (for Π-types
extended with minus) and Πd (for Π-types extended with division) and combine them in Sec. 7 into
a unified language Π

Q (for Π-types having the structure of the field of rational numbers). Sec. 8
collects a number of small examples and outlines the full implementation of our reversible SAT
solver. In the last section, we conclude and outline future directions of research.

2 CORE REVERSIBLE LANGUAGE: Π
The syntax of the language Π consists of several sorts:

Value types A,B,C,D ∶∶= 0 ∣ 1 ∣ A+ B ∣ A× B
Values v,w, x,y ∶∶= tt ∣ inj1 v ∣ inj2 v ∣ (v,w)
Program types A ↔ B
Programs c ∶∶= (See Fig. 1)
Focusing on finite types, the building blocks of type theory are: the empty type (0), the unit type (1)
containing just one value tt, the sum type (+) containing values of the form inj1 v and inj2 v , and
the product (×) type containing pairs of values (v1,v2). One may view each typeA as a collection
of physical wires that can transmit ∣A∣ distinct values where ∣A∣ is a natural number that indicates
the size of a type, computed as: ∣0∣ = 0; ∣1∣ = 1; ∣A + B∣ = ∣A∣ + ∣B∣; and ∣A × B∣ = ∣A∣ ∗ ∣B∣.
Thus the type B = 1+ 1 corresponds to a wire that can transmit one of two values, i.e., bits, with
the convention that inj1 tt represents F and inj2 tt represents T. The type B × B × B corresponds
to a collection of wires that can transmit three bits. From that perspective, a type isomorphism
between types A and B (such that ∣A∣ = ∣B∣ = n) models a reversible combinational circuit that
permutes the n different values. These type isomorphisms are collected in Fig. 1.
Each line in the top part of the figure introduces a pair of dual constants that witness the type
isomorphism in the middle. These are the base (non-reducible) terms of Π. Note how the above
has two readings: first as a set of typing relations for a set of constants. Second, if these axioms are
seen as universally quantified, orientable statements, they also induce transformations of values.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 9. Publication date: January 2021.
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δ(unite+l, inj2 v) = v δ(uniti+l, v) = inj2 v
δ(swap+, inj1 v) = inj2 v
δ(swap+, inj2 v) = inj1 v
δ(assocl+, inj1 v) = inj1 (inj1 v) δ(assocr+, inj1 (inj1 v)) = inj1 v

δ(assocl+, inj2 (inj1 v)) = inj1 (inj2 v) δ(assocr+, inj1 (inj2 v)) = inj2 (inj1 v)
δ(assocl+, inj2 (inj2 v)) = inj2 v δ(assocr+, inj2 v) = inj2 (inj2 v)

δ(unite∗l, (tt,v)) = v δ(uniti∗l, v) = (tt,v)
δ(swap∗, (x,y)) = (y, x)

δ(assocl∗, (x, (y, z))) = ((x,y), z) δ(assocr∗, ((x,y), z)) = (x, (y, z))
δ(dist, (inj1 x, z)) = inj1 (x, z) δ(factor, inj1 (x, z)) = (inj1 x, z)
δ(dist, (inj2 y, z)) = inj2 (y, z) δ(factor, inj2 (y, z)) = (inj2 y, z)

Fig. 2. Semantics of base combinators

@ ∶ contA↔B

c2 ∶ B ↔ C κ ∶ contA↔C(@ # c2) • κ ∶ contA↔B

c1 ∶ A ↔ B κ ∶ contA↔C(c1 # @) • κ ∶ contB↔C

c2 ∶ C ↔ D κ ∶ contA+C↔B+D(@⊕ c2) • κ ∶ contA↔B

c1 ∶ A ↔ B κ ∶ contA+C↔B+D(c1 ⊕ @) • κ ∶ contC↔D

c2 ∶ C ↔ D y ∶ C κ ∶ contA×C↔B×D(@⊗ [c2,y]) • κ ∶ contA↔B

c1 ∶ A ↔ B x ∶ B κ ∶ contA×C↔B×D([c1, x]⊗ @) • κ ∶ contC↔D

Fig. 3. Well-formed Continuation Stacks

The intuition here is that these axioms have computational content because they witness isomor-
phisms rather than merely stating an extensional equality.The isomorphisms are extended to form
a congruence relation by adding the three congruence constructors at the bottom of the figure that
witness equivalence and compatible closure.
Although austere, this combinator-based language has the advantage of being amenable to for-
mal analysis for at least two reasons: (i) it is conceptually simple and small, and (ii) it has direct
and evident connections to type theory and category theory and hence possesses a rich algebraic
structure which we exploit in the remainder of the paper. Specifically, the type isomorphisms of Π
are sound and complete for all permutations on finite types [Fiore 2004; Fiore et al. 2006] and
hence they are complete for expressing reversible combinational circuits [Fredkin and Toffoli 1982;
James and Sabry 2012a; Toffoli 1980]. Algebraically, these types and combinators form a commu-
tative semiring (up to type isomorphism). Logically, they form a superstructural logic capturing
space-time trade-offs [Sparks and Sabry 2014]. Categorically, they form a distributive bimonoidal
category [Laplaza 1972].

2.1 Abstract Machine Semantics
To formalize the semantics of Π, we first specify the semantics of the base combinators in Fig. 2
using a function δ . It is clear that this function has an inverse δ† such that δ†(c, δ(c,v)) = v . To
specify the semantics of full programs, we use an abstract machine consisting of three registers: a
code register containing a combinator c , a value register containing a value v , and a continuation
register containing a continuation κ. Continuations are lists of frames F1 • F2 •⋯ • Fj •@ where
each frame has a “hole” representing a missing combinator and where holes are filled according to
the order Fj[⋯[F2[F1]]⋯]. In other words, the missing combinator is used to fill the hole in F1
and the result is used to fill the hole in F2 and so on. Fig. 3 gives the definition of well-formed
continuations where κ ∶ contA↔B represents an evaluation context with a hole of type A ↔ B.
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⟨c ∣ v ∣ κ⟩ ↦1 [c ∣ δ(c,v) ∣ κ] for base combinators c⟨id↔ ∣ v ∣ κ⟩ ↦2 [id↔ ∣ v ∣ κ]⟨c1 # c2 ∣ v ∣ κ⟩ ↦3 ⟨c1 ∣ v ∣ (@ # c2) • κ⟩⟨c1 ⊕ c2 ∣ inj1 x ∣ κ⟩ ↦4 ⟨c1 ∣ x ∣ (@⊕ c2) • κ⟩⟨c1 ⊕ c2 ∣ inj2 y ∣ κ⟩ ↦5 ⟨c2 ∣ y ∣ (c1 ⊕ @) • κ⟩⟨c1 ⊗ c2 ∣ (x,y) ∣ κ⟩ ↦6 ⟨c1 ∣ x ∣ (@⊗ [c2,y]) • κ⟩[c1 ∣ v ∣ (@ # c2) • κ] ↦7 ⟨c2 ∣ v ∣ (c1 # @) • κ⟩[c1 ∣ x ∣ (@⊗ [c2,y]) • κ] ↦8 ⟨c2 ∣ y ∣ ([c1, x]⊗ @) • κ⟩[c2 ∣ y ∣ ([c1, x]⊗ @) • κ] ↦9 [c1 ⊗ c2 ∣ (x,y) ∣ κ][c2 ∣ v ∣ (c1 # @) • κ] ↦10 [c1 # c2 ∣ v ∣ κ][c1 ∣ x ∣ (@⊕ c2) • κ] ↦11 [c1 ⊕ c2 ∣ inj1 x ∣ κ][c2 ∣ y ∣ (c1 ⊕ @) • κ] ↦12 [c1 ⊕ c2 ∣ inj2 y ∣ κ]
Fig. 4. Π-abstract machine

There are two kinds of machine states ⟨c ∣ v ∣ κ⟩ and [c ∣ v ∣ κ]. The first is an “enter” state
where the focus is on the combinator c and the second is a “return” state where the focus is on
the continuation κ. In more detail, in a state ⟨c ∣ v ∣ κ⟩ evaluation is about to apply c to v ; in a
state [c ∣ v ∣ κ] evaluation has just finished applying c resulting inv which is ready to be consumed
by the continuation. These distinctions are made precise in the following definition.
Definition 1 (Π-machine states). A Π-machine state σ is either:
• An enter state: ⟨c ∣ v ∣ κ⟩ where c ∶ A ↔ B, v ∶ A, and κ ∶ contA↔B .
• A return state: [c ∣ v ∣ κ] where c ∶ A ↔ B, v ∶ B, and κ ∶ contA↔B .

Fig. 4 gives the transition rules of the abstract machine. The first group defines transition steps
starting from enter states: these evaluation steps either immediately return if the computation
is trivial (cases ↦1 and ↦2) or push a frame onto the continuation stack to focus on the sub-
combinator in evaluation position.The second group defines the transition steps from return states.
In the first rule ↦7, evaluation of c1 has just finished; as the first frame on the continuation stack
is (@#c2), evaluation proceeds by entering c2. Rule↦10 shows what happens when the evaluation
of c2 terminates. In that case, the evaluation of the sequence c1 # c2 is complete and v is ready to
be consumed by κ.
The machine transition relation is both forward and backward deterministic.
Lemma 2 (Π-foRwaRd deteRministic). If σ ↦ σ1 and σ ↦ σ2 then σ1 = σ2

Lemma 3 (Π-bacKwaRd deteRministic). If σ1 ↦ σ and σ2 ↦ σ then σ1 = σ2

Definition 4 (Π-foRwaRd evaluation). We say eval(c,v1) = v2 if ⟨c ∣ v1 ∣ @⟩ ↦∗ [c ∣ v2 ∣ @]
where↦∗ is the reflexive transitive closure of the machine transition relation.

Definition 5 (Π-bacKwaRd evaluation). We define the relation ↦† such that σ1 ↦†
σ2 if σ2 ↦

σ1. All the rules can be directly read from right to left except rule↦†
1 which uses δ

† to invert the result
of δ . We say eval

†(c,v1) = v2 if [c ∣ v1 ∣ @] ↦†∗ ⟨c ∣ v2 ∣ @⟩
The evaluation functions are inverses to each other.
TheoRem 6 (Π-ReveRsible). For all c , v1, and v2, we have eval(c,v1) = v2 iff eval

†(c,v2) = v1.

2.2 Interpreter
Although termination of the Π-abstract machine is straightforward to prove directly, we will only
state it in Thm. 11 as a corollary of a general proof technique developed in the next section. The
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c base combinator
interp(c,v) ⇓ δ(c,v) interp(c1,v) ⇓ w

interp(c1 ⊕ c2, inj1 v) ⇓ inj1 w
interp(c2,v) ⇓ w

interp(c1 ⊕ c2, inj2 v) ⇓ inj2 w

interp(id↔,v) ⇓ v

interp(c1,v) ⇓ v1 interp(c2,v1) ⇓ v2

interp(c1 # c2,v) ⇓ v2

interp(c1,v1) ⇓ w1 interp(c2,v2) ⇓ w2

interp(c1 ⊗ c2, (v1,v2)) ⇓ (w1,w2)
Fig. 5. Π-interpreter

fact that Π-evaluation terminates and is deterministic means that it is a total function. A more
efficient and more readable specification of this total function is in Fig. 5.

TheoRem 7 (Π-inteRpReteR). For all c , v1, and v2, eval(c,v1) = v2 iff interp(c,v1) ⇓ v2.

3 TERMINATION OF REVERSIBLE ABSTRACT MACHINES
Wededicate this section to establish general properties that imply the termination of a large class of
reversible abstract machines. These properties will allow us to prove the termination of the exten-
sions of Π with negative and fractional types even though these extensions involve backtracking,
iterators, allocation, and other features that could potentially cause non-termination. Our tech-
nique is similar to the technique used to prove the termination of reversible flowcharts [Yokoyama
et al. 2016] but our setup and theorem statements are slightly more general and might apply to
other reversible languages [Abramsky 2005; Yokoyama and Glück 2007].
We begin by formulating a general definition of reversible abstract machines.

Definition 8 (ReveRsible AbstRact Machine). A reversible abstract machine is a pair (S,↝),
where S is the set of machine states and↝ is a transition relation satisfying the following two proper-
ties:
• ↝ is forward deterministic: ∀s, s1, s2 ∈ S if s ↝ s1 and s ↝ s2 then s1 = s2.
• ↝ is backward deterministic: ∀s, s1, s2 ∈ S if s1 ↝ s and s2 ↝ s then s1 = s2.

A remarkable property of all such reversible abstract machines is that no state ever repeats during
an evaluation trace.

Lemma 9 (non-Repeating). For any reversible abstract machine (S,↝), if s0 ∈ S is an initial state
(i.e., a state s0 such that ∄s .s ↝ s0) then for any n < m and sn, sm ∈ S such that s0 ↝n

sn and
s0 ↝m

sm we have that sn ≠ sm .

PRoof. If sn = sm , since s0 ↝n
sn , s0 ↝m

sm and n < m so there exists sm−n such that s0 ↝m−n

sm−n ↝n
sm = sn . Since ↝ is backward deterministic, so s0 = sm−n . However, since n < m there

must exist sm−n−1 such that sm−n−1 ↝ sm−n = s0 which contradicts to the assumption that s0 is
an initial state. Hence, sn ≠ sm . □

The above lemma does not, by itself, imply termination. In fact, the lemma applies to extensions
of Π with recursive types [Bowman et al. 2011; James and Sabry 2012a] where there exist infinite
evaluation traces. In those cases, the lemma just implies that these infinite evaluation traces do not
include repeated states.What the lemma does provide is a reduction of termination to the finiteness
of the set of states reachable from a start state. Since the latter property is straightforward for the
case of Π, we can immediately conclude the termination of the Π-abstract machine.

Lemma 10 (Π-stucK states). For all states σ , if σ is stuck then σ = [c ∣ v ∣ @].
TheoRem 11 (Π-teRmination). For all Π-combinators c ∶ A ↔ B and v1 ∶ A there exists v2 ∶ B
such that eval(c,v1) = v2

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 9. Publication date: January 2021.
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PRoof. The Π-abstract machine is both forward and backward deterministic. Furthermore, the set
of reachable states starting from ⟨c ∣ v ∣ @⟩ is finite. Hence, because no state repeats, evaluation
must eventually reach a stuck state σ such that ∄σ ′.σ ↦ σ

′. By Lem. 10, the stuck state must be a
final state of the form [c ∣ v2 ∣ @]. □

In Secs. 6 and 7, we consider more general reversible machines which compute partial reversible
functions. The following is a more general lemma for such reversible machines.
Definition 12 (PaRtial ReveRsible AbstRact Machine). A partial reversible machine is a triple(S, E,↝), where S is the set of machine states, E ⊆ S is a set of error states, and ↝ is a transition
relation satisfying the following three properties:
• ↝ is forward deterministic: ∀s, s1, s2 ∈ S if s ↝ s1 and s ↝ s2 then s1 = s2.
• ↝ is backward deterministic on proper states: ∀s, s1, s2 ∈ S if s ∉ E , s1 ↝ s , and s2 ↝ s then
s1 = s2.

• If s ∈ E then s is stuck (∄s ′.s ↝ s
′).

Lemma 13 (non-Repeating with failuRe). For any partial reversible machine (S, E,↝), if s0 ∈ S
is an initial state then for any n <m and sn, sm ∈ S such that s0 ↝n

sn and s0 ↝m
sm we have that

sn ≠ sm .

PRoof. Assume sn = sm , if sn ∈ E then it is stuck and there does not exist sm such that s0 ↦n

sn ↦m−n
sm . Hence sm = sn ∉ E . The rest of the proof is similar to Lem. 9. □

4 SPACE AND TIME RESOURCES AND TRADE-OFFS
In the next two sections, we explain how to extend Π in two independent directions each yielding
a distinct compact closed category: one of these categories will have a dual − for the type con-
structor + and the other a dual / for the type constructor ×. This section develops the intuition
that the type constructor + is related to the time needed for runtime execution and that the type
constructor × is related to the space needed for runtime execution thus setting the stage for an
interpretation of − as “going backwards in time” (backtracking of control flow) and of / as “going
backwards in space” (reclaiming of allocated storage).
Given the small-step abstract machine introduced in the previous section, it is relatively straight-
forward to compute the time and space resources needed by a computation: “time” is modeled
by the number of machine transition steps and an upper bound on “space” resources is modeled
by the maximum size of intermediate machine states visited during execution. A simple abstract
measure of the size of a machine state #σ is the number of values stored in that state (whether
in the v register or in the continuation register κ). This measure essentially counts the number of
live “pebbles” in the “pebble game” models of reversible computation [Bennett 1989; Chan 2013]
and is defined as follows:

#σ = 1 +#σ .κ #@ = 0
#(@ # c2) • κ = #κ #(c1 # @) • κ = #κ
#(@⊕ c2) • κ = #κ #(c1 ⊕ @) • κ = #κ
#(@⊗ [c2,v]) • κ = 1 +#κ #([c1,v]⊗ @) • κ = 1 +#κ

Since every state has a value register, its size is 1 plus the size of the continuation register. This
measure ignores the (fixed and constant) space needed to store the program itself (i.e., the com-
binators occurring in either the c component or the κ component) and focuses on the maximum
dynamic space requirements needed for each state during execution.
To make the case that the number of machine transition steps (i.e., time) is related to the + type
constructor and that the space used by intermediate machine states is related to the × type con-
structor, we provide a small compelling example. A type containing 16 values can be represented

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 9. Publication date: January 2021.



Negative and Fractional Types 9:9

as a sum of 8 booleans B + (B + (B + (B + (B + (B + (B + B)))))) or the product of 4 booleans
B× (B× (B×B)). In both cases, we can distinguish one boolean b and consider it indexed by the
remaining 8 values as shown below:

(inj1 b) (F , (F , (F , b)))
(inj2 (inj1 b)) (F , (F , (T , b)))
(inj2 (inj2 (inj1 b)) (F , (T , (F , b)))
(inj2 (inj2 (inj2 (inj1 b)))) (F , (T , (T , b)))
(inj2 (inj2 (inj2 (inj2 (inj1 b))))) (T , (F , (F , b)))
(inj2 (inj2 (inj2 (inj2 (inj2 (inj1 b)))))) (T , (F , (T , b)))
(inj2 (inj2 (inj2 (inj2 (inj2 (inj2 (inj1 b))))))) (T , (T , (F , b)))
(inj2 (inj2 (inj2 (inj2 (inj2 (inj2 (inj2 b))))))) (T , (T , (T , b)))

On the left, the booleanb is indexed by its position in the wide sum type; on the right, the booleanb
is indexed by the values of the three other booleans. Clearly the two representations are in 1-1
correspondence and hence it is possible to write a Π-combinator that mediates between the two
representations (see the accompanying code for the definition).
Now consider two programs that negate the distinguishedb and apply them to the inputs in the last
line. The definitions, correctness, and equivalence of these two programs are in the accompanying
code. The big difference between them is in the amount of resources they use. Accessing b in
the additive representation on the left requires “time” to decode the sum type; accessing b in the
multiplicative representation on the right is immediate but requires additional space to store the
three booleans. Indeed, when indexed by integers from 0 to 511, the additive program takes 1024
steps using 1 unit of space, whereas the multiplicative program takes 128 steps using 10 units of
space. Generally, the additive approach takes O(n) time using just one unit of space whereas the
multiplicative approach takes O(logn) time at the expense of using O(logn) units of space.

5 NEGATIVE TYPES: Πm

Aiming to construct a compact closed category with an additive dual, we extend Π with two com-
binators η+ and ε+ witnessing the isomorphism 0 ↔ A + (−A). As explained in the previous
section, values of a sum type A + B represent choices that are exercised at different times: at one
time we may have a value of type A and at another time we may have a value of type B. In the
case of A and −A we would like the two options to cancel each other in some kind of destructive
interference. This suggests that values should be equipped with a wave-like (but degenerate) no-
tion of amplitude or phase. We simply equip values v with either a positive sign (which is omitted
by convention) or a negative sign −v . Semantically the negative sign is interpreted as flipping the
flow of evaluation: forward evaluation becomes backward evaluation and vice-versa. We do expect
(and we will confirm) that flipping the flow of evaluation twice has no effect. Operationally, since
the Π-abstract machine is already reversible, all that is needed is to arrange for negative values to
use the backward evaluation relation ↦†.
Before proceeding with the semantic definitions, we note that our interpretation of negative types
as values flowing in a different direction suggests that the size of −A is equal to the size of A,
i.e., that ∣−A∣ = ∣A∣. Hence if A is inhabited, the isomorphism 0 ↔ A + (−A) can no longer be
interpreted as a permutation as the two sides have a different number of elements. Our operational
semantics instead suggests that−A should be considered as a “set with negative cardinality” [Propp
2002; Schanuel 1991] so that the net flow of values associated with a type A+ (−A) is indeed 0.

5.1 Abstract Machine Semantics
The syntax of Πm extends the syntax of Π as follows:
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Value types A,B,C,D ∶∶= ⋯ ∣ −A
Values v,w, x,y ∶∶= ⋯ ∣ −v
Programs c ∶∶= ⋯ ∣ η+ ∶ 0 ↔ A−A ∶ ϵ+

where we abbreviateA+(−B) asA−B. Graphically, the combinators η+ and ϵ+ look like “U-turns”:
η+ ε+

It is impossible to evaluate η+ in the forward direction as this would require supplying a value of
the empty type 0. In the backward direction, η+ either expects a value inj1 v or a value inj2 (−v).
In either case, it flips the flow of evaluation with the appropriate value.

⟨c ∣ v ∣ κ⟩ ↦i σ⟨c ∣ v ∣ κ⟩⊳ m
⟼i σ⊳

[c ∣ v ∣ κ] ↦i σ[c ∣ v ∣ κ]⊳ m
⟼i σ⊳

⟨c ∣ v ∣ κ⟩ ↦
†
i σ⟨c ∣ v ∣ κ⟩⊲ m

⟼i† σ⊲

[c ∣ v ∣ κ] ↦
†
i σ[c ∣ v ∣ κ]⊲ m

⟼i† σ⊲⟨ϵ+ ∣ inj1 v ∣ κ⟩⊳ m
⟼13 ⟨ϵ+ ∣ inj2 (−v) ∣ κ⟩⊲ [η+ ∣ inj2 (−v) ∣ κ]⊲ m

⟼15 [η+ ∣ inj1 v ∣ κ]⊳⟨ϵ+ ∣ inj2 (−v) ∣ κ⟩⊳ m
⟼14 ⟨ϵ+ ∣ inj1 v ∣ κ⟩⊲ [η+ ∣ inj1 v ∣ κ]⊲ m

⟼16 [η+ ∣ inj2 (−v) ∣ κ]⊳
Fig. 6. Πm -abstract machine

In order to manage the additional expressiveness of negative types, we extend machine states to
internally maintain a direction ⊳ or ⊲. The definition of extended machine states follows.

Definition 14 (Πm-machine states). A Π
m-machine state σ is either:

• An enter state: ⟨c ∣ v ∣ κ⟩d where c ∶ A ↔ B, v ∶ A, κ ∶ contA↔B , and d ∈ {⊳,⊲}.
• A return state: [c ∣ v ∣ κ]d where c ∶ A ↔ B, v ∶ B, κ ∶ contA↔B , and d ∈ {⊳,⊲}.

Fig. 6 gives the transition rules of the abstract machine. The first four judgments lift all the rules of
the Π-abstract machine to the extended machine: the first two rules lift the regular↦ rules and the
next two rules lift the reverse rules↦† with the convention that the new names are tagged with i†
for each transition i . The remaining four transitions deal with the new combinators η+ and ε+. As
there are no values of type 0, it is impossible for an enter state to make progress on η+ and it is
impossible for a return state to make progress on ε+. For ε+ it is only possible to make progress
when entering the state in the forward direction resulting in a state that executes in the backward
direction, swapping the direction of the value and the injection tag in the sum type. Symmetrically,
a return state with η+ in the combinator position does not return anything to the continuation but
instead flips the direction of execution again. Final states include the usual final states from the
Π-abstract machine but also “backward states” of the form ⟨c ∣ v ∣ @⟩⊲. Such final states can
be proper results for programs with negative types. For example, evaluating ⟨ε+ ∣ inj1 tt ∣ @⟩⊳
proceeds using m

⟼13 to ⟨ε+ ∣ inj2 (−tt) ∣ @⟩⊲ from which no further transitions are possible.

5.2 Properties
As explained in Sec. 3, the finiteness of the set of reachable states along with Lem. 9 are sufficient
to prove termination of the Πm-abstract machine. The latter lemma just requires that we prove the
transition relation to be forward and backward deterministic.

Lemma 15 (Πm-foRwaRd deteRministic). If σ m
⟼ σ1 and σ

m
⟼ σ2 then σ1 = σ2

Lemma 16 (Πm-bacKwaRd deteRministic). If σ1
m
⟼ σ and σ2

m
⟼ σ then σ1 = σ2

Lemma 17 (StucK). If σ is stuck (∄σ ′.σ
m
⟼ σ

′), then either σ = ⟨c ∣ v ∣ @⟩⊲ or σ = [c ∣ v ∣ @]⊳.
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Definition 18 (Πm-foRwaRd evaluation (limited)). We say evalm(c,v1) = v2 if ⟨c ∣v1 ∣@⟩⊳ m ∗
⟼[c ∣ v2 ∣ @]⊳ or ⟨c ∣ v1 ∣ @⟩⊳ m ∗

⟼ ⟨c ∣ v2 ∣ @⟩⊲. Note that in the first case v2 ∶ B but in the second
case v2 ∶ A. We address this point below in Def. 20.

TheoRem 19 (Πm-teRmination). For all Πm-combinators c ∶ A ↔ B andv1 ∶ A there existsv2 such
that evalm(c,v1) = v2

PRoof. The result follows from the following facts: (i) starting from an initial state, the set of
reachable states is finite, and (ii) the Πm-abstract is both forward and backward deterministic and
hence by Lem. 9, no state ever repeats during an evaluation trace. □

The theorem does not imply that there does not exist machine states from which evaluation will
diverge. For example, evaluation starting from ⟨ε+ ∣ inj1 tt ∣ (η+ # @) •@⟩⊳ will loop forever. This
state is, however, not reachable from an initial state because there are no inhabitants of 0.
The language Π

m is also reversible but expressing this is more complicated than the case for Π.
In fact, even Def. 18 of forward evaluation is not general enough as applying a combinator c to
a value of type B in the backward direction turns out to be identical to applying it to a value of
type −B in the forward direction. To formalize this idea we introduce the composite set LA�

,B
�M

whose elements can be either a value v ∶ A� flowing in the forward direction or a value w ∶ B�
flowing in the backward direction. Given this definition, we can now express the correct general
definitions of both forward and backward evaluations.

Definition 20 (Πm-foRwaRd evaluation). We define:

eval
m ∶ (A ↔ B) → LA�

,B
�M → LB�

,A
�M

as follows:

eval
m(c,v ∶ A�) = { w ∶ B� if ⟨c ∣ v ∣ @⟩⊳ m ∗

⟼ [c ∣w ∣ @]⊳
w ∶ A� if ⟨c ∣ v ∣ @⟩⊳ m ∗

⟼ ⟨c ∣w ∣ @⟩⊲
eval

m(c,v ∶ B�) = { w ∶ B� if [c ∣ v ∣ @]⊲ m ∗
⟼ [c ∣w ∣ @]⊳

w ∶ A� if [c ∣ v ∣ @]⊲ m ∗
⟼ ⟨c ∣w ∣ @⟩⊲

Evaluation can start in either direction and end in either direction.

Definition 21 (Πm-bacKwaRd evaluation). We define:

eval
m† ∶ (A ↔ B) → LB�

,A
�M → LA�

,B
�M

as follows:

eval
m†(c,v ∶ B�) = { w ∶ A� if [c ∣ v ∣ @]⊲ m ∗

⟼ ⟨c ∣w ∣ @⟩⊲
w ∶ B� if [c ∣ v ∣ @]⊲ m ∗

⟼ [c ∣w ∣ @]⊳
eval

m†(c,v ∶ A�) = { w ∶ A� if ⟨c ∣ v ∣ @⟩⊳ m ∗
⟼ ⟨c ∣w ∣ @⟩⊲

w ∶ B� if ⟨c ∣ v ∣ @⟩⊳ m ∗
⟼ [c ∣w ∣ @]⊳

Evaluation can start in either direction and end in either direction.

The punch line is that these two evaluations are inverses.

TheoRem 22. For all c ∶ A ↔ B, V ∶ LA�
,B

�M, andW ∶ LB�
,A

�M, we have evalm(c,V ) = W iff
eval

m†(c,W ) = V .
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(a) Πm composition
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(b) Associativity of Πm composition

Fig. 7. Sequential composition in Π
m .

5.3 Interpreter
The accompanying Agda code includes a more intuitive, and provably equivalent, specification of
the Πm-evaluation relation as a recursive interpreter. The specification includes many cases, most
of which are simple, so we content ourselves with presenting the most instructive cases in this
section. The interpreter has the same signature as the evaluation relation in Def. 20:

interp
m ∶ (A ↔ B) → LA�

,B
�M → LB�

,A
�M

It may be called with a forward or backward value and may return a forward or backward value
making the specification somewhat long. The general structure is however simple:
• For base combinators, evaluation in each direction is identical to evaluation in theΠ-interpreter:
interp

m(c,v�) ⇓ δ(c,v)� and interp
m(c,v�) ⇓ δ

†(c,v)�.
• For ⊕ there are many cases that are again identical to the corresponding cases in the Π-

interpreter for each combination of directions. We show two of the cases; the others are similar:

interp
m(c1,v�) ⇓ w

�
interp

m(c1 ⊕ c2, (inj1 v)�) ⇓ (inj1 w)� interp
m(c1,v�) ⇓ w

�
interp

m(c1 ⊕ c2, (inj1 v)�) ⇓ (inj1 w)�
• There are new cases for η+ that only accept values flowing backwards flipping the evaluation

direction:

interp
m(η+, inj1 v�) ⇓ inj2 (−v)�

interp
m(η+, inj2 (−v)�) ⇓ inj1 v

�
• There are new cases for ε+ that only accept values flowing forwards flipping the evaluation

direction:

interp
m(ε+, inj1 v�) ⇓ inj2 (−v)�

interp
m(ε+, inj2 (−v)�) ⇓ inj1 v

�
• For ⊗, we start evaluating the first component of the pair. The value of this first component

may either be in the same direction as the incoming pair in which case we continue evaluation
with the second component as usual. If however the value of the first component is tagged with
the opposite direction, we treat this an exception, i.e., we interrupt the evaluation in the given
direction and immediately return in the reverse direction. The following two cases capture the
main idea:
interp

m(c1,v�
1 ) ⇓ w

�
1 interp

m(c2,v�
2 ) ⇓ w

�
2

interp
m(c1 ⊗ c2, (v1,v2)�) ⇓ (w1,w2)� interp

m(c1,v�
1 ) ⇓ w

�
interp

m(c1 ⊗ c2, (v1,v2)�) ⇓ (w,v2)�
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• The case for sequential composition c1 # c2 is the most interesting one. Assume the incoming
value is v�: we begin by applying c1 to v�; if the result is tagged in the backward direction,
we throw an exception like above. Otherwise, we would like to continue by applying c2 to
the result. To prepare for the possibility that c2 might throw an exception, we apply c2 in the
context of a handler whose signature is: (A ↔ B) → B → (B ↔ C) → LC�

,A
�M. The

handler describes a state in which the intermediate value between c1 and c2 is known and
evaluation is about to start applying c2 in the forward direction. If the result of c2 is also in the
forward direction, the evaluation of the entire sequential composition terminates. If however
the result of evaluating c2 produces a value flowing in the backward direction, we would like to
continue by applying c1 in the backward direction. To prepare for the possibility that c1 might
throw an exception we apply c1 in the context of yet another handler with the same signature:(A ↔ B) → B → (B ↔ C) → LC�

,A
�M. This handler however describes a state in which

the intermediate value between c1 and c2 is known but evaluation is about to start with c1 in
the backward direction. A priori, there is no guarantee that evaluation will not bounce back
and forth in an infinite loop but the proof of equivalence of the interpreter to the abstract
machine guarantees termination. Below we show two cases of the evaluation for sequential
composition:

interp
m(c1,v�) ⇓ w

�
interp

m(c1 # c2,v�) ⇓ w
� interp

m(c1,v�) ⇓ w
�

handle⊳(c1,w�
, c2) ⇓ V

interp
m(c1 # c2,v�) ⇓ V

The forward handler is defined using two cases. The backward handler is similar:
interp

m(c2,v�) ⇓ w
�

handle⊳(c1,v�
, c2) ⇓ w

� interp
m(c2,v�) ⇓ w

�
handle⊲(c1,w�

, c2) ⇓ V

handle⊳(c1,v�
, c2) ⇓ V

The flow of values in the case of sequential composition is intuitively described by the H-shape
diagram in Fig. 7a. Note that this is exactly the same flow of values that happen in both the
geometry of interaction [Abramsky et al. 2002] and the Int-construction [Joyal et al. 1996].

TheoRem 23 (Πm-inteRpReteR). For all c , V , andW , evalm(c,V ) =W iff interp
m(c,V ) ⇓W .

5.4 Compact Closed Category
We conclude this section by confirming that the operational semantics above forms a compact
closed category. The construction is formalized in Agda using the agda-categories library2.

TheoRem 24. Let ∼ be the following equivalence relation on combinators c1 ∼ c2 iff eval
m(c1, _) =

eval
m(c2, _) identifying combinators with the same behavior under evaluation. The notation [c]∼

refers to a representative combinator from a ∼-equivalence class.3 Using this relation, we define the
category (C,+, 0) as follows:
• Obj(C) is the set of Πm types,
• Hom(A,B) = [c ∶ A ↔ B]∼, and
• dual objects −A for every A
The category (C,+, 0) is a compact closed category.

PRoof. Composition in C is the concatenation of combinators _ #_; the identity morphisms are the
equivalence classes of id↔ at each type. The basic properties of identity morphisms evalm(id↔ #
c) = eval

m(c) = eval
m(c # id↔), for all c , are straightforward by appealing to the interpreter

2https://github.com/agda/agda-categories [Hu and Carette 2020]
3This approach is sufficient to prove the semantics forms a 1-category but ignores the rich structure at the next level [Carette
and Sabry 2016].
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instead of the abstract machine. The most interesting proof is the one for the associativity of se-
quential composition. The situation is diagrammatically depicted in Fig. 7b where it is intuitively
clear that composition is associative. We outline a proof that establishes a bisimulation between
the different execution traces of the abstract machine. There are two possible inputs a� and b

�.
We consider the a� case below; the other case is similar. Let σ0 = ⟨c1 # (c2 # c3) ∣ a ∣ @⟩⊳ and for
each n, let σn be the state reachable after n steps σ0

m
⟼

n
σn . We aim to relate these states to the

states reachable from (c1 #c2)#c3. To that end, we define a functionT such thatT (σn) m ∗
⟼ T (σn+1)

whenever σn
m
⟼ σn+1:

T (⟨c1 # (c2 # c3) ∣ v ∣ @⟩d) = ⟨(c1 # c2) # c3 ∣ v ∣ @⟩d
T (⟨c ∣ v ∣ . . . (@ # (c2 # c3)) • @⟩d) = ⟨c ∣ v ∣ . . . (@ # c2) • (@ # c3) • @⟩d

T (⟨c2 # c3 ∣ v ∣ (c1 # @) • @⟩d) = ⟨c2 ∣ v ∣ (c1 # @) • (@ # c3) • @⟩d
T (⟨c ∣ v ∣ . . . (@ # c3) • (c1 # @) • @⟩d) = ⟨c ∣ v ∣ . . . (c1 # @) • (@ # c3) • @⟩d
T (⟨c ∣ v ∣ . . . (c2 # @) • (c1 # @) • @⟩d) = ⟨c ∣ v ∣ . . . ((c1 # c2) # @) • @⟩d

T ([c1 # (c2 # c3) ∣ v ∣ @]d) = [(c1 # c2) # c3 ∣ v ∣ @]d
T ([c ∣ v ∣ . . . (@ # (c2 # c3)) • @]d) = [c ∣ v ∣ . . . (@ # c2) • (@ # c3) • @]d

T ([c2 # c3 ∣ v ∣ (c1 # @) • @]d) = [c2 ∣ v ∣ (c1 # @) • (@ # c3) • @]d
T ([c ∣ v ∣ . . . (@ # c3) • (c1 # @) • @]d) = [c ∣ v ∣ . . . (c1 # @) • (@ # c3) • @]d
T ([c ∣ v ∣ . . . (c2 # @) • (c1 # @) • @]d) = [c ∣ v ∣ . . . ((c1 # c2) # @) • @]d

By Lem. 17, the transition steps starting from σ0 end in one of two possible final states. If:⟨c1 # (c2 # c3) ∣ a ∣ @⟩⊳ m ∗
⟼ [c1 # (c2 # c3) ∣ v ∣ @]⊳

we can obtain the corresponding evaluation on the re-associated combinator:

T (σ0) = ⟨(c1 # c2) # c3 ∣ a ∣ @⟩⊳ m ∗
⟼ [(c1 # c2) # c3 ∣ v ∣ @]⊳

Otherwise: ⟨c1 # (c2 # c3) ∣ a ∣ @⟩⊳ m ∗
⟼ ⟨c1 # (c2 # c3) ∣ v ∣ @⟩⊲

and we can obtain:

T (σ0) = ⟨(c1 # c2) # c3 ∣ a ∣ @⟩⊳ m ∗
⟼ ⟨(c1 # c2) # c3 ∣ v ∣ @⟩⊲

After checking that C is indeed a category, it remains to verify that (C, _+_) is a rigid symmetric
monoidal category. It is straightforward to confirm that the right unitors are definable using the
left unitors and braiding:

unite+l ∶ 0 +A ↔ A ∶ uniti+l
unite+r = swap+ # unite+l ∶ A+ 0 ↔ A ∶ uniti+l # swap+ = uniti+r

All the remaining coherence conditions are straightforward to check (some require bisimulation
proofs similar to the above) and are omitted from this proof outline. □

Given that Πm is a reversible language, one might wonder if the category above forms a groupoid
where every morphism f has an inverse f

−1 such that f # f −1 ∼ f
−1 # f ∼ id↔. Unfortunately,

this is not the case as there is no combinator c such that ε+ # c ∼ id↔. Instead, following a
suggestion by one of the anonymous reviewers, we show that the semantics ofΠm forms an inverse
category [Kastl 1979], i.e. each morphism f has a unique morphism f

−1 such that f # f −1 # f ∼ f

and f
−1 # f # f −1 ∼ f

−1.

TheoRem 25. The category C defined in Thm. 24 is an inverse category.
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PRoof. We first define the inverse of each combinator:
!c = c

′ if c is base combinator, where c ′ is c’s dual
!id↔ = id↔

!(c1 ⊕ c2) = !c1 ⊕ !c2
!(c1 ⊗ c2) = swap∗ # (!c2 ⊗ !c1) # swap∗
!(c1 # c2) = !c2 # !c1

!η+ = ε+
!ε+ = η+

By induction we can show that ! is involutive, i.e., for all c , we have c ∼ !(!c) and that it inverts
evaluation in the sense that if evalm(c,v1) = v2 then eval

m(!c,v2) = v1. Next, using the fact that !
inverts evaluation, we can show that c # !c # c ∼ c by case analysis on the possible outputs of c .
And using the fact that ! is involutive we obtain: !c # c # !c ∼ !c # !(!c) # !c ∼ !c . □

An immediate consequence of the construction of a compact closed category is that we can define
internal hom objects. Specifically, we get a bijection between A ↔ B and 0 ↔ (−A+B) allowing
any combinator A ↔ B to be used as an object converting demands for values of type A in the
backward direction to productions of values of type B in the forward direction. The internal hom
is not the familiar exponential object because the relevant tensor is + not ×. In this context, the
evaluation map is a combinator of type (−A+B)+A ↔ B and “currying” converts the combinator
on the left to the one on the right in the diagrams below:

A

B

C

f

A

B

C

f

Operationally, the significance of this “currying” is as follows. On the left, f expects either a value
of type A or a value of type B. The caller decides. On the right f speculatively opts to receive
only values of type A. If the caller provides a value of type A, then f produces a value of type
C as before. A value of type B can still be supplied but after backtracking and entering f in the
backward direction. The idea is the basis of our backtracking search abstraction detailed in Sec. 8.

6 FRACTIONAL TYPES: Πd

We now define an independent extension of Π with multiplicative duals. The analogy to the ad-
ditive case suggests the introduction of two combinators η∗ and ε∗ witnessing the isomorphism
1 ↔ A × (1/A). The situation however is more subtle than before for at least two reasons. First
the empty type 0 must be excluded from this extension as otherwise we would have:

1 ↔ 0 × 1/0 by η∗
↔ 0 by absorbr

The second subtlety can be appreciated as soon as one attempts to define the operational semantics
for η∗. The application of η∗ to tt at type B must return a pair whose first component is a boolean,
but which one? Either we introduce some form of non-determinism or we introduce a mechanism
to deterministically select a particular boolean value. Keeping with the deterministic approach in
this paper, there are two natural choices: (i) hardwire in the semantics a choice of a default value
for each type, or (ii) introduce families of η∗ and ε∗ parameterized by values. We discovered that
hardwiring a default value fails to produce a compact closed category as one coherence condition
(snake) would only be satisfied for that particular default value. Fortunately, the second approach
that introduces families of η∗ and ε∗ parameterized by values both eliminates the problem with
the empty type and induces a compact closed category as we prove below.
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⟨η∗v ∶A ∣ tt ∣ κ⟩ d
⟼13 [η∗v∶A ∣ (v,↻) ∣ κ]⟨ε∗v1∶A ∣ (v2,↻) ∣ κ⟩ d
⟼14 [ε∗v1∶A ∣ tt ∣ κ] if v1 = v2⟨ε∗v1∶A ∣ (v2,↻) ∣ κ⟩ d
⟼15 ⊠ if v1 ≠ v2

Fig. 8. Additional reduction rules for the Πd -abstract machine.

6.1 Abstract Machine Semantics
The syntax of Πd extends the syntax of Π as follows:
Value types A,B,C,D ∶∶= ⋯ ∣ 1/v
Values v,w, x,y ∶∶= ⋯ ∣ ↻
Program types t ↔ t

Programs c ∶∶= ⋯ ∣ η∗v∶A ∶ 1 ↔ A× 1/v ∶ ε∗v ∶A
As discussed above, instead of η∗ and ε∗, we introduce η∗

v ∶A and ε∗
v ∶A with the understanding

that applying η∗
v∶A to tt produces a pair whose first component isv . The second component of this

pair should be a value that can interact with v in a way that makes both values disappear. Given
the association of × with space explained in Sec. 4, we posit that this new value is a garbage-
collection (GC) process specialized to collect values equal to v . The fractional type 1/v denotes
such GC processes. Since all the information about fractional types is represented in the type, we
just need a unique value ↻ for their runtime representation. When ε∗

v ∶A is applied to a pair(v ′,↻), it checks if v = v
′, and in that case applies the GC process annihilating both. If, however,

v ≠ v
′, a runtime error will be raised. As evaluation might fail, the set of machine states includes

a distinguished failure state.

Definition 26 (Πd -machine states). A Π
d -machine state σ is either:

• An enter state: ⟨c ∣ v ∣ κ⟩ where c ∶ A ↔ B, v ∶ A, and κ ∶ contA↔B .
• A return state: [c ∣ v ∣ κ] where c ∶ A ↔ B, v ∶ B, and κ ∶ contA↔B .
• A fail state ⊠ which can make no progress.

The transition rules for the Πd -abstract machine are the following:
• All the twelve transition rules for the Π machine of Fig. 4.
• The three additional rules in Fig. 8. In rule d

⟼13 a new pair is created with the given value
and a GC process. In rules d

⟼14 and d
⟼15 if the value reaching ε∗ is the expected value then

it is collected; otherwise the machine enters the failure state.

6.2 Properties

Because the Π
d semantics involves error states, termination for the abstract machine uses the

more general Lem. 13 together with the usual requirement of the finiteness of the set of states
reachable from an initial state. To use Lem. 13 we need to establish three properties: forward
determinism, backward determinism on proper states, and verify that no progress is possible from
failure states. The latter property holds by construction and the next two lemmas establish the
required determinism properties.

Lemma 27 (Πd -foRwaRd deteRministic). If σ d
⟼ σ1 and σ

d
⟼ σ2 then σ1 = σ2

Lemma 28 (Πd -bacKwaRd deteRministic on pRopeR states). If σ1
m
⟼ σ , σ2

m
⟼ σ , and σ ≠ ⊠

then σ1 = σ2
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Lemma 29 (StucK). If σ is stuck (∄σ ′.σ
d

⟼ σ
′), then either σ = [c ∣ v ∣ @] or σ = ⊠.

Definition 30 (Πd -foRwaRd evaluation). The function eval
d(c, _) is defined as follows:

eval
d(c,v1) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩ v2 if ⟨c ∣ v1 ∣ @⟩ d ∗

⟼ [c ∣ v2 ∣ @]
error if ⟨c ∣ v1 ∣ @⟩ d ∗

⟼ ⊠

TheoRem 31 (Πd -teRmination). For allΠd -combinators c ∶ A ↔ B andv1 ∶ A, either there existsv2

such that evald(c,v1) = v2 or eval
d(c,v1) = error.

According to the previous lemmas, the Π
d abstract machine is a partial reversible machine with

every combinator inducing partial reversible function. As usual, we define
d †
⟼ such thatσ1

d †
⟼ σ2

if σ2
d

⟼ σ1 and define backward evaluation.

Definition 32 (Πd -bacKwaRd evaluation). We define evald† as follows:

eval
d†(c,v1) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩ v2 if [c ∣ v1 ∣ @] d †∗

⟼ ⟨c ∣ v2 ∣ @⟩
error if [c ∣ v1 ∣ @] d †∗

⟼ [η∗v2∶A ∣ (v3,↻) ∣ κ] where v2 ≠ v3

TheoRem 33. For all Πd -combinators c ∶ A ↔ B and v1 ∶ B, either there exists v2 such that
eval

d†(c,v1) = v2 or eval
d†(c,v1) = error.

TheoRem 34. For all c ∶ A ↔ B,v1 ∶ A, andv2 ∶ B, we have eval
d(c,v1) = v2 iff eval

d†(c,v2) = v1.

6.3 Interpreter

The semantics of Πd is particularly simple to define using a high-level interpreter of type:

interp
d ∶ (A ↔ B) → A → Maybe B

The interpreter is a monadic version of the Π-interpreter in Fig. 5 extended with the following
clauses:

interp
d(η∗v ∶A,tt) ⇓ just (v,↻) v1 = v2

interp
d(ε∗v1∶A, (v2,↻)) ⇓ just tt

v1 ≠ v2

interp
d(ε∗v1∶A, (v2,↻)) ⇓ nothing

TheoRem 35 (Πd -inteRpReteR). For all c , v1, and v2, eval
d(c,v1) = v2 iff interp

d(c,v1) ⇓ just v2

and evald(c,v1) = error iff interp
d(c,v1) ⇓ nothing.

6.4 Compact Closed Category
Since η∗ and ε∗ are indexed by values, the operational semantics for fractionals does not form
a compact closed category directly. Inspired by the relational models of geometry of interac-
tions [Honsell and Lenisa 2004] we will build the appropriate category (groupoid actually) using
pointed types.

TheoRem 36. We define the category of pointed types (C•,×, 1) as follows:
• Obj(C•) are of the form (A,a) where A is a Πd -type and a ∶ A,
• Hom((A,a), (B,b)) = c ∶ A ↔ B where evald(c,a) = b, and
• dual objects (1/a,↻) for every (A,a)
The category (C•,×, 1) is a compact closed groupoid.
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An immediate consequence of forming a compact closed category on multiplicative tensor is that
morphisms become representable as values. Since the category we built is pointed, the morphisms
are also pointed, mapping a particular a ∶ A to a particular b ∶ B. Such a morphism can be repre-
sented as a value of type 1/(a ∶ A)×B. The same currying construction presented in the previous
section also applies, converting the combinator on the left to the one on the right in the diagram
below:

A

v ∶ B

C

f

A

1/(v ∶ B)
C

f

On the left, f expects a pair of some value of type A and v ∶ B, it consumes both returning a value
of type C . On the right, the consumption of v ∶ B is delayed by issuing a GC process that can
collect it when it becomes available. From a programming perspective, this allows programs to be
staged, consuming inputs as they become available.

7 COMBINING NEGATIVE AND FRACTIONAL TYPES: ΠQ

A possible way to combine the languages Πm and Π
d ensuring that the result is also a compact

closed category is to simply take their product. The types of the new language would be pairs of
types and the programs in the new language (morphisms in the new category) would be pairs of
programs/morphisms acting pointwise [Clark et al. 2008]. This however would not enable interac-
tions between backtracking and allocation/de-allocation. Our design, motivated by the operational
semantics perspective is to combine the languages in a way that allows interactions of effects in
the spirit of monad composition. The design is apparent in the types below:
interp

m ∶ (A ↔ B) → LA�
,B

�M → LB�
,A

�M
interp

d ∶ (A ↔ B) → A → Maybe B

interp
Q ∶ (A ↔ B) → LA�

,B
�M → Maybe (LB�

,A
�M)

The type of interpQ suggests the following properties: (i) in the absence of memory effects, we
recover the type of interpm , (ii) in the absence of backtracking effects, we recover the type of
interp

d , (iii) the combination of the effects is controlled by theMaybemonad, i.e., no backtracking
is possible from an error state.

7.1 Abstract Machine Semantics
The syntax of ΠQ is given as follows:
Value types A,B,C,D ∶∶= 0 ∣ 1 ∣ A+ B ∣ A× B ∣ −A ∣ 1/v
Values v,w, x,y ∶∶= tt ∣ inj1 v ∣ inj2 v ∣ (v,v) ∣ −v ∣ ↻
Program types A ↔ B

Programs c ∶∶= (See Fig. 1) ∣ η+ ∶ 0 ↔ A+ (−A) ∶ ε+ ∣ η∗v∶A ∶ 1 ↔ A× 1/v ∶ ε∗v ∶A
The set of machine states includes both directional and fail states.

Definition 37 (ΠQ-machine states). A Π
Q-machine state σ is either:

• An enter state: ⟨c ∣ v ∣ κ⟩d where c ∶ A ↔ B, v ∶ A, κ ∶ contA↔B , and d ∈ {⊳,⊲}.
• A return state: [c ∣ v ∣ κ]d where c ∶ A ↔ B, v ∶ B, κ ∶ contA↔B , and d ∈ {⊳,⊲}.
• A fail state ⊠ which can make no progress.

The transition rules for the Π
Q-abstract machine are collected in Fig. 9. The rules include all the

Π
m-rules without change. For the Πd -rules, we include versions of them in both directions.
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Include all the Πm-rules.⟨c ∣ v ∣ κ⟩ ↦i σ⟨c ∣ v ∣ κ⟩⊳ Q
⟼i σ⊳

[c ∣ v ∣ κ] ↦i σ[c ∣ v ∣ κ]⊳ Q
⟼i σ⊳

⟨c ∣ v ∣ κ⟩ ↦
†
i σ⟨c ∣ v ∣ κ⟩⊲ Q

⟼i† σ⊲

[c ∣ v ∣ κ] ↦
†
i σ[c ∣ v ∣ κ]⊲ Q

⟼i† σ⊲⟨ϵ+ ∣ inj1 v ∣ κ⟩⊳ Q
⟼12 ⟨ϵ+ ∣ inj2 (−v) ∣ κ⟩⊲ [η+ ∣ inj2 (−v) ∣ κ]⊲ Q

⟼14 [η+ ∣ inj1 v ∣ κ]⊳⟨ϵ+ ∣ inj2 (−v) ∣ κ⟩⊳ Q
⟼13 ⟨ϵ+ ∣ inj1 v ∣ κ⟩⊲ [η+ ∣ inj1 v ∣ κ]⊲ Q

⟼15 [η+ ∣ inj2 (−v) ∣ κ]⊳
Include all the Πd -rules in the forward direction.⟨η∗v ∶A ∣ tt ∣ κ⟩⊳ Q

⟼16 [η∗v ∶A ∣ (v,↻) ∣ κ]⊳⟨ε∗v1∶A ∣ (v2,↻) ∣ κ⟩⊳ Q
⟼17 [ε∗v1∶A ∣ tt ∣ κ]⊳ if v1 = v2⟨ε∗v1∶A ∣ (v2,↻) ∣ κ⟩⊳ Q
⟼18 ⊠ if v1 ≠ v2

Include all the Πd -rules in the backward direction.[η∗v1∶A ∣ (v2,↻) ∣ κ]⊲ Q
⟼19 ⟨η∗v1∶A ∣ tt ∣ κ⟩⊲ if v1 = v2[η∗v1∶A ∣ (v2,↻) ∣ κ]⊲ Q
⟼20 ⊠ if v1 ≠ v2[ε∗v∶A ∣ tt ∣ κ]⊲ Q
⟼21 ⟨ε∗v ∶A ∣ (v,↻) ∣ κ⟩⊲

Fig. 9. ΠQ-abstract machine

7.2 Properties
We establish the same properties as for the other interpreters: evaluation is deterministic, termi-
nating, and partially reversible.

Lemma 38 (ΠQ-foRwaRd deteRministic). If σ
Q

⟼ σ1 and σ
Q

⟼ σ2 then σ1 = σ2

Lemma 39 (ΠQ-bacKwaRd deteRministic on pRopeR states). If σ1
Q

⟼ σ , σ2
Q

⟼ σ , and σ ≠ ⊠
then σ1 = σ2

Lemma 40 (StucK). If σ is stuck (∄σ ′.σ
Q

⟼ σ
′), then either σ = ⟨c ∣ v ∣ @⟩⊲, σ = [c ∣ v ∣ @]⊳, or

σ = ⊠.

Definition 41 (ΠQ-foRwaRd evaluation). We define:

eval
Q ∶ (A ↔ B) → LA�

,B
�M → LB�

,A
�M ⊎ {error}

as follows:

eval
Q(c,v ∶ A�) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w ∶ B� if ⟨c ∣ v ∣ @⟩⊳ Q ∗

⟼ [c ∣w ∣ @]⊳
w ∶ A� if ⟨c ∣ v ∣ @⟩⊳ Q ∗

⟼ ⟨c ∣w ∣ @⟩⊲
error if ⟨c ∣ v ∣ @⟩⊳ Q ∗

⟼ ⊠

eval
Q(c,v ∶ B�) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w ∶ B� if [c ∣ v ∣ @]⊲ Q ∗

⟼ [c ∣w ∣ @]⊳
w ∶ A� if [c ∣ v ∣ @]⊲ Q ∗

⟼ ⟨c ∣w ∣ @⟩⊲
error if [c ∣ v ∣ @]⊲ Q ∗

⟼ ⊠

Evaluation can start in either direction and end in either direction.

TheoRem 42 (ΠQ-teRmination). For all ΠQ-combinators c ∶ A ↔ B andv1 ∶ LA�
,B

�M, either there
exists v2 ∶ LB�

,A
�M such that evalQ(c,v1) = v2 or eval

Q(c,v1) = error.
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The language ΠQ is also partially reversible.

Definition 43 (ΠQ-bacKwaRd evaluation). We define:

eval
Q† ∶ (A ↔ B) → LB�

,A
�M → LA�

,B
�M ⊎ {error}

as follows:

eval
Q†(c,v ∶ B�) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w ∶ A� if [c ∣ v ∣ @]⊲ Q ∗

⟼ ⟨c ∣w ∣ @⟩⊲
w ∶ B� if [c ∣ v ∣ @]⊲ Q ∗

⟼ [c ∣w ∣ @]⊳
error if [c ∣ v ∣ @]⊲ Q ∗

⟼ ⊠

eval
Q†(c,v ∶ A�) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w ∶ A� if ⟨c ∣ v ∣ @⟩⊳ Q ∗

⟼ ⟨c ∣w ∣ @⟩⊲
w ∶ B� if ⟨c ∣ v ∣ @⟩⊳ Q ∗

⟼ [c ∣w ∣ @]⊳
error if ⟨c ∣ v ∣ @⟩⊳ Q ∗

⟼ ⊠

Evaluation can start in either direction and end in either direction.

TheoRem 44. For all c ∶ A ↔ B, V ∶ LA�
,B

�M, andW ∶ LB�
,A

�M, we have evalQ(c,V ) = W iff
eval

Q†(c,W ) = V .

7.3 Interpreter

The complete interpreter for Π
Q is in the accompanying Agda code. It is essentially the Π

m-
interpreter modified as follows. First, all operations are lifted to the exception monad. Second,
now that the multiplicative fragment is also subject to backtracking, the interpreter is extended
with clauses for η∗ and ε∗ in both directions.

8 PROGRAMMINGWITH NEGATIVE AND FRACTIONAL TYPES
We present a number of small examples illustrating the expressiveness ofΠQ. Most of the examples
also lead to the implementation of the SAT solver. Because the examples get progressively larger
and more complex, the presentation in this section uses executable Agda code, which is kept quite
similar to the mathematical presentation used so far. In this context, Agda is used as a “macro
processor” that generates ΠQ combinators from given parameters and then as an interpreter to
execute the resulting combinators. The code omits some of the boilerplate definitions which can
be found in the supplement.

Patterns and Data Definitions. The universe of ΠQ-types is called U in the Agda code. For conve-
nience, we define abbreviations of booleans and products of booleans:
pattern B = 1 +u 1
pattern F = inj1 tt
pattern T = inj2 tt

B^ : ℕ→ U
B^ 0 = 1
B^ 1 = B
B^ (suc (suc n)) = B ×u B^ (suc n)

Reversible Conditionals and Reversible Copy. Some of the basic abstractions developed in the early
proposals of reversible computing [Toffoli 1980] are the ability to perform conditional execu-
tion of combinators and to make copies of data. We first define CNOT, an important gate in
the context of reversible and quantum computation. As shown in the diagram below, the com-
binator CNOT takes a pair booleans with the first one acting as a “control bit” and the second
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one acting as a “target bit.” If the control bit is true (i.e., if we are in the right injection after
distributing), then we negate the target bit (by swapping the left and right injections). Other-
wise, no action is taken and the gate acts as the identity. If we execute CNOT on input (T,F)
which we recall is an abbreviation for (inj2 tt, inj1 tt), the evaluation terminates with (T,T).
CNOT : B ×u B ↔ B ×u B
CNOT = dist # (id↔ ⊕ (id↔ ⊗ swap+)) # factor dist

F

T swap+

factor

F

T

The combinator CIF generalizes CNOT to define a reversible if-expression.4
CIF : {A : U} → (c1 c2 : A↔ A) → B ×u A↔ B ×u A
CIF c1 c2 = dist # ((id↔ ⊗ c1) ⊕ (id↔ ⊗ c2)) # factor
The combinator TOFFOLI’ is an iterated controlled operation that flips the last bit if all the previous
bits are false. (TOFFOLI’(b1, . . . ,bn,b) = (b1, . . . ,bn,b xor (¬b1 ∧ . . . ∧ ¬bn))).
TOFFOLI’ : {n : ℕ} → B^ n ↔ B^ n
TOFFOLI’ {0} = id↔
TOFFOLI’ {1} = swap+
TOFFOLI’ {suc (suc n)} = CIF TOFFOLI’ id↔
An interesting observation going back to Toffoli [1980] is that, when the target bit of CNOT is
set to F, it performs a reversible copy. Indeed, the input (F,F) is mapped to (F,F) and the input(T,F) is mapped to (T,T). The combinator COPY (shown below) generalizes this idea to perform
the following operationCOPY(F,b1, . . . ,bn) = (b1,b1, . . . ,bn)which copies the first bit in a tuple.
COPY : ∀ {n} → B ×u B^ n↔ B ×u B^ n
COPY {0} = id↔
COPY {1} = swap∗ # CNOT # swap∗
COPY {suc (suc n)} = assocl∗ # (COPY ⊗ id↔) # assocr∗ ⋮

CNOT

The combinator RESET is also a controlled operation modulo some re-arranging of values. Its se-
mantics can be summarized as follows: RESET(b,b1, . . . ,bn) = (b ∨ (⋁n

i=1 bi),b1, . . . ,bn) where
∨ is logical-or and ∨ is exclusive-or. As shown in the last line of the definition, as long as we are
in the first branch of the conditional (i.e., the current bit is false), we keep calling RESET until we
reach the last bit.
RESET : ∀ {n} → B ×u B^ n↔ B ×u B^ n
RESET {0} = id↔
RESET {1} = swap∗ # CNOT # swap∗
RESET {suc (suc n)} =
Ax[BxC]=Bx[AxC] # CIF RESET (swap+ ⊗ id↔) # Ax[BxC]=Bx[AxC]

dist

F

T

NOT

factor

F

T

RESETn−1

⋮ ⋮

⋮ ⋮

⋮⋮

Arithmetic. Given the ability of perform conditional operations on bits, it is relatively straight-
forward to implement reversible arithmetic operations. The program below increments an n-bit
binary number (without carry). The definition of INCR is by cases: incrementing 1 bit without
carry just flips the bit using swap+. For a binary number with n > 1 bits, we first run INCR on the
lower n − 1 bits, and if the result is a collection of bits that are all F, we flip the highest bit.

4Arguments within braces {⋅} are implicit arguments that can often be automatically inferred by Agda.
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INCR : ∀ {n} → B^ n↔ B^ n
INCR {0} = id↔
INCR {1} = swap+
INCR {suc (suc n)} =
(id↔ ⊗ INCR) # FST2LAST # TOFFOLI’ # FST2LAST⁻¹

⋮
⋮

INCRn−1
TOFFOLI’n⋮

Data Structures. Negative types can be used to build expressive and more efficient data structures.
Consider a situation in which we have an enumeration consisting of exactly 2047 elements. Two
extreme representations would be to use an inefficient “wide” sum type or a product type of 11
booleans with some informal convention that one of the elements is unused. With negative types,
we can use a type “211 − 1” that uses the efficient product type while also formally enforcing that
one of the elements is unused. The advantage of the “211 − 1” representation over the wide sum
type becomes apparent whenwriting functions that manipulate either type. For example, as shown
in the accompanying code, incrementing a value represented in the additive representation takes
32721 machine transition steps whereas the same operation over the “211−1” representation only
takes 3453 steps.
To more clearly see the role that −1 plays in this setting, let’s consider a smaller example in which
we represent a type with three elements as a pair of booleans (representing values 00, 01, 10, and
11) minus one element (11) leaving only three values (00, 01, and 10) in the type. The goal is to
write a function that increments the three values mapping 00 ↦ 01, 01 ↦ 10, and 10 ↦ 00. This
can be achieved using INCR ∶ B2 ↔ B2 as shown in the diagram below:

inj1 tt
inj2 (inj1 tt)inj2 (inj2 tt)

01
10

00
01
10
11

00

11

-1 -1

inj1 tt
inj2 (inj1 tt)inj2 (inj2 tt)

When given the inputs 00 and 01, INCR performs the desired action. But when given input 10,
INCR produces the excluded element 11: this triggers a backtracking action feeding the value 11
back into INCR producing 00 as the final result.5

Control Flow. The example from the introduction can now be executed in both the additive and
multiplicative fragments. We show the additive execution which relies on backtracking.

zigzag : B ↔ B
zigzag =
uniti+l # (η+ ⊕ id↔) # [A+B]+C=[C+B]+A # (ε+ ⊕ id↔) # unite+l η+ ε+

Execution starts in the forward direction. When η+ ⊕ id↔ is first encountered, evaluation pro-
ceeds to the right following id↔ until it reaches ε+ ⊕ id↔. At that point evaluation reverses
with a negative value executing the machine transitions in reverse. Eventually, evaluation reaches
η+ ⊕ id↔ again but this time in the reverse direction. Evaluation then flips direction again and
terminates with the same input we started with. Indeed this circuit implements one of the coher-
ence conditions for compact closed categories which essentially states that η+ following by ε+ is
the identity. This trace confirms the intuition that the first occurrence of η+ is transparent in the
forward direction but is used to mark a backtracking point.

5In general, using negative types, we can build an n-element wrap-around counter using an n + k wrap-around counter
for arbitrary k .
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Iteration. We show how to implement a for-loop using negative types. We start with the trace
operator definable in compact closed categories:
trace+ : ∀ {A B C} → (A +u C↔ B +u C) → A↔ B
trace+ f = uniti+r # (id↔ ⊕ η+) # assocl+ # (f ⊕ id↔) # assocr+ # (id↔ ⊕ ε+) # unite+r
Given an input a, the execution of (trace+f) starts by applying f to inj1 a. The result of f can
either be of the form inj1 b or inj2 c . In the first case, evaluation terminates with result b. In the
second case, evaluation proceeds backwards re-entering f with inj2 c and repeating the process.
Since f is injective and has a finite graph, it must eventually return a value of the form inj1 b
terminating the iteration. Since execution is guaranteed to terminate, the number of copies of f
is bounded and the trace operator realizes the functionality of a bounded for-loop. We make this
connection concrete by implementing a combinator that behaves like the following loop written
in pseudo-code:

for (b=F; G(b)=(T, _); b++);
The loop maintains a tuple of booleans representing a binary number that starts at 0 and is incre-
mented at each step using the circuit INCR. In each iteration the current binary number is passed
to a functionG and the loop terminates when the first bit ofG’s return value is T. The correspond-
ing Π

Q program will take the form LOOP(G)(F,F, . . . ,F) where LOOP takes a n-bit reversible
function to construct a n + 1-bit reversible function. To maintain reversibility, we use a common
design pattern of reversible programs: compute-copy-uncompute [Bennett 1973; Toffoli 1980]. In
more detail, in each iteration, we computeG(b), copy the result to an auxiliary wire using COPY,
and then run G backwards to uncompute its result restoring the original b. After the copy opera-
tion and uncomputing the action of G, the auxiliary wire still holds the copied value and can be
used to decide whether to terminate or continue the loop. If the loop continues, we use RESET to
reset the auxiliary wire to F in preparation for the next copy operation.

dist

F

T

⋮

⋮

⋮

⋮

⋮

η+

⋮

⋮

factor

F

T

⋮ ⋮
RESET

G ⋮
COPY

G−1⋮ ⋮
dist

F

T

⋮

⋮ ⋮

ε+

factor

F

T

⋮

INCR
⋮

F F
b1 b1

bnbn

LOOP : ∀ {n} → B^ n↔ B^ n → B ×u B^ n↔ B ×u B^ n
LOOP {0} G = id↔
LOOP {1} G = id↔ ⊗ G
LOOP {suc (suc n)} G = trace+ ( (dist ⊕ id↔) # [A+B]+C=[A+C]+B # (factor ⊕ id↔) #

((RESET # (id↔ ⊗ G) # COPY # (id↔ ⊗ G⁻¹)) ⊕ id↔) #
(dist ⊕ id↔) # [A+B]+C=[A+C]+B # (factor ⊕ (id↔ ⊗ INCR)) )

We note that it is possible to build an equivalent circuit in plain Π but at the cost of replicating 2
n

copies of the circuit controlled by the trace operator.

Allocation and De-Allocation. The multiplicative version of the trace operator has a similar defini-
tion to the additive one but has fundamentally different behavior:
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trace∗ : ∀ {A B C} → ⟦ C ⟧ → (A ×u C ↔ B ×u C) → A↔ B
trace∗ v f =
uniti∗r # (id↔ ⊗ ηₓ v) # assocl∗ # (f ⊗ id↔) #
assocr∗ # (id↔ ⊗ εₓ v) # unite∗r

b ∶ Ba ∶ A
f

η∗ ε∗

v ∶ C v ∶ C

Since η∗ and ε∗ take a value argument, the entire trace operator takes a v which should be a
fixed point of f . A small example can illustrate this point. Let f be swap∗ and consider applying
trace∗ F swap∗ to some value a. During this evaluation swap∗ is applied to (a,F) and returns(F,a). If a ≠ F, execution will raise an error at ε∗.
The multiplicative trace operator can be used to allocate a temporary (ancilla) value for the du-
ration of the execution f and safely de-allocate on exit from f under the condition that it has
been restored to its initial value [Chen et al. 2020; Green et al. 2013; Thomsen et al. 2015]. This
space management approach should be contrasted with the standard approach in programming
languages in which allocation would have type: alloc ∶ 1 → A. Attempting to directly use this
type for allocation, and adding an inverse of typeA → 1 for de-allocation completely destroys the
foundation of the language based on type isomorphisms and would invalidate much of the basic
reasoning principles in the language. For example, the type system would no longer be able to
match allocations with de-allocations allowing terms like uniti∗l # (id↔ ⊗ alloc) ∶ 1 ↔ B × B
which leak memory.

Higher-Order Combinators. As explained during the construction of compact closed categories,
each extension supports a notion of higher-order functions. A combinator can be converted to
a higher-order value and then these values can be composed, curried, and applied. We only show
the signatures of the combinators:
_⊸+_ : (A B : U) → U
A⊸+ B = - A +u B

hof- : {A B : U} →
(A↔ B) → (0 ↔ A ⊸+ B)

comp- : {A B C : U} →
(A⊸+ B) +u (B ⊸+ C) ↔ (A⊸+ C)

curry- : {A B C : U} →
(A +u B ↔ C) → (A↔ B ⊸+ C)

app- : {A B : U} → (A⊸+ B) +u A↔ B

_⊸∗_ : {A : U} → (v : ⟦ A ⟧) → (B : U) → U
v ⊸∗ B = 1/ v ×u B

hof/ : {A B : U} →
(A↔ B) → (v : ⟦ A ⟧) → (1 ↔ v ⊸∗ B)

comp/ : {A B C : U} {v : ⟦ A ⟧} → (w : ⟦ B ⟧) →
(v ⊸∗ B) ×u (w ⊸∗ C)↔ (v ⊸∗ C)

curry/ : {A B C : U} →
(A ×u B↔ C) → (v : ⟦ B ⟧) → (A↔ v ⊸∗ C)

app/ : {A B : U} → (v : ⟦ A ⟧) → (v ⊸∗ B) ×u A↔ B

As an example, (curry- swap+) is a combinator of typeB ↔ −B+(B+B). Onemay think of swap+
as a combinator ready to receive either a left value or a right value and think of (curry- swap+) as a
combinator only receiving the original left value as a regular input; the curried combinator can also
receive the original right value by demanding it from the output side. In contrast, (curry/ CNOT T)
is a combinator of type B ↔ 1/T × (B × B). The fractional part of the type reveals that CNOT
has already been partially applied to a T target bit. When given a control bit b, the combinator
behaves like CNOT (b,T).
Algebraic Identities from the Field of Rational Numbers. Any equation that is valid in the field of
rational numbers has a computational interpretation in Π

Q. For example, since 3
2
− 1

2
= 1, we can

write four different programs with types that realize this identity (depending on whether we use
F or T to represent the fraction 1

2
). The supplementary package includes definitions for a number

of combinators whose types are identities in the field of rational numbers. We only highlight a few
signatures from the code:
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⋮
LOOP

⋮ ⋮
COPY LOOP−1 ⋮

⋮

η∗ ε∗

F

F

F

F F

F

F

F

Fig. 10. Structure of SAT solver

• Reversing execution flow twice is a no-op:
inv- : {A : U} → A↔ - (- A)

• Garbage collecting the garbage collector for v rematerializes v :
inv/ : {A : U} {v : ⟦ A ⟧} → A↔ (1/_ {1/ v}↻)

• A garbage collector for collecting a pair is a pair of garbage collectors:
dist/ : {A B : U} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → 1/ (a , b)↔ 1/ a ×u 1/ b

• If one component of a pair reverses direction, the entire pair reverses:
dist×- : {A B : U} → (- A) ×u B ↔ - (A ×u B)

• A choice between two multiplicative functions is a multiplicative function taking a pair. Ex-
panding the definition of ⊸∗, this is just the formula for summing two fractions: A

v +
B
w =

Aw+Bv
vw :

addFrac : ∀ {A B C D} → (v : ⟦ C ⟧) → (w : ⟦ D ⟧) →
(v ⊸∗ A) +u (w ⊸∗ B)↔ (v , w) ⊸∗ ((A ×u D) +u (C ×u B))

Reversible Backtracking Search: A SAT Solver. The previous abstractions just need to be assembled
to implement a SAT solver in Π

Q. Our SAT solver checks the satisfiability for a given function
G ∶ Bn → B, i.e., it succeeds if ∃b .G(b) = T. The first step is to use the standard Toffoli con-
struction [1980] to construct Gr ∶ B1+n → B1+n which is a reversible version of G satisfying
G
r (F,b) = (G(b), _). In our implementation it turns out to be simpler to negate Gr and checks

the unsatisfiability. Below we use ∼ G
r = G

r # (NOT ⊗ id↔) as a reversible version of NOT ◦G
satisfying ∃b . ∼ G

r (b) = (F, . . .) iff ∃b .G(b) = T. The executable definition takes an instance of
a SAT problem and returns a combinator of type 1 ↔ 1. When applied to tt this combinator either
returns tt indicating success or throws an exception:6
SAT : ∀ {n} → B^ (1 + n) ↔ B^ (1 + n) → 1 ↔ 1
SAT {n} Gʳ = trace∗ (F^ (3 + n)) (id↔ ⊗ ( (id↔ ⊗ (LOOP (~ Gʳ ) # (id↔ ⊗ SPLIT 1 n))) #

(id↔ ⊗ (assocl∗ # (COPY ⊗ id↔) # assocr∗)) #
assocl∗ # (swap∗ ⊗ id↔) # assocr∗ #
(id↔ ⊗ ((id↔ ⊗MERGE 1 n) # LOOP⁻¹ (~ Gʳ )))) )

where
MERGE : (n m : ℕ) → B^ n ×u B^ m↔ B^ (n + m)
SPLIT : (n m : ℕ) → B^ (n + m) ↔ B^ n ×u B^ m

Other than the previously-constructed combinators for the multiplicative trace, COPY, and LOOP,
the implementation only uses primitive combinators and two easy combinators to split and merge

6It would be possible to reformulate the SAT solver to return a boolean result instead of an exception. One possibility is
to leave the ancilla bit as part of the result instead of GC’ing it. This would however also keep the associated GC token as
part of the result.
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tuples of booleans. As shown in Fig. 10, the general structure of the solver is to use LOOP to iterate
over boolean assignments to find smallest b such that ∼ G

r (b) = (F, _), using COPY to copy the
first bit of b to an auxiliary wire, and running LOOP−1 to uncompute b back to F. If the first bit
of b is F, the GC process succeeds, otherwise it throws an exception. This construction is correct
because if b = (F, x) then ∼ G

r (x) = F which implies G(x) = T. Otherwise since LOOP starts
from F1+n so ∀x . ∼ G

r (x) = T which implies ∀x .G(x) = F.
As a small example, consider G(a,b) = (a ∧ b) ∨ (a ∨ b) (where ∧ is logical-and, ∨ is logical-or,
and∨ is exclusive-or).The SAT solver accepts the reversible version ofG satisfyingGr (F,b1,b2) =(G(b1,b2), _, _) and executes as follows: (i) use the multiplicative trace to initialize 2+3 ancilla F
bits (1 for result, 1 for temporary storage in LOOP and n for inputs); (ii) use LOOP that iterates
over all possible values of (b0,b1,b2) starting from (F,F,F), which results in (b ′0,b ′1,b ′2) such that
G
r (b0,b1,b2) = (F, _, _) ((F,F,T) in this case); (iii) copy b

′
0 to the unused auxiliary wire; (iv)

uncompute LOOP which takes (b ′0,b ′1,b ′2) back to (F,F,F); (v) the GC succeeds since the b ′0 we
copied is F. The following are some additional small examples:
-- Ex1(F,a,b) = ((a∧b) xor (a∧b),_,_)
SAT-Ex1 = eval’ (SAT Ex1) tt -- nothing

-- Ex2(F,a,b) = ((a∧b) xor (a∨b),_,_)
SAT-Ex2 = eval’ (SAT Ex2) tt -- just tt

-- Ex3(F,a,b) = (((a∧b) ∧ (a xor b)),_,_)

SAT-Ex3 = eval’ (SAT Ex3) tt -- nothing

-- Ex4(F,a,b) = (((a∨b) ∧ (a xor b)),_,_)

SAT-Ex4 = eval’ (SAT Ex4) tt -- just tt

9 CONCLUSION AND FUTUREWORK
We have constructed computational models of compact closed categories by proposing that nega-
tive and fractional types express backtracking in “time” and “space.” Significantly we have demon-
strated that negative and fractional types have applications in programming, enriching reversible
programming languages with facilities for allocation, de-allocation, exceptions, and backtracking.
The salient aspects of our approach are:
• Negative and fractional types have an elementary and familiar interpretation borrowed from

the algebra of rational numbers. One can write any algebraic identity that is valid for the
rational numbers and interpret it as an isomorphism with a clear computational interpretation:
negative values flow backwards and fractional values represent garbage-collection processes.

• Because we are not in the context of the full λ-calculus, which allows arbitrary duplication and
erasure of information, values of negative and fractional types are first-class values that can
flow anywhere.The information-preserving computational infrastructure guarantees that, in a
complete program (c ∶ A ↔ B where A and B does not contain duals), every negative demand
will be satisfied, and every allocation matched by a fractional value will also be collected.

We envision two broad directions of future research.

Quantum Computing. At a foundational level, the marriage of quantum mechanics and computer
science provides a computational interpretation of physics, and in particular directly addresses the
question of interpretation of quantum mechanics. Aspects of fractional and negative types appear
related to the creation and annihilation of entangled particle/antiparticle pairs [Panangaden and
Paquette 2011] and negative information and entropy [Loeb 1992; Oppenheim et al. 2005; Penrose
1971; Rio et al. 2011; Schanuel 1991]. At a more pragmatic level, reversible languages such as Π
can be expressed in a more intuitive syntax for programmers by using symmetric pattern match-
ing [James and Sabry 2014] and can become quantum programming languages when extended
with superpositions of patterns [Sabry et al. 2018]. There does not appear to be any obstacles in
combining the quantum extension with the negative and fractional types thus enriching quantum
programming languages with high-level abstractions such as backtracking.
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General Purpose Programming Languages. The extension of Π to Π
Q corresponds to a move from

a ring-like structure to a full algebraic field. As we have argued, computation in the field of ratio-
nal numbers is quite expressive and interesting and yet, it has two fundamental limitations. First it
cannot express recursive types, and second it cannot express user-defined datatype definitions. We
believe these two extensions to be orthogonal to each other. Recursive types were considered by
James and Sabry [2012a]; there should be no difficulty in extending ΠQ with recursive types follow-
ing the same technique to produce a Turing-complete language with the additional abstractions
provided by negative and fractional types. Arbitrary datatype definitions are more interesting as
each datatype definition can be viewed as a solution to a polynomial over types. For example, the
datatype of binary trees µx .(1 + x ∗ x) can be re-arranged as x = 1 + x ∗ x or x2 − x + 1 = 0

whose solution would be the type “(1/2) + i(√3/2).” These types have been studied extensively
following a paper by Blass [1995] which used the above datatype of trees to infer an isomorphism
between seven binary trees and one! Enriching Π

Q beyond the field of rational numbers to the
field of algebraic numbers would be an interesting problem to investigate.
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