introduction to systems science

hiroki sayama

office hours:
Wednesdays: ???
binghamton.zoom.us/my/hirokisayama

SSIE-501 - spring 2024

Resources

- web page
- casci.binghamton.edu/academics/ssie501
- online class
- binghamton.zoom.us/j/93351260610
- blog: sciber
- sciber.blogspot.com
- Brightspace
- brightspace.binghamton.edu/d2l/home/255004
luis m. rocha

office hours:

Thursdays 9-11:30am binghamton.zoom.us/my/luismrocha

integrating and analyzing multiomics data social media data pipelines for biomedicine

integrating and analyzing multiomics data

social media data pipelines for biomedicine

Wood, Correia, Miller, \&Rocha [2022]. Epilepsy \& Behavior. 128: 108580
Correia, Wood, Bollen, \& Rocha [2020]. Annual Review of Biomedical Data Science, 3:1
Wood, Varela, Bollen, Rocha \& Sá [2017]. Scientific Reports. 7: 17973
Correia, Li \& Rocha [2016]. PSB: 21:492-503.
BINGHAMTON
rocha@binghamton.edu
Ciampaglia, et al [2015]. PloS ONE. 10(6): e0128193.
integrating and analyzing multiomics data
social media data pipelines for biomedicine

Wood, Correia, Miller, \&Rocha [2022]. Epilepsy \& Behavior. 128: 108580.
Correia, Wood, Bollen, \& Rocha [2020]. Annual Review of Biomedical Data Science, 3:1.
Wood, Varela, Bollen, Rocha \& Sá [2017]. Scientific Reports. 7: 17973
integrating and analyzing multiomic electronic health records with network science to predict comorbidity \& drug interaction networks, disease factors \& interventions

integrating and analyzing multilevel data sources with network science
to predict disease spread, information integration

Prontiers im NEUROINFORMATICS

Multi-scale integration and predictability in resting state brain activity

ORIGINAL RESEARCH ARTICLE \qquad

rocha@binghamton.edu
informatics.indiana.edu/rocha/academics/i-bic

-	Background
-	Interests
-	Course expectations

- Lecture slides and notes
- See course web page and brightspace
- Web links and general materials
- Blog (sciber.blogspot.com) and brightspace
- Class Book
- Klir, G.J. [2001]. Facets of systems science. Springer.
- Available in electronic format for SUNY students.
- Various literature for discussion
- Course web site and brightspace

- The course deals with the foundations of Systems Science, as well as current advances in Complex Networksand Systems which is the modern expression of this interdisciplinary field.
- Aims
- Introduce and discuss the history, methodology and impact of complex systems science.
- key literature, recent advances, and computational techniques in the field.
- study concepts such as
- Information, General Systems Theory, Networks, Modéling, Multi-

Level Complexity, as well as their impact on science and society.

- The course will also attempt to define and understand what systems thinking can bring to science and society.

introduction to informatics

- Participation and Discussion: 15\%.
- class discussion, everybody reads and discusses every paper
- engagement in class
- Lead Discussions: 25%
- Students are assigned to papers as lead discussants
- all students are supposed to read and participate in discussion of every paper.
- Lead discussant prepares short summary of assigned paper (10 minutes)
- no formal presentations or PowerPoint unless figures are indispensable.
- Summary should:
- 1) Identify the key goals of the paper (not go in detail over every section)
- 2) What discussant liked and did not like
- 3) What authors achieyed and did not
- 4) Any oth
- Class discussion is opened to all
- lead discussant ensures we important paper contributions and failures ar
- Python Homework: 25\%
- From Python workshop (3rd Session Prof. Sayama)
- Term Paper/Project proposal: 35\%
- A paper with an overview of the topics and literature covered, or a proposal for a project that uses complex systems thinking in your domain of expertise
lecture 1: information and a tour on the garden of forking paths from Borges to Shannon

the library of Babel
Personal path in the garden of forking paths

the library of Babel

Jorge Luis Borges (1899-1986)

"The universe (which others call the Library) is composed of an indefinite and perhaps infinite number of hexagonal galleries, with vast air shafts between, surrounded by very low railings."
"......all the books, no matter how diverse they might be, are made up of the same elements: the space, the period, the comma, the twenty-two letters of the alphabet He also alleged a fact which travelers have confirmed: In the vast Library there are no two identical books."
"...Everything: the minutely detailed history of the future, the archangels' autobiographies, the faithful catalogues of the Library, thousands and thousands of
 false catalogues, the demonstration of the fallacy of those catalogues, the
 demonstration of the fallacy of the true catalogue, [...] the true story of your death, the translation of every book in all languages...".
"Ihave wandered in search of a book, perhaps the catalogue of catalogues"

> Poetic essays on information and memory (1941)

the library of Babel

numbers

- Each book
- 25 characters, written in any sequence for 410 pages of 40 lines of 80 characters
- $410 * 40 * 80=$ sequence of $\approx 10^{6.1}$ characters
- $\approx 10^{7.2}$ base pairs (10 Mbp)
- ≈ 1 book to store E.Coli genotype, 10 for drosophila, and 100 for human
- How many possible books?
- $=25\left(410^{*} 40^{*} 80\right)$ combinations $=25^{1,312,000}$ books! - $\approx 1.956 \times 10^{1,834,097}$ books
- Total number of atoms in the current, observable universe is about 10^{80}
- If each book were the size of an atom, library would hold 101,834,017 universes!
- Yet finite!
- Can also be reproduced with just two symbols (cf Quine, Turing, Leibniz)

Information Space Is finite but larger than Physical
"the Library is so enormous that any reduction of human origin is infinitesimal."
"every copy is unique, irreplaceable, but (since the Library is total) there are always several hundred thousand imperfect facsimiles: works which differ only in a letter or a comma."

What to do in such information spaces to avoid becoming a Quixotic wanderer?

Are there principles of organization?

information basics

observer and choice

- Information is defined as "a measure of the freedom from choice with which a message is selected from the set of all possible messages"
- Bit (short for binary digit) is the most elementary choice one can make
- Between two items: "0' and "1", "heads" or "tails", "true" or "false", etc.
- Bit is equivalent to the choice between two equally likely alternatives
- Example, if we know that a coin is to be tossed, but are unable to see it as it falls, a message telling whether the coin came up heads or tails gives us one bit of information

1 Bit of information
uncertainty removed, information gained

1 Bit of uncertainty
H, T ?
choice between 2 symbols
recognized by an observer

Fathers of uncertainty-based information

Hartley, R.V.L., "Transmission of Information", Bell System Technical Journal, July 1928, p. 535.
C. E. Shannon [1948], "A mathematical theory of communication". Bell System Technical Journal, 27:379-423 and 623-656
C. E. Shannon, "A Symbolic analysis of relay and switching circuits" .MS Thesis, (unpublished) MIT, 1937.
C. E. Shannon, "An algebra for theoretical genetics." Phd Dissertation, MIT, 1940.

Let's talk about choices

- Multiplication Principle
- "If some choice can be made in M different ways, and some subsequent choice can be made in N different ways, then there are $\mathrm{M} \times \mathrm{N}$ different ways these choices can be made in succession" [Paulos]
- 3 shirts and 4 pants $=3 \times 4=12$ outfit choices

Combinations quickly grow with long sequences of variables (and state choices)

Hartley uncertainty

- Nonspecificity
- Hartley measure
- The amount of uncertainty associated with a set of alternatives (e.g. messages) is measured by the amount of information needed to remove the uncertainty

Quantifies how many yes-no questions need to be asked to establish what the correct alternative is

Elementary Choice is between 2 alternatives: 1 bit

$$
\begin{aligned}
& H(B)=\log _{2}(2)=1 \\
& \log _{2}(4)=2 \quad 2^{2}=4
\end{aligned}
$$

Measured in bits Number of Choices

$$
\log _{2}(16)=4
$$

$$
2^{4}=16
$$

$\log _{2}(1)=0$

Hartley Uncertainty

$$
\begin{aligned}
& H(A)=\log _{2}(16)=4 \\
& H(B)=\log _{2}(4)=2
\end{aligned}
$$

Measured in bits

- Example
- Menu Choices
- A = 16 Entrees
- B = 4 Desserts
- How many dinner combinations?

$$
H(A)=\log _{2}|A|
$$

- $16 \times 4=64$

Quantifies how many yes-no questions need to be asked to establish what the correct alternative is

Number of Choices

$$
\begin{aligned}
& H(A \times B)=\log _{2}(16 \times 4)= \\
& =\log _{2}(16)+\log _{2}(4)=6
\end{aligned}
$$

uncertainty-based information

- Shannon's measure
$A=$ Set of weighted
Alternatives

- The average amount of uncertainty associated with a set of weighted alternatives (e.g. messages) is measured by the average amount of information needed to remove the uncertainty

entropy of a message

alphabet examples

Message encoded in an alphabet of \boldsymbol{n} symbols, for example:

- English (26 letters + space + punctuations)
- Morse code (dot, dash, space)
- DNA (A, T, G, C)
- Two dice (11 integers)

rocha@binghamton.edu
casci.binghamton.edu/academics/ssie501m
- Given a symbol set $\{A, B, C, D, E\}$
- And occurrence probabilities $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}}, \mathrm{P}_{\mathrm{D}}, \mathrm{P}_{\mathrm{E}}$,
- The Shannon entropy is
- The average minimum number of bits needed to represent a symbol

$$
H_{S}=-\left(p_{A} \log _{2}\left(p_{A}\right)+p_{B} \log _{2}\left(p_{B}\right)+p_{C} \log _{2}\left(p_{C}\right)+p_{D} \log _{2}\left(p_{D}\right)+p_{E} \log _{2}\left(p_{E}\right)\right)
$$

$$
H_{S}=-\left(1 \cdot \log _{2}(1)+0 \cdot \log _{2}(0)+0 \cdot \log _{2}(0)+0 \cdot \log _{2}(0)+0 \cdot \log _{2}(0)\right)=-\log _{2}(1)
$$

$$
H_{S}=-5 \cdot\left(\frac{1}{5}\right) \cdot \log _{2}\left(\frac{1}{5}\right)=-\left(\log _{2}(1)-\log _{2}(5)\right)=\log _{2}(5)
$$

$$
H_{S}=-\left(\frac{1}{2} \cdot \log _{2}\left(\frac{1}{2}\right)+\frac{1}{5} \cdot \log _{2}\left(\frac{1}{5}\right)+3 \cdot\left(\frac{1}{10}\right) \cdot \log _{2}\left(\frac{1}{10}\right)\right)
$$

information is surprise

uncertainty, about outcome. How much information is gained when symbol is known

■on average, how many yes-no questions need to be asked to establish what the symbol is

■"structure" of uncertainty in situations

$$
H_{S} \in=-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2}\left(p\left(x_{i}\right)\right)
$$

For one alternative

english entropy (rate)

from letter frequency

entropy and meaning

- entropy quantifies information (surprise), but it does not consider information content
- semantic aspects of information are irrelevant to the engineering problem in Shannon's conception

We were good, we were gold Kinda dream that can't be sold We were right 'til we weren't Built a home and watched it burn

Mm, I didn't wanna leave you I didn't wanna lie Started to cry, but then remembered I I can buy myself flowers Write my name in the sand Talk to myself for hours Say things you don't understand I can take myself dancing And I can hold my own hand Yeah, I can love me better than you can
wdeo eog geWI ewr e deorw aainhmta d rettoeKandl dsbc eeeier ntw hWttr ewrgliwe oriaedatmht ndc lwn thuaBeuib
eanm dtal vewdi nl o unMay al indn nltawde i cl rettedtebrmSrb reemntuy da oth e
uolrawe blnffmsyylc es
niWe dty ne rsehmntiama arem TII ssytrfu fkoooh nyoh e gdodudtnaraustsi tnynS
atf Ik emcnegyn snlicad a
hmhydcndAwannoon dl la
tlhl eatta nom Ybrueny h ee oaavn cce

BINGHAMTON	rocha@binghamton.edu casci.binghamton.edu/academics/ssie501m

entropy according to probabilistic model

$$
0^{\text {th }} \text { order model: equiprobable symbols }
$$

$$
H(A)=\log _{2}|A|
$$

Hartley Measure
$H(\|27\|)$

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

OCRO HLI RGWR NMIELWIS EU LL NBNESBEYA TH EEI ALHENHTTPA OOBTTVA NAH BRL
$2^{\text {nd }}$ order model: frequency of digrams
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

$$
3^{\text {rd }} \text { order model: frequency of trigrams }
$$

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE
$4^{\text {th }}$ order model: frequency of tetragrams THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG INSTATES CONS ERATION NEVER ANY OF PUBLE AND TO THEORY EVENTIAL CALLEGAND TO ELAST BENERATED IN WITH PIES AS IS WITH THE
http://pages.central.edu/emp/LintonT/classes/spring01/cryptography/letterfreq.html

[^0]Most common digrams: th, he, in, en, nt, re, er, an, ti, es, on, at, se, nd, or, ar, al,
te, co, de, to, ra, et, ed, it, sa, em, ro.

Most common trigrams: the, and, tha, ent, ing, ion, tio, for, nde, has, nce, edt, tis, oft, sth, men

$$
H_{S}=2.8
$$

including more structure reduces surprise

BINGHAMTON rocha@binghamton.edu
 casci.binghamton.edu/academics/ssie501m

uncertainty

other measures to infer structure and organization in nature and society

- Mutual Information
- Amount of information about one variable that can be gained (uncertainty reduced) by observing another variable
- Information Gain (Kullback-Leibler Divergence)
- Difference between two probability distributions p and q,
- average number of bits per data point needed in order to represent q (model approximation) as it deviates from p ("true" or theoretical distribution)
- Transfer Entropy
- transfer of information between two random processes in time
- Amount of information (in bits) gained, or uncertainty lost, in knowing future values of Y, knowing the past values of X and Y.

$$
I(X ; Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right) \log _{2} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}
$$

$$
I G(p(X), q(X))=\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}
$$

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

$$
T_{X \rightarrow Y}=H\left(Y_{t} \mid Y_{t-1: t-L}\right)-H\left(Y_{t} \mid Y_{t-1: t-L}, X_{t-1: t-L}\right)
$$

uncertainty

other measures to infer structure and organization in nature and society

- Mutual Information

- Amount of information about one variable that can be gained (uncertainty reduced) by observing another variable
- Infarmation Gain (Kullhank I aiblar Nivaraance)

Optional Readings: Golan, Amos, and John Harte. "Information theory: A foundation for complexity science." Proceedings of the National Academy of Sciences 119.33 (2022): e2119089119.

James, R., and Crutchfield, J. (2017). "Multivariate Dependence beyond Shannon Information". Entropy, 19(10), 531.
ons p and q,
order to represent q (model approximation) as it
processes in time
ainty lost, in knowing future values of Y , knowing

$$
I(X ; Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right) \log _{2} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}
$$

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

$$
\operatorname{IG}(p(X), q(X))=\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}
$$

$$
T_{X \rightarrow Y}=H\left(Y_{t} \mid Y_{t-1: t-L}\right)-H\left(Y_{t} \mid Y_{t-1: t-L}, X_{t-1: t-L}\right)
$$

Optional Reading: Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information theoretic primer on complexity, self organization, and emergence." Complexity 15.1 (2009): 11-28.
information as decrease in uncertainty

$H(A)=\log _{2}|A|$

Measured in bits
Number of Choices

Hartley, R.V.L., "Transmission of Information", Bell System Technical Journal, July 1928, p. 535.

including more structure reduces surprise

information is surprise

C. E. annon [1948], "A mathematical theory of communication". Bell System Technical Journal, 27:379-423 and 623-656
information of sequential messages
James, R., and Crutchfield, J. (2017). "Multivariate Dependence beyond Shannon Information". Entropy, 19(10), 531.
> "syntactic" surprise But what about function and was meaning (semantics)?

[^0]: http://everything2.com/title/entropy+of+English

