
introduction to systems science

SSIE-501/ISE-440 - Fall 2022

office hours:
Tuesdays 4-5pm, Wednesdays 12:30-2:30pm, Thursdays 9:00-11:00am, EB-K1 binghamton.zoom.us/j/5483243323
office hours:
Tuesdays 9:00-11:30am binghamton.zoom.us/my/luismrocha

introduction to systems science
evaluation

- Participation: 20\%.
- class discussion, everybody reads and discusses every paper
- engagement in class, including online
- Paper Presentation and Discussion: 20\%
- All students are assigned to a Reading and Discussion Group
- SSIE501 students in group present and discuss papers
- all students are supposed to read and participate in discussion of every paper.
- section 01 groups present in class, section 20 groups present via zoom or sends a videos
- Presenter group prepares short summary of assigned paper (15 minutes)
- no formal presentations or PowerPoint unless figures are indispensable.
- Summary should:
- 1) Identify
- 2) What di
- 3) What
- 4) Any other relevant connections to other class readings and beyond.
- ISE440 students in group participate as lead discussants
- not to present the paper, but to comment on points
- Class discussion is opened to all
- lead discussant ensures important paper contributions and failure
- Black Box: 60%
- Group Project (2 parts)
- Assignment I (25\%) and Assignment II (35\%)

key events coming up
- Paper Presentation: 20\%
- Present (501) and lead $(501 \& 440)$ the discussion of an article related to the class materials
- section 01 presents in class, section 20 (Enginet) posts videos on Brightspace (exceptions possible)
- Module 1: Cybernetics and the Information Turn
- Thursday, August 31st
- Reading and Discussion Group 1
- Negin Esmaeili, Amahury Lopez Diaz et al :
- Heims, S.G. [1991]. The Cybernetics Group. MIT Press. Chapters: 1-2.
- Optional: Chapters 11-12.
- Optional: McCulloch, W. and W. Pitts [1943], "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical Biophysics 5:115-133.
- Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
- Optional: Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information theoretic primer on complexity, self-organization, and emergence." Complexity 15.1 (2009): 11-28.
- Kline, Ronald R [2015]. The cybernetics moment, or, why we call our age the information age. Johns Hopkins University Press. Chapters 1-2.
- Discussion by all
- No Class Tuesday, September $5^{\text {th }}$
more upcoming readings (check brightspace)
- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussion of an article related to the class materials
- Enginet students post/send video or join by Zoom synchronously
- Tuesday, September 12th
- Reading and Discussion Group 2

■ Savannah Sidoti, Akshay Gangadhar, et al

- Brenner, Sydney. [2012]. "History of Science. The Revolution in the Life Sciences". Science 338 (6113): 1427-8.
- Brenner, Sydney. [2012]. "Turing centenary: Life's code script. Nature 482 (7386) (February 22): 461-461.
- Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503-506.
- Optional: Searls, David B. [2010]. "The Roots of Bioinformatics". PLoS Computational Biology 6(6): e1000809.
- Weaver, W. [1948]. "Science and Complexity". American Scientist, 36(4): 536-44. Also available in Klir, G.J. [2001]. Facets of systems Science. Springer, pp: 533-540.
- Future Modules
- See brightspace

more upcoming readings (check brightspace)

- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussion of an article related to the class materials
- Enginet students post/send video or join by Zoom synchronously
- Module 2: Systems Science
- Reading and Discussion Group 3 (Enginet)
- Sarah Donovan, Nicole Dates, et al:
- Klir, G.J. [2001]. Facets of systems Science. Springer. Chapters 1 and 2.
- Optional:
- Rosen, R. [1986]. "Some comments on systems and system theory". Int. J. of General Systems, 13: 1-3. Available in: Klir, G.J. [2001]. Facets of systems Science. Springer. pp: 241-243.
- Wigner, E.P. [1960], "The unreasonable effectiveness of mathematics in the natural sciences". Richard courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Comm. Pure Appl. Math, 13: 1-14.
- Klir, G.J. [2001]. Facets of systems Science. Springer. Chapter 3.
- Reading and Discussion Group 4
- Emma Bachyrycz, et al:
- Klir, G.J. [2001]. Facets of systems Science. Springer. Chapter 8.
- Optional: Klir, G.J. [2001]. Facets of systems Science. Springer. Chapter 11
- Schuster, P. (2016). The end of Moore's law: Living without an exponential increase in the efficiency of computational facilities. Complexity. 21(S1): 6-9. DOI 10.1002/cplx. 21824.
- Von Foerster, H., P. M. Mora and L. W. Amiot [1960]. "Doomsday: Friday, November 13, AD 2026." Science 132(3436):12915.
- Future Modules
- See brightspace

course outlook

more upcoming readings (check brightspace)

- Paper Presentation: 20%
- Enginet students post/send video or joi雷 UINGHAMTON

Course Home Calendar Content Assignments Quizzes Discussions Evaluation \vee Classlist Course Tools \vee Help \vee

- Module 2: Systems Science
- Reading and Discussion Group 3
- Sarah Donovan, Nicole Dates, et al:
- Klir, G.J. [2001]. Facets of systems \mathbb{S}
- Optional:
- Rosen, R. [1986]. "Some comi Klir, G.J. [2001]. Facets of sys
- Wigner, E.P. [1960], "The unre mathematical sciences deliver
- Klir, G.J. [2001]. Facets of systems
- Reading and Discussion Group 4
- Emma Bachyrycz, et al:
- Klir, G.J. [2001]. Facets of systems S
- Optional: Klir, G.J. [2001]. Fac
- Schuster, P. (2016). The end of Moo Complexity. 21(S1): 6-9. DOI 10.100
- Von Foerster, H., P. M. Mora and L. 5.
- Future Modules
- See brightspace

Q Papers for Presentations ~

宗 Syllabus/Overview
■ Bookmarks

Course Schedule

Table of Contents
:i: Syllabus
: Office Hours
: $:$ Readings
Papers for
Presentations
: Z Zoom

For EngiNet Students

Add dates and restrictions...
All SSIE501 Students are assigned to one paper as lead presenters and discussants, but all students are supposed to read and participate in the discussion of every paper. During class, the presenter prepares a short summary of the paper (10-15 minutes)---no formal presentations or PowerPoint unless figures are indispensable. The summary should:

1) Identify the key goals of the paper (not go in detail over every section) 2) What discussant liked and did not like
2) What authors achieved and did not
3) Any other relevant connections to other class readings and beyond.

After initial summary, discussion is opened to all, and role of presenter is to lead the discussion to make sure we address the important paper contributions and failures. ISE440 students will chose one of the presented papers to participate as lead discussant, whose role is not to present the paper, but to comment on points 2-3) above.

Next Presentations:

Module 1 - Cybernetics and the Information Turn
Tuesday, August 29th
Presenter 1: Heims, S.G. [1991]. The Cybernetics Group. MIT Press. Chapters: 1 and 2.
information of sequential messages

rate of removing uncertainty of each symbol

Wixeran

 jr jwilishj3' Htr uqj \}ñ $6: 36 \% 755>$.? $6627=3$

> "syntactic" surprise But what about function and was meaning (semantics)?

how did
 We

\%
hewot
key contributions (most relevant to biocomplexity)

"The chemical basis of morphogenesis"

- Turing, A. M. Phil. Trans. R. Soc. Lond. B 237, 37-72 (1952). - Reaction-diffusion systems
- "Computing machinery and intelligence"
- Turing, A. M. Mind 49, 433-460 (1950).
- The "Turing Test"
- "On computable numbers with an application to the Entscheidungsproblem"
- Turing, A. M. Proc. Lond. Math. Soc. s2-42, 230-265 (1936-37).
- Turing machine, universal computation, decision problem

A fundamental principle of computation

- "On computable numbers with an application to the Entscheidungsproblem"
- Turing, A. M. Proc. Lond. Math. Soc. s2-42, 230-265 (1936-37).
- Turing machine, universal computation, decision problem
- Machine's state is controlled by a program, while data for program is on limitless external tape
- every machine can be described as a number that can be stored on the tape (for itself or another machine)
- Including a Universal machine
- distinction between numbers that mean things (data) and numbers that do things (program)

"The fundamental, indivisible unit of information is the bit. The fundamental, indivisible unit of digital computation is the transformation of a bit between its two possible forms of existence: as [memory] or as [code]. George Dyson, 2012.

A Turing Machine

A Turing Machine

from reality to computation

where do numbers come from?

- Number Perception
- Recognition of a discrete quantity of objects distinct from a continuous quantity
- Exists even in animals, birds, and insects
- Counting
- A measurement process from a physical system to a symbol
- E.g. notches on a bone
- First symbols were probably numbers
- Lebombo bone
- Oldest counting tool is a piece of baboon fibula with 29 notches from $35,000 \mathrm{BC}$, discovered in the mountains between South Africa and Swaziland
- Probably representing the number of days in a Moon Cycle
- "Wolf Bone" from Czech Republic
- with 55 notches in groups of 5 , from 30,000 BC.
earliest examples
- The Ishango Bone
- Oldest Mathematical Artefact?
- 20,000 BC, border of Zaire and Uganda
- Used as a counting tool?
- 9,11,13,17,19, 21: odd numbers
- 11, 13, 17, 19: prime numbers
- 60 and 48 are multiples of 12

abstracting symbol mappings
- Counting
- A measurement process from a physical system to a symbol
- A mapping between discrete objects and symbols
- First numbers were not completely abstract
- Specific attributes of concrete objects
- Computation
- Abstract concept of one-to-one pairing of symbols
- Mathematical concept of function
- Formalization
- To completely abstract away the significance of measuring observables from real objects
"When you can measure what you are speaking of and express it in numbers you know that on which you are discoursing. But if you cannot measure it and express it in numbers. your knowledge is of a very meagre and unsatisfactory kind". Lord Kelvin

producing symbols from symbols

Function: a complete and unambiguous mapping between sets of symbols
(ancer

Leibniz introduced the word in 1694
Computation: automatic process or method of implementing a function

- Formal Mathematics

- Axiomatic System
- Finite set of symbols
- Numbers, letters
- Strings of symbols
- expressions
- Unambiguous rules to produce strings
- axioms
- Unambiguous rules to re-write strings
- deductions, productions
- Semantic Independence from Syntax
- All strings and properties (theorems) deriveg Entively from axioms
"Insofar as the propositions of mathematics are certain they do not refer to reality; and insofar as they refer to reality, they are not certain". Albert Einstein
from mathematical generality to physical implementation constraints
- Process of rewriting strings in a formal system according to a program of rules
- Operations and states are syntactic
- Symbols follow syntactical rules
- Rate of computation is irrelevant
- Phogram determines result, not speed of machine
- Physical implementation is irrelevant for result
- Computer
- Physical device that can reliably execute/approximate a tormal computation
- Errors always exist
- Design aims to make rate and dynamics
"[...] essential elements in the machine are of a binary [...] nature. Those whose state is determined by their history and are time-stable are memory elements. Elements of which the state is determined essentially by the existing amplitude of a voltage or signal are called 'gates'". Bigelow et al, 1947

- Abacus

- A counting aid, may have been invented in Babylonia in the fourth century B.C.
- Not automatic: memory aid for intermediate calculations
- Very used in China and Japan
- Each bead on the upper deck has a value of 5,
- Each bead on the lower deck has value of 1
- Beads are considered counted, when moved towards the beam that separates the two decks.

2,000-year-old astronomical calculator

- bronze mechanical analog computer
- discovered more than 100 years ago in a Roman shipwreck, was used by ancient Greeks to display astronomical cycles.
- built around the end of the second century BC to calculate astronomical positions
- With imaging and high-resolution X-ray tomography to study how it worked.
- complicated arrangement of at least 30 precision, hand-cut bronze gears housed inside a wooden case covered in inscriptions.
- technically more complex than any known device for at least a millennium afterwards.

need to efficiently compute numerical tables, used in math, ballistics, astronomy, etc.

John Napier's (1550-1617)
1614: logarithm, "bones" and tables convert multiplication/division to addition/subtraction
need to efficiently compute numerical tables, used in math, ballistics, astronomy, etc.

briggs (1501-1630): decimal algorithm, logs of 30,000 numbers to 14 decimal places and logs/tans of $1 / 100$ of every degree, 14 decimal places
John Napier's (1550-1617)
1614: logarithm, "bones" and tables convert multiplication/division to addition/subtraction

Forefathers of the modern computer

- Wilhelm Schickard (1592-1635)
- In 1623 built the first mechanical calculator
- can work with six digits, and carries digits across columns. It works, but never makes it beyond the prototype stage.
- Blaise Pascal (1623-1662)
- built a mechanical calculator in 1642
- It has the capacity for eight digits, but has trouble carrying and its gears tend to jam.
- 10-teeth gears
- Gottfried von Leibniz (1614-1716)
- built a mechanical calculator in 1670 capable of multiplication and division
- (shift) registers for binary arithmetic
- Credited Chinese for Binary arithmetic
- Closer to abacus
- Passive register (memory) of states
"The human race will have a new kind of instrument which will increase the power of the mind much more than optical lenses strengthen the eyes.. One could carry out the description of a machine no matter how complicated, in characters which would be merely the letters of the ${ }^{3}$ alphabet, and so provide the mind with a method of knowing the machine and all its parts." Leibniz, 1679.

Difference engine

- Special-purpose digital computing machine for the automatic production of mathematical tables.
- logarithm tables, tide tables, and astronomical tables
- Steam-driven, consisted entirely of mechanical components - brass gear wheels, rods, ratchets, pinions, etc.
- Numbers were represented in the decimal system by the positions of 10-toothed metal wheels mounted in columns.
- Never completed the full-scale machine
- Completed several fragments. The largest is on display in the London Science Museum. In 1990, it was built (London Science Museum)
- The Swedes Georg and Edvard Scheutz (father and son) constructed a modified version of Babbage's Difference Engine.
- For an interesting "what-if" scenario read "The Difference Engine" by Bruce Sterling and William Gibson

> Not a universal Turing machine, but an analog computer

Charles Babbage (1791-1871)
Difference engine

Charles Babbage (1791-1871) and Ada Lovelace (1815-1852)
The analytical engine had an "external tape"
Turing on programs (numbers as instructions) : "[Babbage] had all the essential ideas [and] planned such a machine, called the Analytical Engine. [...]

- general-purpose mechanical digital computer.
- Separated memory store from a central processing unit (or 'mill')
- able to select from among alternative actions consequent upon the outcome of its previous actions

> - Conditional branching: Choice, information

- Mechanical cogs not just numbers
- Variables (states/configurations)
- Programmable
- Data and instructions on distinct punched cards
"It is only a question of cards and time, [...] and there is no reason why (twenty thousand) cards should not be used if necessary, in an Analytical Engine for the purposes of the mathematician". Henry Babbage (1888)

Charles Babbage (1791-1871) and Ada Lovelace (1815-1852)
The external tape as a general design principle (system) of universal computation

- Analytical engine
- Separated memory store from a central processing unit (or 'mill')
- Cogs not just numbers - variables
- Programmable
- instructions on punched cards
- Inspired by the Jacquard Loom
- Ada Lovelace: the science of operations
- Set of (recursive) rules for producing Bernoulli numbers (a program)
- Separation of variable and operational (data) cards
- would punch out cards for later use
- "the Engine eating its own tail." (Babbage)

distinction between numbers that mean things and numbers that do things.

The Information The Infarman The Information By Jemerevick The Information By James Gleck The Information By James Glecick A History. By James Gilecick The Information By James Gleick A Theory. By James Giecick $\begin{array}{ll}\text { The Information } & \text { By James Glecick } \\ \text { A Flood } & \text { By James Gileck }\end{array}$ The Information By James Gileick The Information By James Gileick The Information By James Gleick The Information Author of Chaos

readings

- Class Book
- Klir, G.J. [2001]. Facets of systems science. Springer.
- Papers and other materials
- Reading and Discussion Group 1
- Heims, S.G. [1991]. The Cybernetics Group. MIT Press. Chapters: 1-2.
- Optional: Chapters 11-12
- Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
- Optional: Prokopenko, Mikhail, Eabio Boschetti, and Alex. Ryan "An information theoretic primer on
-complexity, self-organization, and emergence."
Complexity 15.1 (2009):11-28.
- Kline, Ronald R[2015]. The cybernetics moment, or Whywe call our age the information age. Johns Hopkins. University Press. Chapters 1-2.

