lecture 2: from the garden of forking paths to information as surprise

introduction to systems science

introduction to systems science

evaluation

- Participation: 20\%.
- class discussion, everybody reads and discusses every paper
- engagement in class, including online
- Paper Presentation and Discussion: 20\%
- SSIE501 students are assigned to papers as lead presenters and discussants
- all students are supposed to read and participate in discussion of every paper.
- section 01 presents in class, section 20 posts videos on Brightspace (exceptions possible)
- Presenter prepares short summary of assigned paper (15 minutes)
- no formal presentations or PowerPoint unless figures are indispensable.
- Summary should:
- 1) Identify the key goals of the paper (not go in detail over every section)
- 2) What discussant liked and did not like
- 3) What authors achieved and did no
- 4) Any other relevant connections to other class readings and beyond
- ISE440 students chose one of the presented papers to participate as lead discussant - not to present the paper, but to comment on points
- Class discussion is opened to all

> - lead discussant ensures we importan

- Black Box: 60\%
- Group Project (2 parts)

key events coming up

- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussion of an article related to the class materials
- section 01 presents in class, section 20 (Enginet) posts videos on Brightspace (exceptions possible)
- Module 1: Cybernetics and the Information Turn
- Today
- Borges, Jorge Luis. [1941]. The Library of Babel.
- Borges, Jorge Luis. [1941]. The Garden of Forking Paths .
- Thursday, August 31 ${ }^{\text {st }}$
- Negin Esmaeili:
- Heims, S.G. [1991]. The Cybernetics Group. MIT Press. Chapters: 1-2.
- Optional: Chapters 11-12.
- Optional: McCulloch, W. and W. Pitts [1943], "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical Biophysics 5:115-133.
- Amahury Lopez Diaz:
- Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
- Optional: Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information theoretic primer on complexity, selforganization, and emergence." Complexity 15.1 (2009): 11-28.
- Kline, Ronald R [2015]. The cybernetics moment, or, why we call our age the information age. Johns Hopkins University Press. Chapters 1-2.
- Discussion by all
more upcoming readings (check brightspace)
- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussion of an article related to the class materials
- Enginet students post/send video or join by Zoom synchronously
- Thursday, September 7th
- Savannah Sidoti
- Brenner, Sydney. [2012]. "History of Science. The Revolution in the Life Sciences". Science 338 (6113): 1427-8.
- Brenner, Sydney. [2012]. "Turing centenary: Life's code script. Nature 482 (7386) (February 22): 461-461.
- Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503-506.
- Optional: Searls, David B. [2010]. "The Roots of Bioinformatics". PLoS Computational Biology 6(6): e1000809.
- Akshay Gangadhar
- Weaver, W. [1948]. "Science and Complexity". American Scientist, 36(4): 536-44. Also available in Klir, G.J. [2001]. Facets of systems Science. Springer, pp: 533-540.
- Future Modules
- See brightspace

more upcoming readings (check brightspace)

- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discus
- Enginet students post/send video or join by ZC
- Module 2: Systems Science
- Sarah Donovan:
- Klir, G.J. [2001]. Facets of systems Scienc
- Optional:
- Rosen, R. [1986]. "Some comments on sys systems Science. Springer. pp: 241-243.
- Wigner, E.P. [1960], "The unreasonable eff delivered at New York University, May 11,
- Emma Bachyrycz:
- Klir, G.J. [2001]. Facets of systems Scienc
- Nicole Dates:
- Klir, G.J. [2001]. Facets of systems Scienc
- Optional: Klir, G.J. [2001]. Facets of systen
- Presenter 8:
- Schuster, P. (2016). The end of Moore's la Complexity. 21(S1): 6-9. DOI 10.1002/cplx
- Presenter 9:
- Von Foerster, H., P. M. Mora and L. W. An
- Future Modules
- See brightspace

Binghamton UNIVERSITY Fall 2023 Intro to Systems Science (ISE-... 器

 LR Luis Rocha ई్య Course Home Calendar Content Assignments Quizzes Discussions Evaluation \vee Classlist Course Tools \vee Help \vee

Syllabus / Overview

W Bookmarks
Course Schedule

Table of Contents
:
: Office Hours
: Readings
: $\begin{aligned} & \text { Papers for } \\ & \text { Presentations }\end{aligned}$

4

2

Papers for Presentations ~

Add dates and restrictions..
All SSIE501 Students are assigned to one paper as lead presenters and discussants, but all students are supposed to read and participate in the discussion of every paper. During class, the presenter prepares a short summary of the paper (10-15 minutes) - - no formal presentations or PowerPoint unless figures are indispensable. The summary should:

1) Identify the key goals of the paper (not go in detail over every section)
2) What discussant liked and did not like
3) What authors achieved and did not
4) Any other relevant connections to other class readings and beyond.

After initial summary, discussion is opened to all, and role of presenter is to lead the discussion to make sure we address the important paper contributions and failures. ISE440 students will chose one of the presented papers to participate as lead discussant, whose role is not to present the paper, but to comment on points 2-3) above.

Next Presentations:

Module 1 - Cybernetics and the Information Turn
Tuesday, August 29th
Presenter 1: Heims, S.G. [1991]. The Cybernetics Group. MIT Press. Chapters: 1 and 2.

Personal path in the garden of forking paths

Fathers of uncertainty-based information

Hartley, R.V.L., "Transmission of Information", Bell System Technical Journal, July 1928, p. 535.
C. E. Shannon [1948], "A mathematical theory of communication". Bell System Technical Journal, 27:379-423 and 623-656
C. E. Shannon, "A Symbolic analysis of relay and switching circuits" .MS Thesis, (unpublished) MIT, 1937.
C. E. Shannon, "An algebra for theoretical genetics." Phd Dissertation, MIT, 1940.

Hartley uncertainty

- Nonspecificity
- Hartley measure
- The amount of uncertainty associated with a set of alternatives (e.g. messages) is measured by the amount of information needed to remove the uncertainty

Quantifies how many yes-no questions need to be asked to establish what the correct alternative is

Elementary Choice is between 2 alternatives: 1 bit

$$
\begin{aligned}
& H(B)=\log _{2}(2)=1 \\
& \log _{2}(4)=2 \quad 2^{2}=4
\end{aligned}
$$

$$
\begin{aligned}
& H(A)=\log _{2}(16)=4 \\
& H(B)=\log _{2}(4)=2
\end{aligned}
$$

$$
H(A)=\log _{2}|A|
$$

Measured in bits

- Example

Quantifies how many yes-no questions need to be asked to establish what the correct alternative is

- Menu Choices
- A = 16 Entrees
- B = 4 Desserts
- How many dinner combinations?
- $16 \times 4=64$

$$
\begin{aligned}
& H(A \times B)=\log _{2}(16 \times 4)= \\
& =\log _{2}(16)+\log _{2}(4)=6
\end{aligned}
$$

uncertainty-based information

- Shannon's measure
$A=$ Set of weighted
Alternatives

- The average amount of uncertainty associated with a set of weighted alternatives (e.g. messages) is measured by the average amount of information needed to remove the uncertainty

- Given a symbol set $\{A, B, C, D, E\}$
- And occurrence probabilities $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}}, \mathrm{P}_{\mathrm{D}}, \mathrm{P}_{\mathrm{E}}$,
- The Shannon entropy is
- The average minimum number of bits needed to represent a symbol

$$
H_{S}=-\left(p_{A} \log _{2}\left(p_{A}\right)+p_{B} \log _{2}\left(p_{B}\right)+p_{C} \log _{2}\left(p_{C}\right)+p_{D} \log _{2}\left(p_{D}\right)+p_{E} \log _{2}\left(p_{E}\right)\right)
$$

$$
H_{S}=-\left(1 \cdot \log _{2}(1)+0 \cdot \log _{2}(0)+0 \cdot \log _{2}(0)+0 \cdot \log _{2}(0)+0 \cdot \log _{2}(0)\right)=-\log _{2}(1)
$$

$$
H_{S}=-5 \cdot\left(\frac{1}{5}\right) \cdot \log _{2}\left(\frac{1}{5}\right)=-\left(\log _{2}(1)-\log _{2}(5)\right)=\log _{2}(5)
$$

$$
H_{S}=-\left(\frac{1}{2} \cdot \log _{2}\left(\frac{1}{2}\right)+\frac{1}{5} \cdot \log _{2}\left(\frac{1}{5}\right)+3 \cdot\left(\frac{1}{10}\right) \cdot \log _{2}\left(\frac{1}{10}\right)\right)
$$

$H_{S}=0$ bits
0 questions

information is surprise

BINGHAMTON
uncertainty, about outcome. How much information is gained when symbol is known

■on average, how many yes-no questions need to be asked to establish what the symbol is

■"structure" of uncertainty in situations

$$
H_{S} \in=-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2}\left(p\left(x_{i}\right)\right)
$$

Uniform distribution

english entropy (rate)

from letter frequency

Most common letters in English texts

english entropy (rate)

from letter frequency

	$\mathrm{p}(\mathrm{x})$	$\log 2(p(x))$	-p(x). $\log 2(p(x))$
e	0.124167	-3.0096463	0.373698752
t	0.096923	-3.3670246	0.326340439
a	0.082001	-3.6082129	0.295877429
i	0.076805	-3.7026522	0.284382943
n	0.076406	-3.7101797	0.283478135
0	0.07141	-3.8077402	0.271908822
S	0.070677	-3.8226195	0.270170512
r	0.066813	-3.903723	0.260820228
I	0.044831	-4.4793659	0.200813559
d	0.036371	-4.7810716	0.173891876
h	0.035039	-4.8349111	0.169408515
c	0.034439	-4.8598087	0.167367439
u	0.028777	-5.11894	0.147307736
m	0.028 Hartley Measure	artley Measure	
f	$0.023 \mathrm{H}(\|26\|) 4.7004397$		
p	$0.02051 /\|-0.0211011\|$		\bigcirc
y	0.018918	-5.7240814	0.108289316
g	0.018119	-5.7863688	0.104842059
w	0.013523	-6.2084943	0.083954364
v	0.012457	-6.3269343	0.078812722
b	0.010658	-6.5519059	0.069830868
k	0.00393	-7.9911852	0.031406876
X	0.002198	-8.8294354	0.019409218
j	0.001998	-8.9669389	0.017919531
q	0.000933	-10.066609	0.009387113
z	0.000599	-10.705156	0.006412389
		Entropy	4.14225193

entropy and meaning

- entropy quantifies information (surprise), but it does not consider information content
- semantic aspects of information are irrelevant to the engineering problem in Shannon's conception

We were good, we were gold Kinda dream that can't be sold We were right 'til we weren't Built a home and watched it burn

Mm, I didn't wanna leave you I didn't wanna lie Started to cry, but then remembered I I can buy myself flowers Write my name in the sand Talk to myself for hours Say things you don't understand I can take myself dancing And I can hold my own hand Yeah, I can love me better than you can

$l=1$

wdeo eog geWI ewr e deorw aainhmta d rettoeKandl dsbc eeeier ntw hWttr ewrgliwe oriaedatmht ndc lwn thuaBeuib
eanm dtal vewdi nl o unMay al indn nltawde i cl rettedtebrmSrb reemntuy da oth e
uolrawe blnffmsyylc es
niWe dty ne rsehmntiama arem TII ssytrfu fkoooh nyoh e gdodudtnaraustsi tnynS
atf Ik emcnegyn snlicad a
hmhydendAwannoo n dl I a
tlhl eatta nom Ybrueny h ee oaavn cce

entropy according to probabilistic model

$$
H(A)=\log _{2}|A|
$$

Hartley Measure
$H(\|27\|)$

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

OCRO HLI RGWR NMIELWIS EU LL NBNESBEYA TH EEI ALHENHTTPA OOBTTVA NAH BRL
$2^{\text {nd }}$ order model: frequency of digrams
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

$$
3^{\text {rd }} \text { order model: frequency of trigrams }
$$

Most common digrams: th, he, in, en, nt, re, er, an, ti, es, on, at, se, nd, or, ar, al, te, co, de, to, ra, et, ed, it, sa, em, ro.

Most common trigrams: the, and, tha, ent, ing, ion, tio, for, nde, has, nce, edt, tis, oft, sth, men

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE
$4^{\text {th }}$ order model: frequency of tetragrams THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG INSTATES CONS ERATION NEVER ANY OF PUBLE AND TO THEORY EVENTIAL CALLEGAND TO ELAST BENERATED IN WITH PIES AS IS WITH THE
http://pages.central.edu/emp/LintonT/classes/spring01/cryptography/letterfreq.html

$$
\mathrm{H}_{\mathrm{S}}=2.8
$$

including more structure reduces surprise

uncertainty

other measures to infer structure and organization in nature and society

- Mutual Information
- Amount of information about one variable that can be gained (uncertainty reduced) by observing another variable
- Information Gain (Kullback-Leibler Divergence)
- Difference between two probability distributions p and q,
- average number of bits per data point needed in order to represent q (model approximation) as it deviates from p ("true" or theoretical distribution)
- Transfer Entropy
- transfer of information between two random processes in time
- Amount of information (in bits) gained, or uncertainty lost, in knowing future values of Y , knowing the past values of X and Y.

$$
I(X ; Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right) \log _{2} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}
$$

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

$$
\operatorname{IG}(p(X), q(X))=\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}
$$

$$
T_{X \rightarrow Y}=H\left(Y_{t} \mid Y_{t-1: t-L}\right)-H\left(Y_{t} \mid Y_{t-1: t-L}, X_{t-1: t-L}\right)
$$

uncertainty

other measures to infer structure and organization in nature and society

- Mutual Information
- Amount of information about one variable that can be gained (uncertainty reduced) by observing another variable
- Infnrmation Coin /Killhnal l nihlar Nivarañce)

ons p and q,
order to represent q (model approximation) as it
processes in time
ainty lost, in knowing future values of Y , knowing

$$
I(X ; Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right) \log _{2} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}
$$

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

$$
\operatorname{IG}(p(X), q(X))=\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}
$$

$$
T_{X \rightarrow Y}=H\left(Y_{t} \mid Y_{t-1: t-L}\right)-H\left(Y_{t} \mid Y_{t-1: t-L}, X_{t-1: t-L}\right)
$$

 'Fs解怆wr fytsomjtwjy jr juljshj3' Htr uqj \}nz $6: 36 \% 755>. \% 627=3$
information as decrease in uncertainty

$$
H(A)=\log _{2}|A|
$$

Measured in bits

Hartley, R.V.L., "Transmission of Information", Bell System Technical Journal, July 1928, p. 535.

including more structure reduces surprise

information is surprise

C. E. annon [1948], "A mathematical theory of communication". Bell System Technical Journal, 27:379-423 and 623-656

Next lectures

readings

- Class Book

- Klir, G.J. [2001]. Facets of systems science. Springer.
- Papers and other materials.
- Negin Esmaeili:
- Heims,S.G.19917. The Cybernetics Group: Mit Press. Ohapters: 1 -2.
- Optional: Chapters 11-12.
- Optional: McCulloch, W. and W. Pitts [1943], "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical Biophysics 5:115-133.
- Amahury Lopez Diaz:
- Gleick, J: [2011]. The Information: A History, a Theory, a Flood. Random House Chapter 8.
- Optional: Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information theoretic primer on complexity, self-organization, and emergence." Complexity 15.1 (2009): 11-28.
- Kline, Ronald R [2015]. The cybernetics moment, or, why we call our age the information age. Johns Hopkins University Press. Chapters 1-2.

rocha@binghamton.edu casci.binghamton.edu/academics/ssie501

