Binghamton University

EngiNet ${ }^{\text {TM }}$

State University of New York

WARNING

All rights reserved. No part of the course materials used in the instruction of this course may be reproduced in any form or by any electronic or mechanical means, including the use of information storage and retrieval systems, without written approval from the copyright owner.
©2023 Binghamton University State University of New York

Contact Information:

EngiNet Office Staff:
Janice Kinzer
Email: enginet@binghamton.edu
Phone: 1-800-478-0718 or 607-777-4965

Media Production Operator: Sneha Rawat
Instructor: Prof. Luis M. Rocha
Email: rocha@binghamton.edu
Phone: 607-777-5934
TA: ????

luis m. rocha

office hours:

Tuesdays: 7:00-8:00pm????
binghamton.zoom.us/myl
office hours:
Tuesdays 9:00-11:30am binghamton.zoom.us/my/luismrocha

integrating and analyzing multiomics data
social media data pipelines for biomedicine

Min et al [2023]. CHI 2023. 32.
Wood, Correia, Miller, \&Rocha [2022]. Epilepsy \& Behavior. 128: 108580
Correia, Wood, Bollen, \& Rocha [2020]. Annual Review of Biomedical Data Science, 3:1.
Wood, Varela, Bollen, Rocha \& Sá [2017]. Scientific Reports. 7: 17973.
integrating and analyzing multiomics data

social media data pipelines for biomedicine

Wood, Correia, Miller, \&Rocha [2022]. Epilepsy \& Behavior. 128: 108580.
Correia, Wood, Bollen, \& Rocha [2020]. Annual Review of Biomedical Data Science, 3:1.
Wood, Varela, Bollen, Rocha \& Sá [2017]. Scientific Reports. 7: 17973.
integrating and analyzing multiomic electronic health records with network science to predict comorbidity \& drug interaction networks, disease factors \& interventions

integrating and analyzing multilevel data sources with network science to predict disease spread, information integration

formoners in NEUROINFORMATICS

Multi-scale integration and predictability in resting state brain activity

BINGHAMTON
rocha@binghamton.edu
casci.binghamton.edu/academics/ssie501

- Background
- Interests
- Course expectations

- Lecture slides and notes
- See course web page and brightspace
- Web links and general materials
- Blog (sciber.blogspot.com) and brightspace
- Class Book
- Klir, G.J. [2001]. Facets of systems science. Springer.
- Available in electronic format for SUNY students.
- Various literature for discussion
- Course web site and brightspace

- The course deals with the foundations of Systems Science, as well as current advances in Complex Networks and Systems which is the modern expression of this interdisciplinary field.
- Aims
- Introduce and discuss the history, methodology and impact of complex systems science.
- key literature, recent advances, and computational techniques in the field.
- study concepts such as
- Information, General Systems Theory, Networks, Modeling, Multi-Level Complexity, as well as their impact on science and society.
- The course will also attempt to define and understand what systems thinking can bring to science and society.

evaluation

- Participation: 20\%.
- class discussion, everybody reads and discusses every paper
- engagement in class
- Paper Presentation and Discussion: 20\%
- SSIE501 students are assigned to papers as lead presenters and discussants
- all students are supposed to read and participate in discussion of every paper.
- Presenter prepares short summary of assigned paper (15 minutes)
- no formal presentations or PowerPoint unless figures are indispensable.
- Summary should:
- 1) Identify the key goals" of the paper (nôt go in detail over every section)

- 4) Any other relevant connections to other class readings and beyond.
- ISE440 students chose one of the presented papers to participate as lead discussant - not to present the paper, but to comment on points 2-3) above
- Class discussion is opened to all
- lead discussant ensures we important paper contributions and failures are addressed
- Black Box: 60%
- Group Project (2 parts)
- Assignment I (25\%) and Assignment II (35\%)

policies

but collegiality above all

- Attendance
- We expect that students will approach the course as they should a professional job attend every class.
- No mobile phones and laptops only for class materials
- All materials available online
- Academic Integrity
- As with other aspects of professionalism in this course, you are expected to abide by the proper standards of professional ethics and personal conduct. This includes the usual standards on acknowledgment of joint work and other aspects of the Binghamton University Code of Student Conduct. Cases of academic dishonesty will be reported to the Office of Student Conduct.
- Incomplete Grade
- An incomplete ('I') final grade will be given only by prior arrangement in exceptional circumstances conforming to university and departmental policy which requires, among other things, that the student must have completed the bulk of the work required for the course with a passing grade, and that the remaining work can be made up within 30 days after the end of the semester.

$\begin{aligned} & \text { A+ } \\ & \mathbf{A} \\ & \text { A- } \end{aligned}$	$\begin{aligned} & 98 \% \\ & 94 \\ & 90 \end{aligned}$	Excellent Work. Student performance demonstrates thorough knowledge of the course materials and exceeds course expectations by completing all requirements in a superior manner.
$\begin{aligned} & \text { B+ } \\ & \text { B } \\ & \text { B- } \end{aligned}$	$\begin{aligned} & 85 \\ & 80 \\ & 75 \end{aligned}$	Very Good Work. Student performance demonstrates above-average comprehension of the course materials and exceeds course expectations on all tasks as defined in the course syllabus.
$\begin{aligned} & \text { C+ } \\ & \text { C } \\ & \text { C- } \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \\ & 60 \end{aligned}$	Good Work. Student performance meets designated course expectations and demonstrates understanding of the course materials at an acceptable level.
$\begin{aligned} & \text { D+ } \\ & \text { D } \\ & \text { D- } \end{aligned}$	$\begin{array}{\|l} \hline \mathbf{5 5} \\ \mathbf{5 0} \\ \mathbf{4 5} \\ \hline \end{array}$	Marginal Work. Student performance demonstrates incomplete understanding of course materials.
F	Less than 45	Fail.

key events coming up

- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussion of an article related to the class materials
- Enginet students post/send video or join by Zoom synchronously
- Module 1: Cybernetics and the Information Turn
- Today
- Borges, Jorge Luis. [1941]. The Library of Babel.
- Borges, Jorge Luis. [1941]. The Garden of Forking Paths .
- Next classes
- Presenter 1:
- Heims, S.G. [1991]. The Cybernetics Group. MIT Press Chapters: 1-2.
- Optional: Chapters 11-12.
- Optional: McCulloch, W. and W. Pitts [1943], "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical Biophysics 5:115-133.
- Presenter 2
- Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
- Optional: Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information theoretic primer on complexity, self-organization, and emergence."
Complexity 15.1 (2009): $11-28$.

Complexity 15.1 (2009): 11-28.

- Kline, Ronald R [2015]. The cybernetics moment, or, why we call our age the information age. Johns Hopkins University Press. Chapters 1-2.
- Presenter 3
- Brenner, Sydney. [2012]. "History of Science. The Revolution in the Life Sciences". Science 338 (6113): 1427-8.
- Brenner, Sydney. [2012]. "Turing centenary: Life's code script. Nature 482 (7386) (February 22): 461-461.
- Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503-506.
- Optional: Searls, David B. [2010]. "The Roots of Bioinformatics". PLoS Computational Biology 6(6): e1000809.
- Presenter 4
- Weaver, W. [1948]. "Science and Complexity". American Scientist, 36(4): 536-44. Also available in Klir, G.J. [2001]. Facets of systems Science. Springer, pp: 533-540.
- Discussion by all

more upcoming readings (check brightspace)

- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussion of an article related to the class materials - Enginet students post/send video or join by Zoom synchronously
- Module 2: Systems Science
- Presenter 5 :
- Klir, G.J. [2001]. Facets of systems Science. Springer. Chapters 1 and 2.
- Optional:
- Rosen, R. [1986]. "Some comments on systems and system theory". Int. J. of General Systems, 13: 1-3. Available in: Klir, G.J. [2001]. Facets of systems Science. Springer. pp: 241-243.
- Wigner, E.P. [1960], "The unreasonable effectiveness of mathematics in the natural sciences". Richard courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Comm. Pure Appl. Math, 13: 1-14.
- Presenter 6:
- Klir, G.J. [2001]. Facets of systems Science. Springer. Chapter 3.
- Presenter 7:
- Klir, G.J. [2001]. Facets of systems Science. Springer. Chapter 8.
- Optional: Klir, G.J. [2001]. Facets of systems Science. Springer. Chapter 11
- Presenter 8:
- Schuster, P. (2016). The end of Moore's law: Living without an exponential increase in the efficiency of computational facilities. Complexity. 21(S1): 6-9. DOI 10.1002/cplx. 21824.
- Presenter 9:
- Von Foerster, H., P. M. Mora and L. W. Amiot [1960]. "Doomsday: Friday, November 13, AD 2026." Science 132(3436):1291-5.
- Future Modules
- See brightspace

more upcoming readings (check brightspace)

- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussio
- Enginet students post/send video or join by Zoon
- Module 2: Systems Science
- Presenter 5 :
- Klir, G.J. [2001]. Facets of systems Scienc
- Optional:
- Rosen, R. [1986]. "Some comments on systen Science. Springer. pp: 241-243.
- Wigner, E.P. [1960], "The unreasonable effect York University, May 11, 1959. Comm. Pure
- Presenter 6:
- Klir, G.J. [2001]. Facets of systems Scienc
- Presenter 7:
- Klir, G.J. [2001]. Facets of systems Scienc
- Optional: Klir, G.J. [2001]. Facets of system.
- Presenter 8:
- Schuster, P. (2016). The end of Moore's law: 21(S1): 6-9. DOI 10.1002/cplx. 21824.
- Presenter 9:
- Von Foerster, H., P. M. Mora and L. W. Amic
- Future Modules
- See brightspace
 Course Home Calendar Content Assignments Quizzes Discussions Evaluation \checkmark Classlist Course Tools \vee Help \downarrow

㝝 Syllabus/Overview

- Bookmarks

向 Course Schedule

Table of Contents
48
:
: Office Hours
: $:$ Readings
: $\begin{aligned} & \text { Papers for } \\ & \text { Presentations }\end{aligned}$

2

1

Papers for Presentations

Add dates and restrictions..
All SSIE501 Students are assigned to one paper as lead presenters and discussants, but all students are supposed to read and participate in the discussion of every paper. During class, the presenter prepares a short summary of the paper (10-15 minutes) - - no formal presentations or PowerPoint unless figures are indispensable. The summary should:

1) Identify the key goals of the paper (not go in detail over every section)
2) What discussant liked and did not like
3) What authors achieved and did not
4) Any other relevant connections to other class readings and beyond

After initial summary, discussion is opened to all, and role of presenter is to lead the discussion to make sure we address the important paper contributions and failures. ISE440 students will chose one of the presented papers to participate as lead discussant, whose role is not to present the paper, but to comment on points 2-3) above.

Next Presentations:

Module 1 - Cybernetics and the Information Turn
Tuesday, August 29th
Presenter 1: Heims, S.G. [1991]. The Cybernetics Group. MIT Press. Chapters: 1 and 2.

Personal path in the garden of forking paths

"The universe (which others call the Library) is composed of an indefinite and perhaps infinite number of hexagonal galleries, with vast air shafts between, surrounded by very low railings."
"......all the books, no matter how diverse they might be, are made up of the same elements: the space, the period, the comma, the twenty-two letters of the alphabet He also alleged a fact which travelers have confirmed: In the vast Library there are no two identical books."
"...Everything: the minutely detailed history of the future, the archangels' autobiographies, the faithful catalogues of the Library, thousands and thousands o
 false catalogues, the demonstration of the fallacy of those catalogues, the
 demonstration of the fallacy of the true catalogue, [..] the true story of your death. the translation of every book in all languages...".
"Have wandered in search of a book, perhaps the catalogue of catalogues"

> Poetic essays on information and memory (1941)

the library of Babel

numbers

- Each book
- 25 characters, written in any sequence for 410 pages of 40 lines of 80 characters
- $410 * 40 * 80=$ sequence of $\approx 10^{6.1}$ characters
- $\approx 10^{7.2}$ base pairs (10 Mbp)
- ≈ 1 book to store E.Coli genotype, 10 for drosophila, and 100 for human
- How many possible books?
- $=25\left(410^{*} 40^{*} 80\right)$ combinations $=25^{1,312,000}$ books!

$$
\approx \approx 1.956 \times 10^{1,834,097} \text { books }
$$

- Total number of atoms in the current, observable universe is about 10^{80}
- If each book were the size of an atom, library would hold 101,834,017 universes!
- Yet finite!
- Can also be reproduced with just two symbols (cf Quine, Turing, Leibniz)

Information Space Is finite but larger than Physical
"the Library is so enormous that any reduction of human origin is infinitesimal."
"every copy is unique, irreplaceable, but (since the Library is total) there are always several
hundred thousand imperfect facsimiles: works which differ only in a letter or a comma."

BINGHAMTON	rocha@binghamton.edu U N IV E R S I T infor informatics.indiana.edu/rocha/academics/i-bic

numbers

What to do in such information spaces to avoid becoming a Quixotic wanderer?

Are there principles of organization?

how did
 We

\%
hewot

information basics

observer and choice

- Information is defined as "a measure of the freedom from choice with which a message is selected from the set of all possible messages"
- Bit (short for binary digit) is the most elementary choice one can make
- Between two items: "0' and "1", "heads" or "tails", "true" or "false", etc.
- Bit is equivalent to the choice between two equally likely alternatives
- Example, if we know that a coin is to be tossed, but are unable to see it as it falls, a message telling whether the coin came up heads or tails gives us one bit of information

1 Bit of uncertainty
H,T?
choice between 2 symbols recognized by an observer

Hartley, R.V.L., "Transmission of Information", Bell System Technical Journal, July 1928, p. 535.
C. E. Shannon [1948], "A mathematical theory of communication". Bell System Technical Journal, 27:379-423 and 623-656
C. E. Shannon, "A Symbolic analysis of relay and switching circuits" .MS Thesis, (unpublished) MIT, 1937.
C. E. Shannon, "An algebra for theoretical genetics." Phd Dissertation, MIT, 1940.

- Multiplication Principle
- "If some choice can be made in M different ways, and some subsequent choice can be made in N different ways, then there are $\mathrm{M} \times \mathrm{N}$ different ways these choices can be made in succession" [Paulos]
- 3 shirts and 4 pants $=3 \times 4=12$ outfit choices

Hartley uncertainty

- Nonspecificity
- Hartley measure
- The amount of uncertainty associated with a set of alternatives (e.g. messages) is measured by the amount of information needed to remove the uncertainty

Quantifies how many yes-no questions need to be asked to establish what the correct alternative is

Elementary Choice is between 2 alternatives: 1 bit

$$
\begin{aligned}
& H(B)=\log _{2}(2)=1 \\
& \log _{2}(4)=2 \quad 2^{2}=4
\end{aligned}
$$

Hartley Uncertainty

$$
\begin{aligned}
& H(A)=\log _{2}(16)=4 \\
& H(B)=\log _{2}(4)=2
\end{aligned}
$$

Measured in bits

- Example
- Menu Choices
- A = 16 Entrees
- $\mathrm{B}=4$ Desserts
- How many dinner combinations?

$$
H(A)=\log _{2}|A|
$$

- $16 \times 4=64$

$$
\begin{aligned}
& H(A \times B)=\log _{2}(16 \times 4)= \\
& =\log _{2}(16)+\log _{2}(4)=6
\end{aligned}
$$

Quantifies how many yes-no questions need to be asked to establish what the correct alternative is

Number of Choices
uncertainty-based information

- Shannon's measure
$A=$ Set of weighted Alternatives
- The average amount of uncertainty associated with a set of weighted alternatives (e.g. messages) is measured by the average amount of information needed to remove the uncertainty

alphabet examples

Message encoded in an alphabet of \boldsymbol{n} symbols, for example:

- English (26 letters + space + punctuations)
- Morse code (dot, dash, space)
- DNA (A, T, G, C)
- Two dice (11 integers)

Next lectures

readings

- Class Book
- Klir, G.J. [2001]. Facets of systems science. Springer.
- Papers and other materials
- Presenter 1
- Heims, S.G. [1991]. The Cybernetics Group. MII Press Chapters: 1 - 2.
- Optional: Chapters 11-12.

- Optional: McCulloch, W. and W. Pitts [1943] "A Logicala' Calculús of Ideas Immanent in
- Presenter 2
- Gleick, J. [201才]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
- Optional: Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information theoretic primer on complexity, self-organization, and emergence." Complexity 15.1 (2009): 11-28.
- Presenter 3
- Brenner Sydney. [2012] "History of Science. The Revolution in the Life Sciences". Science 338 (6113): 1427-8.
- Brenner, Sydney. [2012]. "Turing centenary: Life's code script. Nature 482 (7386) (February 22): 461-461.
- Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503506.
- Optional: Searls, David B. [2010] "The Roots of Bioinformatics". PLos Computational Biology 6(6): : 1000809.
- Presenter 4
- Weaver, W.I1948] "Science and Complexity". American Scientist, 36(4): 536-44. Also available in Klir, G.J. [2001]. Facets of systems Science. Springer pp:533-540.

