introduction to systems science
lecture 15: multilevel organization of complex systems and modeling limitations

As the outbreak moved across China in early January, international travel continued as normal.

- Recent air travel, based on first quarter 2019 data from O.A.G.

Organization LOK SyStern Australia and
New Zealand Australia and

HOUSEHOLD LAYER

WORKPLACE LAYER

evaluation

- Participation: 20\%.
- class discussion, everybody reads and discusses every paper
- engagement in class, including online
- Paper Presentation and Discussion: 20\%
- All students are assigned to a Reading and Discussion Group
- SSIE501 students in group present and discuss papers
- all students are supposed to read and participate in discussion of every paper.
- section 01 groups present in class, section 20 groups present via zoom or send a video
- Presenter group prepares short summary of assigned paper (15 minutes)
- no formal presentations or PowerPoint unless figures are indispensable.
- Summary should:
- 1) Identify the key goals of the paper (not go in detail over every section)
- 2) What discusssantliked and did not like
- 3) What authors achieved and did not
- 4) Any other relevant connections to other
- ISE440 students in group participate as lead discussants - not to present the paper, but to comment on points 2-3) above
- Class discussion is opened to all
- lead discussant ensures important paper contributions and
- Post presentation 1-2 page report uploaded to Brightspac
- 1-4) plus 5) statement of individual contribut
- Black Box: 60\%
- Group Project (2 parts)
- Assignment (25%) and Assignment II (35%)

more upcoming readings (check brightspace)

- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussion of an article related to the class materials
- section 01 presents in class, section 20 (Enginet) posts videos on Brightspace (exceptions possible)
- Module 4 - Multi-level complexity
- November $14^{\text {th }}$
- Reading and Discussion Group 4
- Pattee, Howard H. "The Physical Basis and Origin of Hierarchical Control." In Hierarchy Theory: The Challenge of Complex Systems, edited by Howard H. Pattee, 73-108. New York: Brazillier, 1973.
- Rosen, Robert. "On Complex Systems." European Journal of Operational Research 30, no. 2 (June 1987): 129-34.
- Lazebnik, Y [2002]. "Can a biologist fix a radio?--Or, what I learned while studying apoptosis". Cancer Cell, 2(3):179-182.
- Optional: Gates, Alexander J., Rion Brattig Correia, Xuan Wang, and Luis M. Rocha. "The Effective Graph Reveals Redundancy, Canalization, and Control Pathways in Biochemical Regulation and Signaling." Proceedings of the National Academy of Sciences 118, no. 12 (March 23, 2021): e2022598118.
- November $16^{\text {th }} / 2^{\text {th }}$?
- Reading and Discussion Group 5 (Enginet)
- Theise, N.D., and M.C. Kafatos. [2013]. "Complementarity in Biological Systems: A Complexity View." Complexity 18 (6): 1120.
- Gallotti, Riccardo, Giulia Bertagnolli, and Manlio De Domenico (2021). "Unraveling the Hidden Organisation of Urban Systems and Their Mobility Flows." EPJ Data Science 10 (1).
- Pescosolido, Bernice A., et al. "Linking genes-to-global cultures in public health using network science." Handbook of applied system science (2016): 25-48.
- Optional: Mabry, Patricia L.., and Robert M. Kaplan. "Systems Science: A Good Investment for the Public's Health." Health Education \& Behavior 40, no. 1_suppl (October 2013):Future Modules
- See brightspace

BINGHAMTON	rocha@binghamton.edu
UNIVERSIT ${ }_{\text {d }}$	casci.binghamton.edu/academics/ssie501

more upcoming readings (check brightspace)

- Paper Presentation: 20\%
- Present (501) and lead (501\&440) the discussion of an article related to the class materials
- section 01 presents in class, section 20 (Enginet) posts videos on Brightspace (exceptions possible)
- Module 4 - Multi-level complexity
- November $28^{\text {th }}$?
- Reading and Discussion Group 1
- Prieto-Curiel, et al [2023]. "Reducing Cartel Recruitment Is the Only Way to Lower Violence in Mexico." Science 381 (6664): 1312-16.
- Optional: Caulkins, Jonathan P., Beau Kilmer, and Peter Reuter [2023]. "Modeling Cartel Size to Inform Violence Reduction in Mexico." Science 381, no. 6664: 1291-93
- Reading and Discussion Group 2
- Gan, Xiao et al. [2023] "Network Medicine Framework Reveals Generic Herb-Symptom Effectiveness of Traditional Chinese Medicine." Science Advances 9, (43): eadh0215
- Module 5 - Interdisciplinarity
- November $30^{\text {th }}$?
- Reading and Discussion Group 3
- Wu, L., Wang, D., \& Evans, J. A. [2019]."Large teams develop and small teams disrupt science and technology". Nature 566: 378-382
- Reading and Discussion Group 4
- Trochim, William M et al [2006]. "Practical Challenges of Systems Thinking and Modeling in Public Health." American Journal of Public Health 96(3): 538-46.
- Optional: Rusoja, Evan, et al [2018] "Thinking about Complexity in Health: A Systematic Review of the Key Systems Thinking and Complexity Ideas in Health." Journal of Evaluation in Clinical Practice 24 (3): 600-6
- Reading and Discussion Group 5
- Editorial. (2015). Mind meld. Nature, 525(7569), 289-90.
- Van Noorden, R. (2015). Interdisciplinary research by the numbers. Nature, 525(7569), 306-7.
- Ledford, H. (2015). How to solve the world's biggest problems. Nature, 525(7569), 308-11.
- Optional: Kaushal, A., \& Altman, R. B. (2019). "Wiring minds". Nature, 576(7787), S62-S63
- Optional: Iwasaki, A. (2019) "Why we need to increase diversity in the immunology research community". Nat Immunol 20, 1085-1088
- See brightspace

BINGHAMTON	rocha@binghamton.edu
UNIVEER R I T Y	casci.binghamton.edu/academics/ssie501

Questions and suggestions

- Remember "published" facts
- Odd/Even behavior in Q1
- Statistical behavior in Q2
- Different regions, transition sequence, complexity in Q4
- Collect or request data (cite)
- Are there quadrant dependencies?
- Focus on smaller grid (mask) subsets?
- Think of neighborhoods and boundary conditions
- Move from descriptive to mechanistic models
- Induction and deduction
- Data and reasoning
- Given a model, are things you have never seen possible?

$$
\operatorname{state}(\operatorname{cell}(i, j))_{t+1}=?_{t} \otimes ? \ldots . .
$$

$$
\begin{array}{ll}
\hline \text { 1. } & 0 \rightarrow 0 \\
\text { 2. } & \{5\} \rightarrow\{0,5\} \\
\text { 3. } & \{2,4,6,8\} \rightarrow\{0,2,4,6,8\} \\
\text { 4. } & \{1,3,7,9\} \rightarrow\{0,1,2,3,4,5,6,7,8,9\} \\
\hline
\end{array}
$$

second assignment

The Black Box: Due: December 1st, 2023

Herbert Simon: Law discovery means only finding pattern in the data; whether the pattern will continue to hold for new data that are observed subsequently will be decided in the course of testing the law, not discovering it. The discovery process runs from particular facts to general laws that are somehow induced from them; the process of testing discoveries runs from the laws to predictions of particular facts from them [...] To explain why the patterns we extract from observations frequently lead to correct predictions (when they do) requires us to face again the problem of induction, and perhaps to make some hypothesis about the uniformity of nature. But that hypothesis is neither required for, nor relevant to, the theory of discovery processes. [...] By separating the question of pattern detection from the question of prediction, we can construct a true normative theory of discovery-a logic of discovery.

- Focus on uncovering quadrants
- using data collection, descriptive patterns \& statistics, statistical tests, and induction.
- Propose a formal model or algorithm of what each quadrant is doing.
- Analyze, using deduction, the behavior of this algorithm.

data analytics, AI, and complex systems

systems modeling

- Data and statistics provide the essential basis to understand (i) the ontogeny of systems and (ii) their evolution.
- Machine Learning is the key technology for the creation of predictive models and the eventual automation of decision making across different economic valuations.
- Providing analytical insights [from the currently available] huge amount of data, in real time, requires not only strong computational processing power and specific tools, but awareness of the technical, ethical and legal complexities all along the processual pipeline.
- The philosophical implications of modeling from the perspective of complex systems science.

International Conference on
Robot Ethics and Standards
ICRES 2021
New York, USA, 26-27 July 2021
systems modeling

Dirk Helbing

The Magic Formula ...

Hume's and Hertz's World (of AI): Inductive learning good news I \& II: near-decomposability and induction

Hume's and Hertz's World (of AI): Inductive learning
good news I \& II: near-decomposability and induction

- Physical Limit of Computation
- Hans Bremmermann in 1962
- "no data processing system, whether artificial or living, can process more than 2×10^{47} bits per second per gram of its mass."
- Based on the idea that information could be stored in the energy levels of matter
- Calculated using Heisenberg's uncertainty principle, the Hartley measure, Planck's constant, and Einstein's famous E $=\mathrm{mc}^{2}$ formula
- A computer with the mass of the entire Earth and a time period equal to the estimated age of the Earth
- would not be able to process more than about 10^{933} bits
- transcomputational problems

\author{

}

- A system of n variables, each of which can take k different states
- k^{n} possible system states
- When is it larger than 10^{93} ?

k	2	3	4	5	6	7	8	9	10
n	308	194	154	133	119	110	102	97	93

- Pattern Recognition
- Grid of $n=q^{2}$ squares of k colors
- Blackbox: 10^{100} possible states!
- The human retina contains a million light-sensitive cells
- Large scale integrated digital circuits
- K= 2 (bits): a circuit with 308 inputs and one output!
- Complex Problems need simplification!

Hume's and Hertz's World (of AI): Inductive learning

Bad news I: computational limits

"Every empirical law has the disquieting quality that one does not know its limitations." E.

Wigner [1957] in "The Unreasonable Effectiveness of Mathematics in the Natural Sciences"

David Hume's Empiricism
Everyday knowledge depends on patterns of repeated experience
"It is not reason which is the guide of life, but custom." "A wise man proportions his belief to the evidence"

[^0]Induction is dictated (biased) by previous observations

Bad news II: black swans

David Hume's Empiricism
Everyday knowledge depends on patterns of repeated experience
"It is not reason which is the
 guide of life, but custom."
"A wise man proportions his belief
to the evidence"

Induction is dictated (biased) by previous observations

Bad news II: black swans

Karl Popper's Falsification Principle practical skepticism logical asymmetry between verification and falsification: many observations do not derive (universal) theories, a single observation can falsify it: scientific theories (deduced) from induction are testable.

The Inductive Leap

David Hume's Empiricism
Everyday knowledge depends on patterns of repeated experience
"It is not reason which is the guide of life, but custom."
"A wise man proportions his belief
to the evidence"

casci.binghamton.edu/academics/ssie501

Induction is dictated (biased) by previous observations

Bad news II: black swans

single observation can falsify it: scientific theories (deduced) from induction are testable.

integrating and analyzing multiomics data
social media data pipelines for biomedicine

Wood, Correia, Miller, \&Rocha [2022]. Epilepsy \& Behavior. 128: 108580.

integrating and analyzing multiomics data

social media data pipelines for biomedicine

integrating and analyzing multiomics data

social media data pipelines for biomedicine

integrating and analyzing multiomics data
social media data pipelines for biomedicine
 (1) Social Media for Publ

SyMPToM ${ }^{\text {beta }}$ PRojects v Publications

The knowledge network represents how
that always occur together will be linked

MyAura: Personalized Dashboard and Web Service For Chronic Disease Management

blic healTh Monitoring
NNUAL REVIEWS
ood, Bollen \& Rocha [2020]. Mining social media data medical signals and health-related behavior.
I Review of Biomedical Data Science

Wood, Correia, Miller, \&Rocha [2022]. Epilepsy \& Behavior. 128: 108580.
Correia, Wood, Bollen, \& Rocha [2020]. Annual Review of Biomedical Data Science, 3:1.

[^1]Wood, Varela, Bollen, Rocha \& Sá [2017]. Scientific Reports. 7: 17973
Correia, Li \& Rocha [2016]. PSB: 21:492-503.
Ciampaglia, et al [2015]. PloS ONE. 10(6): e0128193

hypothesis falsification in data and complexity science

 resolving a sociobiology question on a planetary scale- Social Media (Twitter) Mood and Web Searches
- Understanding collective human behavior
- Discovering mood transitions in health

Global Patterns of Seasonal Variation in Human Fertility ${ }^{a}$

DAVID A. LAM ${ }^{b, d}$ AND JEFFREY A. MIRON ${ }^{c}$

- - Altmetric: 743 More detail»

Human Sexual Cycles are Driven by Culture and Match Collective Moods

Ian B. Wood, Pedro L. Varela, Johan Bollen, Luis M. Rocha ${ }_{\text {\& Joana Gonctalves-Sád }}$

Emerald Article: Summer nights: A review of the evidence of seasonal variations in sexual health indicators among young people
Wendy Macdowall, Kaye Wellings, Judith Stephenson, Anna Glasier

Annual Rhythm of Human Reproduction:

 I. Biology, Sociology, or Both?Till Roenneberg* and Jürgen Aschoff ${ }^{*}$

The observed annual birth cycle (in countries where there is data). Is it driven by biological adaptation or culture?

THE EFFECTS OF TEMPERATURE ON HUMAN FERTILITY*

DAVID A. LAM AND JEFFREY A. MIRON

casci.binghamton.edu/academics/ssie501

hypothesis falsification in data and complexity science

 resolving a sociobiology question on a planetary scale- Social Media (Twitter) Mood and Web Searches
- Understanding collective human behavior
- Discovering mood transitions in health

Global Patterns of Seasonal Variation in Human Fertility ${ }^{a}$

DAVID A. LAM ${ }^{b, d}$ AND JEFFREY A. MIRON ${ }^{c}$

Western Northern countries, Canada, Denmark, Finland, France, Germany, Italy, Lithuania, Mas: Austrialta, Netherlands, Poland, Portugal, Spain, Sweden and USA

A review of the evidence of seasonal tors among young people
Judith Stephenson, Anna Glasier

Human Sexual Cycles are Driven by

search and social media mood provide global patterns Is it biological adaptation?

Google Trends

Birth Month

Hypothesis falsification in data and complexity science

resolving a sociobiology question on a planetary scale

- Social Media (Twitter) Mood and Google Searches
- Understanding collective human behavior
- Discovering mood transitions in health

Sex search patterns (proxy for interest in sex and births) are culturally-driven and correlate with distinct mood patterns on social media
\square Births ——sex
Birth Month (shifted 9 months)

Christmas - USA

Eigenmood Similarity

Why? childcentered and gift-giving holidays?
 granger causality analysis
suggests that mood causes interest in sex

Hypothesis falsification in data and complexity science

resolving a sociobiology question on a planetary scale

- Social Media (Twitter) Mood and Google Searches
- Understanding collective human behavior
- Discovering mood transitions in health

Births ——sex
Birth Month (shifted 9 months)

Christmas - USA

MotherJones \equiv

Help us raise $\$ 350,000$ by December 31 with a tax-deductible, year-end donation - or read why this moment feels so critical.

Have Yourself a Porny Little Christmas

New research shows people are really in the mood this time of year.

JACKIE FLYNN MOGENSEN

- SCIENTIFIC REPRRTS

- - Altmetric: 743 More detail 》

Human Sexual Cycles are Driven by Culture and Match Collective Moods
an B. Woood, Pedro L. Varela, Johan Bollen, Luis M. Rocha \& Joana Gonçalves-Ss
control hierarchies are not near-decomposable
Bad news III: inductive, "boxed" model failure with complex systems

rocha@binghamton.edu casci.binghamton.edu/academics/ssie501

control hierarchies are not near-decomposable

Bad news III: inductive, "boxed" model failure with complex systems

control hierarchies are not near-decomposable

Bad news III: inductive, "boxed" model failure with complex systems

model failure in complex world
inductive models can be falsified but cannot predict black swans

model failure in complex world
inductive models can be falsified but cannot predict black swans

machine learning depends on training data that is contextual

Angwin, Larson, Mattu \& Kirchner, "Machine Bias". ProPublica, May 23, 2016 propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

BINGHAMTON rocha@binghamton.edu
U N I I VE E R S I T Y
inductive bias in diverse scenarios

machine learning depends on training data that is contextual

- Class Book
- Klir, G.J. [2001]. Facets of systems science. Springer.
- Papers and other materials
- Module 4 - Multi-level Complexity
- Reading and Discussion Group 4
- Pattee, Howard H. "The Physical Basis and Origin of Hierarchical Control." In Hierarchy Theory: The Challenge of Complex Systems, edited by Howard H. Pattee, 73-108. New York: Brazillier, 1973.
- Rosen, Robert. "On Complex Systems." European Journal of Operational Research 30, no. 2 (June 1987): 129-34.
- Lazebnik, Y [2002]. "Can a biologist fix a radio?--Or, what IT learned while studying apoptosis". Cancer Cell, 2(3):179-182.
- Aptiønalb Gates, Alexander J., Rion Brattig Correia,-Xuan Wang, and Luis M. Rocha. "The Effective Graph Reveals Redundaney, Canalization, and Control Pathways in Biochemical Regulation and Signaling." Proceedings of the National Academy of Sciences 118, no. 12 (March 23, 2021):e2022598118. pathway 3 Biological

[^0]: Tradeoff descriptive and uncertainty-based complexity

[^1]: BINGHAMTON
 rocha@binghamton.edu
 casci.binghamton.edu/academics/ssie501

