The General Systems Problem Solver

Jack Felag
Lecture for SSIE501 10 October 2023

Overview

Goals

George Klir
Discussing key themes about the General Systems Problem Solver, including concerns and implications

ARCHITECTURE OF SYSTEMS PROBLEM SOLVING
Second Edition
GEORGE J. KLIR AND DOUG ELIAS

Quick Intro to GSPS

The General Systems Problem Solver (GSPS) is a conceptual framework for systems problems, and methodological tools for solving them.

Quick Intro to GSPS

Let's start with a motivating example

The Black Box

What is a Black Box?

Set of Inputs

Black Box Example

Inputs and

corresponding outputs are equivalent

Question: Are B1 and $B 2$ equivalent?

Black Box Example

Answer: Not necessarily

We can say they are isomorphic

An isomorphism is a function that is bijective, and relation-preserving

Black Box Example

Contains data on gravitational attraction

Contains data on charged particle attraction

Black Box Example

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{r^{2}} \quad F=k_{e} \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}} \\
& \begin{array}{ll}
G & \leftrightarrow \\
m_{1} & \leftrightarrow k_{e} \\
m_{1}
\end{array} \\
& m_{2} \leftrightarrow q_{2} \\
& \text { By } \\
& \text { By }
\end{aligned}
$$

Isomorphic Systems

Other examples:

Damped Mass-Spring \leftrightarrow RLC Circuit
Circular Motion \leftrightarrow Charged particle through a magnetic field
Some physical system \leftrightarrow Computer program
Any others?

* All of the above assume correctly tuned parameters

A More Complex Black Box

How can we gain information about black boxes?

We can look at general tools to study black boxes, and related ideas to get a better conceptual understanding of systems

We will now be moving on to some formalisms in defining systems

is what goes
in and what comes out
-Kenneth L.
Boudling

Epistemological Hierarchy of Systems

Source Systems (E)

Variables and Supports

$$
v_{i} \in V_{i}
$$

Interpretations of both above

Source Systems (E)

v_{1} is ambient air
temperature outside in degrees Celsius
$v_{1} \in V_{1}=[-25,40]$
t is the time of
measurement (UTC timestamp? Date + time?)

Source System Level 0

Source Systems (E)

Each cell is a variable that takes a value $\{0,1,2, \ldots, 9\}$.

Any evidence of a variable with a different value?

Any variables that can only take on a subset of the above values?

Source System Level 0

Data Systems (D)

$E+$ Data

Gather data through

harvesting,

experimentation, observations

Data System Level 1	D
Source System Level 0	E

3

Data Systems (D)

$\mathrm{t}=$	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{v}_{1}=$	1	1	2	3	5	8	13	21	34	55	89
$\mathrm{v}_{2}=$	1	1	0	1	1	2	3	5	8	3	11

Data System Level 1	D
Source System Level 0	E

Data Systems (D)

Collecting data from here?
Web scraper to harvest data from the webpage

How much data is enough?

Data System Level 1	D
Source System Level 0	E

Generative Systems (G)

E + Relation
Data is optional
The relation must be consistent with the data, if included (masking)

Sampling variables

Generative System Level 2	G
Data System Level 1	D
Source System Level 0	E

Generative Systems (G)

$\mathrm{t}=$	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{v}_{1}=$	1	1	2	3	5	8	13	21	34	55	89
$\mathrm{v}_{2}=$	1	1	0	1	1	2	3	5	8	3	11

Rules:

$\mathrm{S}_{3}=\mathrm{S}_{1}+\mathrm{S}_{2}$
$S_{4}=S_{2}-S_{1}$ if $S_{2}-S_{1}<10$
$S_{4}=S_{2}-S_{1}-10$ if $S_{2}-S_{1} \geq 10$

Generative System Level 2	G
Data System Level 1	D
Source System Level 0	E

Generative Systems (G)

What mask would you use?
We will revisit this...

Generative System Level 2	G
Data System Level 1	D
Source System Level 0	E

Structure Systems (S)

Collection of Subsystems (G, D, E) and how they relate

Compatibility requirement

G, D, and E are all called "low-level" subsystems

Structure System Level 3	S
Generative System Level 2	G
Data System Level 1	D
Source System Level 0	E

Meta Systems (M)

Set of Systems

Meta-characterization of the lower-level subsystems

Meta (meta) System Level 4, 5, \ldots	M
Structure System Level 3	S
Generative System Level 2	G
Data System Level 1	D
Source System Level 0	E

Identifying Systems

Consider the system of a flower growing

We can call the whole potted plant a system

What subsystems can we define?

```
Architecture of Systems Problem
Solving, 2002
```

We can begin by defining variables:

Root water absorption
Root mineral absorption
Stem sap-carrying ability
Soil moisture
Stem blossom density Sap color substances

Sap odor substances
Sap growth substances
Number of leaves
Leaf color
Blossom color
Sick leaves
Blossom size
Number of blossoms
Air temperature
Average sunlight
Rainfall
B We can group variables:

Soil Temperature | Soil |
| :---: |
| moisture | Sunlight Rainfall

$\left.\begin{array}{|c|c|c|c|}\hline \text { Sap } \\ \text { color }\end{array} \begin{array}{c}\text { Sap } \\ \text { growth }\end{array} \begin{array}{c}\text { Sap } \\ \text { odor }\end{array}\right]$

Stems Temperature Sunlight

Blossoms	Temperature	Sunlight
Blossom density	Blossom odor	Num. Blossoms
Blossom color	Blossom size	Rainfall

Solving, 2002

```
Architecture of Systems Problem
Architecture of Systems Problem

Our groupings create
subsystems that are related:
- Soil
- Roots
- Sap
- Stems
- Leaves
- Blossoms



We see related groupings through shared variables (coupled variables)
- Sap, Roots
- Sap, Soil
- Sap, Leaves
- Sap, Stems
- Sap, Blossoms
- Roots, Soil
- Roots, Stems
- Soil, Leaves
- Soil, Stems
- Soil, Blossoms
- Leaves, Stems
- Leaves, Blossoms
- Stems, Blossoms
```

Architecture of Systems Problem
Solving, 2002

```


Architecture of Systems Problem Solving, 2002

Each group is a subsystem, and their relations now define a structure system

We could have grouped subsystems, like stems and roots

We can define other subsystems too, such as environment (temperature, rainfall, sunlight)

Or define more variables and repeat (humidity, stem length, etc)

```

Architecture of Systems Problem

```
Solving, 2002

We can also get more granular:

Define petals as a subsystem

\section*{Pollen? Thorns?}

Look at the genetic level


Architecture of Systems Problem Solving, 2002

\section*{Were the subsystems defined sufficiently?}

Were any other ideas about defining subsystems good?

\section*{It depends...}

What is your research question? What relationships are you studying? Your hypothesis?


An elementary schooler at a science fair might only care about number of blossoms and rainfall

A florist might be interested in variables that affect blossom color and size

A botanist might look at genetic and environmental interactions on overall growth


Architecture of the General Systems Problem Solver

\section*{GSPS}

Recall GSPS is a framework that groups systems problems, and tools for solving them.


The division of the perceived universe into parts and wholes is convenient and may be necessary, but not necessity determines how it shall be done

\section*{GSPS Methods}

\section*{Once Abstracted...}

Depending on the model used, tools may already be developed

Here we will go over some tools

\section*{Networks}

Sometimes features can be meaningfully extracted in a network

The field of study only cares about network properties, not what the nodes and edges represent

\section*{Computer Simulations}

Represent the system to the best of your abilities

Collect more data, validation, prediction, etc

\section*{Information Theory}

A key concept from information theory is mutual information.

It measures the dependence between two variables.

We can use this to aid in the mask analysis.

\section*{Information Theory}

Say we want to check if two variables are "sharing information"
We treat both as random variables.
Random variables must contain:
1. A set of outcomes
2. A probability for each outcome (that collectively sum to 1 )

\section*{Information Theory}

Our set of outcomes is defined in the source system.

To get the probabilities associated with each outcome, we have to collect some data.

\section*{Information Theory}


We do not know the underlying mechanisms, so we have to sample.

For any two cells, we collect data:
Value of cell 1 at time \(t\)
Value of cell 2 at time \(t\)
Values of (cell 1, cell 2) at time \(t\)

\section*{Information Theory}


In our example, this gives us a probability of each value (0-9) occurring in cell 1 and 2.

We also have a joint probability of those two values occurring at the same time step.

\section*{Information Theory}

We then go through the formula:
\[
\sum_{a=0}^{9} \sum_{b=0}^{9} P(a, b) \cdot \log \left(\frac{P(a, b)}{P_{1}(a) \cdot P_{2}(b)}\right)
\]

Where \(P(a, b)\) is the joint probability of cell 1 and cell 2 taking on those values
\(\mathbf{P}_{1}(a)\) is the probability of cell 1 having the value of a
\(P_{2}(b)\) is the probability of cell 2 having the value of \(b\)

\section*{Information Theory}

What values are we looking for?
\[
\sum_{a=0}^{9} \sum_{b=0}^{9} P(a, b) \cdot \log \left(\frac{P(a, b)}{P_{1}(a) \cdot P_{2}(b)}\right)
\]

\section*{Information Theory}


This can be extended to more than just two variables.

Groups of variables can be checked as well.

An outcome does not need to be a single value, we can define a probability of a set of cells taking on specific values.
'This is more useful, but generally needs more data.

\section*{Information Theory}


When dealing with a problem that looks like that it is common to call a mask a "kernel" instead.

The kernel checks a cell's neighbors to see if their values influence its value (in addition to that cell's value).

\section*{Information Theory}

\[
\mathrm{S}_{5}=f\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}, \mathrm{~S}_{6}, \mathrm{~S}_{7}, \mathrm{~S}_{8}, \mathrm{~S}_{9}\right)
\]

We can also change the shape of the neighborhood of \(\mathrm{S}_{5}\), and its radius

\section*{3}

\section*{Information Theory}
\begin{tabular}{|lllllllllllllllllllllllll|}
\hline 9 & 4 & 9 & 6 & 8 & 7 & 7 & 6 & 9 & 9 & 5 & 9 & 5 & 0 & 5 & 5 & 0 & 5 & 5 & 5 \\
\hline 3 & 2 & 6 & 3 & 1 & 0 & 8 & 9 & 4 & 8 & 0 & 5 & 9 & 5 & 0 & 0 & 5 & 9 & 5 & 9 \\
5 & 0 & 0 & 7 & 6 & 6 & 5 & 2 & 1 & 0 & 9 & 0 & 0 & 9 & 0 & 0 & 5 & 0 & 0 & 5 \\
\hline 8 & 0 & 7 & 8 & 2 & 0 & 1 & 7 & 0 & 5 & 9 & 5 & 9 & 9 & 0 & 0 & 0 & 9 & 9 & 9 \\
6 & 3 & 2 & 0 & 8 & 6 & 9 & 4 & 2 & 6 & 9 & 0 & 5 & 0 & 0 & 9 & 9 & 9 & 5 & 0 \\
1 & 7 & 2 & 5 & 9 & 9 & 9 & 3 & 5 & 7 & 0 & 0 & 5 & 9 & 5 & 9 & 0 & 9 & 0 & 0 \\
1 & 6 & 8 & 2 & 7 & 4 & 5 & 0 & 7 & 2 & 0 & 9 & 9 & 0 & 5 & 9 & 0 & 0 & 0 & 5 \\
6 & 6 & 4 & 8 & 3 & 5 & 0 & 2 & 9 & 4 & 5 & 9 & 0 & 5 & 5 & 5 & 0 & 0 & 9 & 0 \\
1 & 0 & 2 & 4 & 9 & 1 & 3 & 2 & 0 & 9 & 5 & 5 & 5 & 0 & 0 & 9 & 9 & 5 & 5 & 0 \\
\hline 0 & 8 & 2 & 0 & 8 & 5 & 1 & 4 & 9 & 4 & 5 & 0 & 0 & 9 & 0 & 9 & 0 & 0 & 9 & 9 \\
\hline 3 & 6 & 4 & 4 & 6 & 8 & 2 & 2 & 3 & 8 & 8 & 7 & 3 & 4 & 6 & 2 & 6 & 8 & 0 & 7 \\
0 & 5 & 8 & 6 & 2 & 3 & 6 & 5 & 6 & 0 & 5 & 9 & 4 & 0 & 1 & 4 & 8 & 4 & 2 & 0 \\
0 & 8 & 9 & 9 & 3 & 6 & 4 & 1 & 3 & 8 & 4 & 9 & 4 & 3 & 6 & 6 & 6 & 1 & 0 & 2 \\
\hline 8 & 0 & 8 & 1 & 2 & 3 & 5 & 7 & 0 & 7 & 9 & 9 & & 8 & 9 & 0 & 1 & 3 & 1 & 3 \\
4 & 7 & 3 & 1 & 7 & 3 & 9 & 0 & 9 & 0 & 7 & 3 & 5 & 5 & 4 & 1 & 2 & 2 & 1 & 4 \\
\hline 5 & 0 & 3 & 6 & 9 & 6 & 9 & 6 & 5 & 1 & 2 & 7 & 6 & 9 & 1 & 6 & 6 & 2 & 0 & 8 \\
\hline 9 & 0 & 4 & 7 & 8 & 4 & 2 & 4 & 0 & 8 & 8 & 1 & 5 & 7 & 9 & 6 & 8 & 1 & 6 & 0 \\
\hline 6 & 8 & 1 & 0 & 5 & 8 & 3 & 1 & 2 & 1 & 5 & 6 & 1 & 7 & 5 & 5 & 8 & 6 & 7 & 4 \\
6 & 0 & 7 & 4 & 9 & 6 & 8 & 3 & 8 & 6 & 5 & 0 & 9 & 1 & 9 & 8 & 1 & 1 & 7 & 6 \\
\hline 8 & 6 & 0 & 0 & 4 & 0 & 8 & 8 & 5 & 8 & 0 & 6 & 0 & 0 & 1 & 6 & 5 & 2 & 5 & 7 \\
\hline
\end{tabular}

This is not the way. This is a way.

\section*{Isomorphisms}

If an abstraction is isomorphic to a previously solved problem, a general solution already exists. Apply it!

\section*{Power of Abstraction}

If you need to develop tools yourself, you at least have an idealized abstraction

\section*{Power of Abstraction}


\section*{Power of Abstraction}


\section*{Power of Abstraction}


Power of Abstraction


\section*{Reconstructability Analysis}

More of a class of methodological tools in GSPS
Find a relationship between the overall system and its subsystems

\section*{Reconstructability Analysis}

There is an identification problem, and a reconstruction problem

Identification starts with a generative structure system

Reconstruction starts with a generative system

\section*{Reconstructability Analysis}

We are either identifying the subsystems that make up the whole, or reconstructing the whole based on given subsystems

\section*{Reconstructability Analysis}
"Reconstructability analysis is just one example of an important methodological area which would have no practical significance without the aid of sophisticated computer technology. Such examples are not rare in systems problem solving; on the contrary, they are rather typical."

\section*{Reconstructability Analysis}

One example of RA that heavily relies on computer tools is a model distance.

Run a simulation, then compute "how far away" the simulation is from the real system.

Experimentation in the computer is not merely possible but may give information that is otherwise unobtainable

\section*{GSPS Concerns}

\section*{Interpreted to General}

Need to have enough domain specific knowledge to know what features are important

\section*{Interpreted to General}

\section*{What if variables are not sufficient?}

Missing key information about the model

\section*{Interpreted to General}

\section*{Too many variables?}

Expensive computation
Some methods actually fail with dependencies

\section*{General to Interpreted}

Need to know about the tools you are using to interpret the solution in the context of your system

What is the interpretation of a shortest path in your network? Is 3.12 bits of entropy large or small for your problem?

\section*{Other Considerations}

Your model must make sense

You can define a network on anything, but certain metrics are only coherent in certain contexts

\section*{Other Considerations}

We also have different properties of systems:
Stochastic vs Deterministic
Memory
Organized vs Disorganized
Open vs Closed
...and so on. What properties does your system have?

\section*{Other Considerations}
'Two functions might look the same, but the mechanisms are completely different.

This is different from an
 isomorphism

\section*{Other Considerations}

Why might this occur?
1) Lack of data
(short observation time)
2) Bad validation


\section*{All models} are wrong, but some are useful.

\author{
-Gearge Bax
}

Connection to Machine Learning

\section*{Building a Model}

Machine learning is a way to use data to "learn" a task: classification, regression, generation, etc

We can use methods such as linear models, decision trees, symbolic regression, artificial neural networks (ANNs), and more

\section*{Selecting a Model}

\section*{Each model is different}

Regressions/linear models require data transformations and an intelligent way to select a specific equation form

Decision trees, ANNs, and symbolic regression are data hungry and require some hyperparameter tuning

ANNs also require selecting an architecture

\section*{ANN Overview}


\section*{Mask Analysis}

Just like with mutual information, we can use ML methods to deduce relationships between our variables

Thinking back to the kernel example of:
\(\mathrm{S}_{5}=f\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}, \mathrm{~S}_{6}, \mathrm{~S}_{7}, \mathrm{~S}_{8}, \mathrm{~S}_{9}\right)\), we can learn a function \(f\)

Or learn a function based on other inputs. Can we get a good fit with the data we collected?

\section*{Mask Analysis}

Be aware of other issues:

We can overtrain models where it fits training data extremely well, but underperforms on testing data

Need to perform other analyses to figure out which variables were important to the function \(f\)

This can take a long time, especially if performing an exhaustive search


\section*{What Data is Available?}

A lot of data is available from websites (Kaggle, etc), published papers, and elsewhere.

Or run experiments, collect observations, scrape data to get your own

\section*{Data Representation}


Each image is a matrix of pixels that are easy for us to understand

We can instead represent images as a matrix of pixel ID and their RGB values
\begin{tabular}{|l|l|l|l|}
\hline Pixel & R & G & B \\
\hline 1 & 50 & 100 & 20 \\
\hline 2 & 55 & 120 & 18 \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

\section*{Data Representation}
"Monte Cristo remembered that on that very spot, on the same rock, he had been violently dragged by the guards, who forced him to ascend the slope at the points of their bayonets."

Excerpt from The Count of Monte Cristo
by Alexandre Dumas

Text is unstructured data
We can pull features such as \(n\)-grams and count occurrences

Each row in a matrix is a document (piece of text) and each column counts the number of these features
\begin{tabular}{|l|l|l|l|l|l|}
\hline Document & "that" & "on" & "Monte" & "Monte Cristo" & \(\ldots\) \\
\hline CoMC & 2 & 2 & 1 & 1 & \(\ldots\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

Data Representation
\begin{tabular}{|l|l|l|l|l|}
\hline Respondent & Q1 & Q2 & Q3 & \(\ldots\) \\
\hline Respondent 1 & yes & 1 & a & \(\ldots\) \\
\hline Respondent 2 & yes & 2 & b & \(\ldots\) \\
\hline Respondent 3 & no & 2 & c & \(\ldots\) \\
\hline Respondent 4 & no & 2 & d & \(\ldots\) \\
\hline\(\ldots\) & \(\ldots\) & & & \(\ldots\) \\
\hline
\end{tabular}

We might already have a matrix in the event of survey responses

\section*{Data Representation}

\section*{See the theme?}

We can abstract data into a matrix representation by pulling meaningful features from the data we want to learn from


\section*{ML}

Methods
Matrix
Representations of Data

\section*{A Metaproblem}

A problem: we might have another black box

Some methods are easy to interpret: by looking at coefficients in a regression equation, we can see how much of an effect each variable has on the response.

\section*{A Metaproblem}

A problem: we might have another black box

> In an ANN, it is difficult to interpret what edge weights mean in context

However, there is a field of explainable AI (XAI) working on these kind of problems


\section*{Sources}
- Ashby, W. R. (1991). General systems theory as a new discipline. In Facets of systems science (pp. 249-257). Springer, Boston, MA.
- Klir, G. J., \& Elias, D. (2002). Architecture of Systems Problem Solving.
- Quote images courtesy of Zoe Dubilier

\section*{Other Readings}
- Ashby, W. R. (1952). Design for a brain.
- Sayama, H. (2015). Introduction to the modeling and analysis of complex systems. Open SUNY Textbooks.
- Torres, Leo, Ann S. Blevins, Danielle Bassett, and Tina Eliassi-Rad. [2021] "The Why, How, and When of Representations for Complex Systems." SLAM Review 63(3): 435-85.

\section*{Science is a continuous} living process...Science differs from mere recards in much the same way as a teacher differs from a library

\section*{3 \\ Questions?}
jfelag1@binghamton.edu```

