biologically-inspired computing

key events coming up

- Labs: 35\% (ISE-483)
- Complete 5 (best 4 graded) assignments based on algorithms presented in class
- Lab 2 : February 19 ${ }^{\text {th }}$
- L-Systems (Assignment 2)
- Delivered by SSIE583 Group 1
- Due: February $26^{\text {th }}$
- Lab 3: March $11^{\text {th }}$
- Cellular Automata and Boolean Networks (Assignment 3)
- Delivered by SSIE583 Group 3
- Due: March $18^{\text {th }}$
- SSIE - 583 -Presentation and Discussion: 25\%
- Present and lead the discussion of an article related to the class materials
- Enginet students post/send video or join by Zoom

- February $26^{\text {th }}$
- Kauffman, S.A. [1969]. "Metabolic stability and epigenesis in randomly constructed genetic nets". Journal of Theoretical Biology 22(3):437-467.
- Yoshiaki Fujita
- Dates TBA
- Conrad, M. [1990]. "The geometry of evolution." Biosystems 24: 61-81.
- Mario Franco
- Stanley, Kenneth O., Jeff Clune, Joel Lehman, and Risto Miikkulainen. "Designing Neural Networks through Neuroevolution." Nature Machine Intelligence 1, no. 1 (January 2019): 24-35.
- Jessica Lasebikan
- Discussion by all
- Class Book
- Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press. Preface, Sections 4.1, 4.2, Chapter 2.
- Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman \& Hall. Chapter 1, pp. 1-23. Chapter 7, sections 7.1-7.4, Appendix B.3.1, Chapter 2, Chapter 8, sections 8.1, 8.2, 8.3.10
- Lecture notes
- Chapter 1: What is Life?
- Chapter 2: The logical Mechanisms of Life
- Chapter 3: Formalizing and Modeling the World
- Chapter 4: Self-Organization and Emergent Complex Behavior
- posted online @ http://informatics.indiana.edu/rocha/i-bic
- Papers and other materials
- Dynamical Systems

- Kauffman, S.A. [1969]. "Metabolic stability and epigenesis in randomly constructed genetic nets". Journal of Theoretical Biology 22(3):437-467.
- Optional
- Prusinkiewicz and Lindenmeyer [1996] The algorithmic beauty of plants.
- Chapter 1
- Flake's [1998], The Computational Beauty of Life. MIT Press.
- Chapters 10, 11, 14 - Dynamics, Attractors and chaos

redundancy in networks with dynamics canonical complex systems

NK Boolean Network ($\mathrm{N}=13, \mathrm{~K}=3$)

\# different Boolean networks for same structure $\left(256{ }^{13}\right)$

Multivariate Dynamical Systems: Structure: Variable interactions, associations, influence Dynamics: variable states (micro) network configurations (macro) Redundancy: links (path backbones), state transitions (canalization)
$2^{N} \rightarrow$ Network configurations (state-space)
$2^{2^{K}} \rightarrow$ possible Boolean functions of k inputs $(k=3 \rightarrow 256)$

Minimal networks with both structure and dynamics.
Interactions and variables with binary states. Huge statespaces and ensembles for same structure. Full range of attractor behavior

NK-networks

Stuart Kauffman's version

Lookup tables (LUT)

$2^{2^{K}} \rightarrow$ possible Boolean functions of k inputs

$\times 1$	$\times 2$	$\times 1 \wedge x 2$
0	0	0
0	1	0
1	0	0
1	1	1

Lookup tables (LUT)

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

$x 1$	$x 2$
0	0
0	1
1	0
1	1

p : bias, or proportion of " 1 's" (or "0's") in output
simple Boolean network
Small NK-network of 3 variables

t					$t+1$			
	n_{1}	n_{2}	n_{3}	n_{1}	n_{2}	n_{3}		
0	0	0	0	0	0	0	0	
1	0	0	1	0	1	0	2	
2	0	1	0	0	0	1	1	
3	0	1	1	1	1	1	7	
4	1	0	0	0	1	1	3	
5	1	0	1	0	1	1	3	
6	1	1	0	0	1	1	3	
7	1	1	1	1	1	1	7	

simple Boolean network
Attractors and state-space

ensemble dynamics for same structure

Small Boolean network

SimpleNet

dynamical landscape of SimpleNet

State-transition graph (basins of attraction)

There are $2^{8}=256$ possible states but only a small set (14) of attractors
discrete dynamical systems
Example 13 variables

There are $2^{13}=8192$ possible states but only a small set of attractors

$\begin{aligned} & \text { BINGHAMTON } \\ & \text { UN IVRR } \end{aligned}$	rocha@binghamton.edu casci.binghamton.edu/academics/i-bic

How to infer controllability if STG is too large to compute? From configuration to configuration, or attractor to attractor?

The $2^{13}=8192$ states in state space are organized into 15 basins

- attractor periods ranging between 1 and 7 .
- The number of states in each basin is: 68, 984, 784, 1300, 264, 76,316, 120, 64, 120, 256, 2724,604, 84, 428.

Next lectures

readings

- Class Book
- Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press.
- Chapter 2.
- Lecture notes
- Chapter 1: What is Life?
- Chapter 2: The logical Mechanisms of Life
- Chapter 3: Formalizing and Modeling the World

- Chapter 4: Self-Organization and Emergent Complex Behavior
- posted online @ http://informatics.indiana.edu/rocha/i-bic
- Papers and other materials
- Optional
- Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman \& Hall.
- Chapter 2, all sections
- Chapter 7, sections 7.3 - Cellular Automata
- Chapter 8 , sections $8.1,8.2,8.3 .10$

■ Flake's [1998], The Computational Beauty of Life. MIT Press.

- Chapters 10, 11, 14 - Dynamics, Attractors and chaos

