biologically-inspired computing

lecture 9

course outlook

casci.binghamton.edu/academics/i-bic

key events coming up

BINGHAMTON

UNIVERSITY

readings

intil no	W
 Cla Le • <li< th=""><th> Bass Book Floreano, D. and C. Mattiussi [2008]. <i>Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies.</i> MIT Press. Preface, Sections 4.1, 4.2, Chapter 2. Nunes de Castro, Leandro [2006]. <i>Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications.</i> Chapman & Hall. Chapter 1, pp. 1-23. Chapter 7, sections 7.1-7.4, Appendix B.3.1, Chapter 2, Chapter 8, sections 8.1, 8.2, 8.3.10 cture notes Chapter 1: What is Life? Chapter 2: The logical Mechanisms of Life Chapter 3: Formalizing and Modeling the World Chapter 4: Self-Organization and Emergent Complex Behavior posted online @ http://informatics.indiana.edu/rocha/i-bic pers and other materials Dynamical Systems Kauffman, S.A. [1969]. "Metabolic stability and epigenesis in randomly constructed genetic nets". Journal of Theoretical Biology 22(3):437-467. Optional Prusinkiewicz and Lindenmeyer [1996] <i>The algorithmic beauty of plants.</i> Chapter 1 Flake's [1998], <i>The Computational Beauty of Life</i>. MIT Press. Chapters 10, 11, 14 – Dynamics, Attractors and chaos </th></li<>	 Bass Book Floreano, D. and C. Mattiussi [2008]. <i>Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies.</i> MIT Press. Preface, Sections 4.1, 4.2, Chapter 2. Nunes de Castro, Leandro [2006]. <i>Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications.</i> Chapman & Hall. Chapter 1, pp. 1-23. Chapter 7, sections 7.1-7.4, Appendix B.3.1, Chapter 2, Chapter 8, sections 8.1, 8.2, 8.3.10 cture notes Chapter 1: What is Life? Chapter 2: The logical Mechanisms of Life Chapter 3: Formalizing and Modeling the World Chapter 4: Self-Organization and Emergent Complex Behavior posted online @ http://informatics.indiana.edu/rocha/i-bic pers and other materials Dynamical Systems Kauffman, S.A. [1969]. "Metabolic stability and epigenesis in randomly constructed genetic nets". Journal of Theoretical Biology 22(3):437-467. Optional Prusinkiewicz and Lindenmeyer [1996] <i>The algorithmic beauty of plants.</i> Chapter 1 Flake's [1998], <i>The Computational Beauty of Life</i>. MIT Press. Chapters 10, 11, 14 – Dynamics, Attractors and chaos
	BINGHAMTON UNIVERSITY casci.binghamton.edu/academics

bit.ly/atBIC

BINGHAMTON U N I V E R S I T Y STATE UNIVERSITY OF NEW YORK

discrete dynamical systems

examples

NK Boolean Network (N=13, K=3)

BINGHAMTON UNIVERSITY OF NEW YORK STATE UNIVERSITY OF NEW YORK

redundancy in networks with dynamics

canonical complex systems

NK Boolean Network (N=13, K=3)

different Boolean networks for same structure (256¹³)

Structure: Variable interactions, associations, influence Dynamics: variable states (micro) network configurations (macro) Redundancy: links (path backbones), state transitions (canalization)

Multivariate Dynamical Systems:

Minimal networks with both structure and dynamics. Interactions and variables with binary states. Huge statespaces and **ensembles** for same structure. Full range of attractor behavior

 $2^N \rightarrow$ Network configurations (state-space) $2^{2^K} \rightarrow$ possible Boolean functions of k inputs (k=3 \rightarrow 256)

BINGHAMTON roc

rocha@binghamton.edu casci.binghamton.edu/academics/i-bic

Kauffman, SA. J. theoretical biology 22.3 (1969):437:467.5 I T Y case

NK-networks

Stuart Kauffman's version

simple Boolean network

Small NK-network of 3 variables

or

or

р	q	p ∨ q
0	0	0
0	1	1
1	0	1
1	1	1

р	q	$\mathbf{p} \wedge \mathbf{q}$
0	0	0
0	1	0
1	0	0
1	1	1

State	space

t				t+′	1		
	n ₁	n ₂	n ₃	n ₁	n ₂	n ₃	
0	0	0	0	0	0	0	0
1	0	0	1	0	1	0	2
2	0	1	0	0	0	1	1
3	0	1	1	1	1	1	7
4	1	0	0	0	1	1	3
5	1	0	1	0	1	1	3
6	1	1	0	0	1	1	3
7	1	1	1	1	1	1	7

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

rocha@binghamton.edu casci.binghamton.edu/academics/i-bic

simple Boolean network

Attractors and state-space

Boolean network dynamics

ensemble dynamics for same structure

Small Boolean network

SimpleNet

BINGHAMTON UNIVERSITY OF NEW YORK STATE UNIVERSITY OF NEW YORK

dynamical landscape of SimpleNet

State-transition graph (basins of attraction)

Basin	Size	Attractor	Attractor Period
8	22	1,0,1,1,0,1,1,0 1,0,1,0,1,1,1,0 1,0,1,1,1,0,1,0	3
9	2	1,0,1,1,1,1,1,0	1
10	2	1,0,1,1,1,1,1,0	1
11	12	1,1,1,1,1,1,0,1	1
12	12	1,1,1,1,1,1,0,1	1
13	12	0,1,1,1,1,1,1,0	1
14	12	0,1,1,1,1,1,1,1	1

Basin	Size	Attractor	Attractor Period
1	6	1,0,1,0,0,0,0,0	1
2	52	1,0,1,1,1,1,0,1	1
3	6	1,0,1,0,0,0,1,0	1
4	52	1,0,1,1,1,1,1,1	1
5	22	1,0,1,0,0,1,0,0 1,0,1,0,1,0,0,0 1,0,1,1,0,0,0	3
6	22	1,0,1,0,0,1,1,0 1,0,1,0,1,0,1,0 1,0,1,1,0,0,1,0	3
7	22	1,0,1,1,0,1,0,0 1,0,1,0,1,1,0,0 1,0,1,1,1,0,0	3

There are 2⁸=256 possible states but only a small set (14) of attractors

> BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

UNIVERSITY casci.binghamton.edu/academics/i-bic

attractor behavior

casci.binghamton.edu/academics/i-bic

UNIVERSITY

how to control?

Next lectures

casci.binghamton.edu/academics/i-bic

UNIVERSITY

