

Lewis Richardson's observations (1961)

- Measured maps with different scales

- Coasts of Australia, South Africa, and Britain
- Land frontiers of Germany and Portugal
- Measured lengths $L(d)$ at different scales d.
- As the scale is reduced, the length increases rapidly.
- Well-fit by a straight line with slopes (s) on log/log plots

■ $s=-0.25$ for the west coast of Britain, one of the roughest in the atlas,

- $s=-0.15$ for the land frontier of Germany,
- $s=-0.14$ for the land frontier of Portugal,
- $s=-0.02$ for the South African coast, one of the smoothest in the atlas.
- circles and other smooth curves have line of slope 0.

(a)

(c)

(e)

(b)

(d)

(f)

Integer dimensions

the Koch curve example: fractional dimensions

- Koch curve
- slightly more than line but less than a plane
- Packing efficiency!

Hausdorff Dimension

$$
D=\frac{\log N}{\log \left(\frac{1}{a}\right)}=\frac{\log 4}{\log 3}=1.26186 \ldots
$$

dimension of fractal curves

- Complex objects are defined by systematically and recursively replacing parts of a simple start object with another object according to a simple rule
- Cantor Set

$$
D=\frac{\log N}{\log \left(\frac{1}{a}\right)}=0.6309
$$

Hausdorff Dimension
Scientific American, July 2008

rocha@indiana.edu

- Complex objects are defined by systematically and recursively replacing parts of a simple start object with another object according to a simple rule
- Sierpinski Gasket

$$
D=\frac{\log N}{\log \left(\frac{1}{a}\right)}=1.585
$$

Hausdorff Dimension

rocha@indiana.edu
re-writing design principle
mathematical monsters

- Complex objects are defined by systematically and recursively replacing parts of a simple start object with another object according to a simple rule
- Sierpinski Gasket

- Complex objects are defined by systematically and recursively replacing parts of a simple start object with another object according to a simple rule
- Menger sponge

$$
D=\frac{\log N}{\log \left(\frac{1}{a}\right)}=2.7268
$$

Hausdorff Dimension

rocha@indiana.edu
casci.binghamton.edu/academics/i-bic
dimension of fractal curves

Box-counting dimension

Filling planes and volumes

Hilbert

Filling planes and volumes

Hilbert

- Self-similarity on multiple scales
- Due to recursion
- Fractal dimension
- Enclosed in a given space, but with infinite number of points or measurement

fractal-like designs in Nature
reducing volume

(a)

(b)

(c)

How do these packed volumes and recursive morphologies grow?

BINGHAMTON	rocha@binghamton.edu
	casci.binghamton.edu/academics/i-bic

Hertzian scientific modeling paradigm

"The most direct and in a sense the most important problem which our
conscious knowledge of nature should enable us to solve is the
anticipation of future events, so that we may arrange our present
affairs in accordance with such anticipation". (Hertz, 1894)

What about our plant?
branching as a general system

- An Accurate Model
- Requires
- Varying angles
- Varying stem lengths
- randomness
- The Fibonacci Model is similar
- Initial State: b
- b-> a
- a -> ab
- sneezewort

Aristid Lindenmeyer

- Mathematical formalism proposed by the biologist Aristid Lindenmayer in 1968 as a foundation for an axiomatic theory of biological development.
- applications in computer graphics
- Generation of fractals and realistic modeling of plants
- Grammar for rewriting Symbols
- Production

Grammar

- Defines complex objécts by successively replacing parts of a simple object using a set of recursive, rewriting rules or productions.
- Beyond-one-dimensional production (Chomsky)
grammars
- Parallel recursion
- Access to computers

formal notation of the production system
- An L-system is an ordered triplet
- $G=\langle V, w, P\rangle$
- $V=$ alphabet of the symbols in the system
- $V=\{F, B\}$
- $w=$ nonempty word
- the axiom: B
- $P=$ finite set of production rules (productions)
- $B \rightarrow F[-B][+B]$
- $\mathrm{F} \rightarrow \mathrm{FF}$

production rules for artificial plants
- Add branching symbols []
- Main trunk shoots off one side branch
- simple example
- Angle 45
- Axiom: F
- Seed Cell
- Rule: $F=F[+F] F$
- Deterministic, context-free L-systems
- Simplest class of L-systems
- Simple re-writing
- DOL

Gen. 1

Gen. 2

Gen. 3

Gen. 8

L-system with 2 cell types

- Axiom
- B
- Cell Types
- B,F
- Rules
- $\mathrm{B} \rightarrow \mathrm{F}[-\mathrm{B}][+\mathrm{B}]$

Depth	Resulting String
0	B
1	$F[-B][+B]$
2	$F F] F[-B][+B]]+[+F[-B][+B]]$
3	$F F F F[-F F[-F[-B][+B]][+F[-B][+B]]]+[F F[-F[-B][+B]][+F[-B][+B]]]$

- Discrete nature of L-systems makes it difficult to model continuous phenomena
- Numerical parameters can be associated with L-system symbols
- Parameters control the effect of productions
- $\mathrm{A}(\mathrm{t}) \rightarrow \mathrm{B}(\mathrm{t} \times 3)$
- Growth can be modulated by time

■ Varying length of braches, rotation degrees

parametric L-systems

- Discrete nature of L-systems makes it difficult to model continuous phenomena
- Numerical parameters can be associated with L-system symbols
- Parameters control the effect of productions
- $A(t) \rightarrow B(t \times 3)$
- Growth can be modulated by time
- Varying length of braches, rotation degrees

example

$$
\begin{array}{llll}
\omega: & B(2) A(4,4) \\
p_{1}: & A(x, y): y<=3 & \rightarrow & A(x * 2, x+y) \\
p_{2}: & A(x, y): y>3 & \rightarrow B(x) A(x / y, 0) \\
p_{3}: & B(x) \quad: x<1 \quad \rightarrow C \\
p_{4}: & B(x) \quad: x>=1 \quad \rightarrow B(x-1)
\end{array}
$$

operate on parametric words,

 which are strings of modules consisting of symbols with associated parameters and their rulesFrom: P. Prusinkiewicz and A. Lindenmayer [1991]. The Algorithmic Beauty of Plants.

- Probabilistic production rules
- $A \rightarrow B C \quad(P=0.3)$
- $A \rightarrow F A \quad(P=0.5)$
- $A \rightarrow A B \quad(P=0.2)$

http://coco.ccu.uniovi.es/malva/sketchbook/
- Production rules depend on neighbor symbols in input string
- simulates interaction between different parts
- necessary to model information exchange between neighboring components
- 2L-Systems
- $P: a_{1}<a>a_{r} \rightarrow X$
- P1: A<F>A \rightarrow A
- P2: A<F>F \rightarrow F
- 1L-Systems
- P: $\mathrm{a}_{1}<\mathrm{a} \rightarrow \mathrm{X}$ or $\mathrm{P}: \mathrm{a}>\mathrm{a}_{\mathrm{r}} \rightarrow \mathrm{X}$
- Generalized to IL-Systems

- (k,l)-system
- left (right) context is a word of length $k(I)$

example

\#define CH 900 /* high concentration */
\#define CT 0.4 /* concentration threshold */
\#define ST 3.9 /* segment size threshold */
\#include H /* heterocyst shape specification */
\#ignore f $\sim \mathrm{H}$

```
\omega: -(90)F(0,0,CH)F(4,1,CH)F(0,0,CH)
p
                F(s/3*2,2,c)f(1)F(s/3,1,c)
p}2:\textrm{F}(\textrm{s},\textrm{t},\textrm{c}):\textrm{t}=2 & \textrm{s}>=6
                        F(s/3,2,c)f(1)F(s/3*2,1,c)
p}\mp@code{\mp@code{: F}(\textrm{h},\textrm{i},\textrm{k})<\textrm{F}(\textrm{s},\textrm{t},\textrm{c})>\textrm{F}(\textrm{o},\textrm{p},\textrm{r}): \textrm{s}>\textrm{ST}|\textrm{c}>\textrm{CT}->
                F(s+.1,t,c+0.25*(k+r-3*c))
p}\mp@subsup{4}{}{:}:\textrm{F}(\textrm{h},\textrm{i},\textrm{k})<\textrm{F}(\textrm{s},\textrm{t},\textrm{c})>\textrm{F}(\textrm{o},\textrm{p},\textrm{r}):\quad!(\textrm{s}>\textrm{ST}|\textrm{c}>\textrm{CT})
                        F(0,0,CH) ~ H(1)
p5 : H(s): s<3 
```

18: श111011 1A10141019

THEACORTHMCBEATMOEPAANS

convenient tool for expressing developmental models with diffusion of substances. pattern of cells in Anabaena catenula and other blue-green bacteria

From: P. Prusinkiewicz and A. Lindenmayer [1991]. The Alg Pbincta Beatit of Pdentembinghamton.edu

UNIVERSITY
casci.binghamton.edu/academics/i-bic

example

\#define CH 900 /* high concentration */
\#define CT 0.4 /* concentration threshold */
\#define ST 3.9 /* segment size threshold */
\#include H /* heterocyst shape specification */
\#ignore f $\sim H$

```
\omega: -(90)F(0,0,CH)F(4,1,CH)F(0,0,CH)
p
                        F(s/3*2,2,c)f(1)F(s/3,1,c)
p}2:F(\textrm{s},\textrm{t},\textrm{c}):\textrm{t}=2 & \textrm{s}>=6
                        F(s/3,2,c)f(1)F(s/3*2,1,c)
p}\mp@code{: F F(h,i,k)< F(s,t,c) > F(o,p,r) : s>ST|c>CT ->
            F(s+.1,t,c+0.25*(k+r-3*c))
p4: F(h,i,k)< F(s,t,c)>F(o,p,r): !(s>ST| > >CT) }
                        F(0,0,CH) ~ H(1)
```

$p_{5}: \mathrm{H}(\mathrm{s}): \mathrm{s}<3 \rightarrow \mathrm{H}(\mathrm{s} * 1.1)$

convenient tool for expressing developmental models with diffusion of substances. pattern of cells in Anabaena catenula and other blue-green bacteria

From: P. Prusinkiewicz and A. Lindenmayer [1991].

U STANE UNVERSITY OF SEW YORK
casci.binghamton.edu/academics/i-bic

Turtle graphics

Drawing words

state of turtle defined as ($\mathrm{x}, \mathrm{y}, \alpha$), coordinates (position) and angle (heading). Moves according to step size d and angle increment δ

From: P. Prusinkiewicz and A. Lindenmayer [1991]. The Algorithmic Beauty of Plants.

F Move forward a step of length d. The state of the turtle changes to ($x^{\prime}, y^{\prime}, \alpha$), where $x^{\prime}=x+d \cos \alpha$ and $y^{\prime}=$ $y+d \sin \alpha$. A line segment between points (x, y) and (x^{\prime}, y^{\prime}) is drawn.
f Move forward a step of length d without drawing a line.
$+\quad$ Turn left by angle δ. The next state of the turtle is $(x, y, \alpha+\delta)$. The positive orientation of angles is counterclockwise.

- Turn right by angle δ. The next state of the turtle is $(x, y, \alpha-\delta)$.

alphabet handling by Turtle

Angle: 14

example

Figure 1.6: Generating a quadratic Koch island
From: P. Prusinkiewicz and A. Lindenmayer [1991].

robots

- Evolutionary design of robots
- Difficult to reach high complexities necessary for practical engineering
- Karl Sims and Jordan Pollack, Hod Lipson, Gregory Hornby, and Pablo Funes claim that for automatic design to scale in complexity it must employ re-used modules
- Sims,K. [1994]. "Evolving Virtual Creatures". Proceedings of the 21 st annual conference on Computer graphics and interactive techniques, pp. 15-22.
- H. Lipson and J. B. Pollack (2000), "Automatic design and Manufacture of Robotic Lifeforms", Nature 406: 974-978.
- generative representation to encode individuals in the population.
- Indirect representation: an algorithm for creating a design.
- using Lindenmayer systems (L-systems)
- evolved locomotiong robots (called genobots).

- Common features (design principle) between artificial and real plants
- Development of (macro-level) morphology from local (micro-level) logic
- Parallel application of simple rules
- Genetic vs. algorithmic
- Recursion
- But are the algorithms the same as the biological mechanism?
- Real organisms need to economize information for coding complex phenotypes
- The genome cannot encode every ripple of the brain or lungs
- Organisms need to encode compact procedures for producing the same pattern (with randomness) again and again
- But recursion alone does not explain form and morphogenesis

- One of the design principles involved
- There are others
- Selection, genetic variation, self-organization, epigenetics

fern gametophyte Microsorium linguaeforme (left) and a simulated model using map L systems (right).

Next lectures

readings

- Class Book
- Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press.
- Chapter 2.
- Lecture notes
- Chapter 1: What is Life?
- Chapter 2: The logical Mechanisms of Life
- Chapter 3: Formalizing and Modeling the World
- posted online @ http://informatics.indiana.edu/rocha/i-bic

- Papers and other materials
- Optional
- Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman \& Hall.
- Chapter 2, all sections
- Chapter 7, sections 7.3 - Cellular Automata
- Chapter 8, sections 8.1, 8.2, 8.3.10

■ Flake's [1998], The Computational Beauty of Life. MIT Press.

- Chapters 10, 11, 14 - Dynamics, Attractors and chaos
- Prusinkiewicz and Lindenmeyer [1996] The algorithmic beauty of plants.
- Chapter 1

