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Coastlines

 Measured maps with different scales
 Coasts of Australia, South Africa, and Britain
 Land frontiers of Germany and Portugal
 Measured lengths L(d) at different scales d.

 As the scale is reduced, the length increases rapidly.
 Well-fit by a straight line with slopes (s) on log/log plots

 s = -0.25 for the west coast of Britain, one of the roughest in the atlas,  
 s = -0.15 for the land frontier of Germany,  
 s = -0.14 for the land frontier of Portugal,  
 s = -0.02 for the South African coast, one of the smoothest in the atlas.  
 circles and other smooth curves have line of slope 0.

Lewis Richardson's observations (1961)
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Integer dimensions
regular volumes

Scientific American, July 2008
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dimension of fractal curves
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 Koch curve 
 slightly more than line but 

less than a plane
 Packing efficiency!
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videos
Koch curve
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re-writing design principle

 Complex objects are defined by systematically and recursively replacing parts of a simple 
start object with another object according to a simple rule
 Cantor Set

mathematical monsters

n =0

n =1

n =2

n →∞

Scientific American, July 2008
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re-writing design principle

 Complex objects are defined by systematically and recursively replacing parts of a simple 
start object with another object according to a simple rule
 Sierpinski Gasket

mathematical monsters
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Scientific American, July 2008



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

re-writing design principle

 Complex objects are defined by systematically and recursively replacing parts of a simple 
start object with another object according to a simple rule
 Sierpinski Gasket
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585.1
1log

log












a

ND

Hausdorff Dimension

Scientific American, July 2008



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

re-writing design principle

 Complex objects are defined by systematically and recursively replacing parts of a simple 
start object with another object according to a simple rule
 Menger sponge

mathematical monsters
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Box-counting dimension
dimension of fractal curves
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Filling planes and volumes
Peano and Hilbert Curves

Peano Hilbert
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Filling planes and volumes
Peano and Hilbert Curves

Peano Hilbert



fractal features

 Self-similarity on multiple scales
 Due to recursion

 Fractal dimension
 Enclosed in a given space, but with infinite 

number of points or measurement
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reducing volume
fractal-like designs in Nature

How do these packed volumes and recursive 
morphologies grow? 
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Hertzian scientific modeling paradigm
modelling the World

World1

Measure

Symbols

initial 
conditions

Measure

scientific 
model

World2
Natural Laws

observations

predictions

En
co

di
ng

Logical 
Consequences ????

“The most direct and in a sense the most important problem which our 
conscious knowledge of nature should enable us to solve is the 
anticipation of future events, so that we may arrange our present 
affairs in accordance with such anticipation”. (Hertz, 1894) 

Eugene Wigner

“Every empirical law has the disquieting quality that one 
does not know its limitations.” E. Wigner [1957] in “The 

Unreasonable Effectiveness of Mathematics in the Natural 
Sciences” 
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What about our plant?

 An Accurate Model
 Requires

 Varying angles
 Varying stem lengths
 randomness

 The Fibonacci Model is similar
 Initial State: b
 b -> a
 a -> ab

 sneezewort

branching as a general system

Psilophyta/Psilotum 

b
a
b

b
b

b
b

b
b b

a
a

a
a

a aa
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L-Systems

 Mathematical formalism proposed by the 
biologist Aristid Lindenmayer in 1968 as a 
foundation for an axiomatic theory of biological 
development. 
 applications in computer graphics

 Generation of fractals and realistic modeling of plants
 Grammar for rewriting Symbols

 Production Grammar
 Defines complex objects by successively replacing 

parts of a simple object using a set of recursive, 
rewriting rules or productions. 
 Beyond one-dimensional production (Chomsky) 

grammars
 Parallel recursion
 Access to computers

Aristid Lindenmeyer
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L-systems

 An L-system is an ordered triplet
 G = <V, w, P>

 V = alphabet of the symbols in the system
 V = {F, B}

 w = nonempty word 
 the axiom: B

 P = finite set of production rules (productions)
 B  F[-B][+B]
 F  FF

formal notation of the production system
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branching L-Systems

 Add branching symbols [ ]
 Main trunk shoots off one side branch
 simple example

 Angle 45
 Axiom: F

 Seed Cell
 Rule: F=F[+F]F 

 Deterministic, context-free L-systems
 Simplest class of L-systems
 Simple re-writing
 D0L

production rules for artificial plants

F F
[+F]
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L-system with 2 cell types

 Axiom
 B

 Cell Types
 B,F

 Rules
 B  F[-B][+B]
 F  FF

Resulting StringDepth
B0

F[-B][+B]1
FF[-F[-B][+B]]+[+F[-B][+B]]2

FFFF[-FF[-F[-B][+B]][+F[-B][+B]]]+[FF[-F[-B][+B]][+F[-B][+B]]]3
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parametric L-systems
 Discrete nature of L-systems makes it difficult to model continuous 

phenomena
 Numerical parameters can be associated with L-system symbols
 Parameters control the effect of productions
 A ( t )  B ( t x 3)

Growth can be modulated by time
Varying length of braches, rotation degrees
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parametric L-systems
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phenomena
 Numerical parameters can be associated with L-system symbols
 Parameters control the effect of productions
 A ( t )  B ( t x 3)

Growth can be modulated by time
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example
parametric L-system

operate on parametric words, 
which are strings of modules 
consisting of symbols with 
associated parameters and 
their rules

From: P. Prusinkiewicz and A. 
Lindenmayer [1991]. The Algorithmic 
Beauty of Plants.
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stochastic L-systems

 Probabilistic production rules
 A  B C    ( P = 0.3 )
 A  F A    ( P = 0.5 )
 A  A B    ( P = 0.2 )

http://coco.ccu.uniovi.es/malva/sketchbook/
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Context-sensitive L-systems

 Production rules depend on neighbor symbols in input string
 simulates interaction between different parts

 necessary to model information exchange between neighboring components

 2L-Systems
 P: al < a > ar X

 P1: A<F>A  A
 P2: A<F>F  F

 1L-Systems
 P: al < a  X or P: a > ar X

 Generalized to IL-Systems
 (k,l)-system

 left (right) context is a word of length k(l)

2L-Systems
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example
parametric 2L-system

convenient tool for expressing developmental 
models with diffusion of substances. 
pattern of cells in Anabaena catenula and 
other blue-green bacteria

From: P. Prusinkiewicz and A. Lindenmayer [1991]. 
The Algorithmic Beauty of Plants.
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example
parametric 2L-system

convenient tool for expressing developmental 
models with diffusion of substances. 
pattern of cells in Anabaena catenula and 
other blue-green bacteria

From: P. Prusinkiewicz and A. Lindenmayer [1991]. 
The Algorithmic Beauty of Plants.
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Drawing words
Turtle graphics

α=δ= 90°

state of turtle defined as 
(x, y, α), coordinates 
(position) and angle 
(heading). Moves 
according to step size d 
and angle increment δ

From: P. Prusinkiewicz and A. Lindenmayer [1991]. 
The Algorithmic Beauty of Plants.
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L-systems

 An L-system is an ordered triplet
 G = <V, w, P>

 V = alphabet of the symbols in the system
 V = {F, X}

 w = nonempty word 
 the axiom: X

 P = finite set of production rules (productions)
 X  F[+X][-X]FX
 F  FF

alphabet handling by Turtle

Alphabet V
{X,F,[,],+,-}

Drawing 
Procedure 
(Turtle)

{X,F,[,],+,-}

Angle: 14
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L-systems

 Example L-System
 V = {F, X}
 axiom: X
 Productions

 X  F[+X][-X]FX
 F  FF

alphabet handling by Turtle

Alphabet V
{X,F,[,],+,-}

Turtle
{X,F,[,],+,-}

n=1
F[+X][-X]FX

F[+][-]F
FF

n=2
FF[+F[+X][-X]FX][-F[+X][-X]FX]FF[+X][-X]FX

FF[+F[+][-]F][-F[+][-]F]FF[+][-]F
FF[+FF][-FF]FFF
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alphabet handling by Turtle
L-systems

n=2
FF[+F[+X][-X]FX][-F[+X][-X]FX]FF[+X][-X]FX

FF[+F[+][-]F][-F[+][-]F]FF[+][-]F
FF[+FF][-FF]FFF

n=3
FFFF[+FF[+F[+X][-X]FX][-F[+X][-X]FX]FFF[+X][-X]FX][-FF[+ F[+X][-X]FX][-

F[+X][-X]FX]FFF[+X][-X]FX]FFFF[+F[+X][-X]FX][- F[+X][-X]FX]FFF[+X][-X]FX
FFFF[+FF[+F[+][-]F][- F[+][-]F]FF F[+][-]F][-FF[+ F[+][-]F][- F[+][-]F]FF F[+][-

]F]FFFF[+ F[+][-]F][- F[+][-]F]FFF[+][-]F
FFFF[+FF[+FF][-FF]FFFF][-FF[+FF][-FF]FFFF]FFFF[+FF][-FF]FFFF

Angle: 14
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L-systems

 Example L-System
 V = {F, X}
 axiom: X
 Productions

 X  F[>8+X][>8-X]FX
 F  FF

alphabet handling by Turtle (adding color)

Alphabet V
{X,F,[,],+,-,>n}

Turtle
{X,F,[,],+,-,>n}
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example
Turtle graphics

From: P. Prusinkiewicz and A. Lindenmayer [1991]. 
The Algorithmic Beauty of Plants.



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

automatic design of basic shapes

 Evolutionary design of robots
 Difficult to reach high complexities necessary for practical engineering
 Karl Sims and Jordan Pollack, Hod Lipson, Gregory Hornby, and Pablo Funes claim that for 

automatic design to scale in complexity it must employ re-used modules
 Sims,K. [1994]. “Evolving Virtual Creatures”. Proceedings of the 21st annual conference on Computer graphics and 

interactive techniques, pp. 15 – 22.
 H. Lipson and J. B. Pollack (2000), "Automatic design and Manufacture of Robotic Lifeforms", Nature 406: 974-978.

 generative representation to encode individuals in the population. 
 Indirect representation: an algorithm for creating a design. 

 using Lindenmayer systems (L-systems) 
 evolved locomotiong robots (called genobots). 

robots
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L-systems

 Common features (design principle) between artificial and real plants
 Development of (macro-level) morphology from local (micro-level) logic
 Parallel application of simple rules

 Genetic vs. algorithmic
 Recursion

 But are the algorithms the same as the biological mechanism?
 Real organisms need to economize information for coding complex 

phenotypes
 The genome cannot encode every ripple of the brain or lungs
 Organisms need to encode compact procedures for producing the same 

pattern (with randomness) again and again
 But recursion alone does not explain form and morphogenesis

 One of the design principles involved
 There are others

 Selection, genetic variation, self-organization, epigenetics

models or realistic imitations?

fern gametophyte Microsorium linguaeforme (left) and a 
simulated model using map L systems (right). 



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

Next lectures

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, 

and Technologies. MIT Press. 
 Chapter 2. 

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World

 posted online @ http://informatics.indiana.edu/rocha/i-bic 
 Papers and other materials

 Optional
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and 

Applications. Chapman & Hall. 
 Chapter 2, all sections
 Chapter 7, sections 7.3 – Cellular Automata
 Chapter 8, sections 8.1, 8.2, 8.3.10

 Flake’s [1998], The Computational Beauty of Life. MIT Press.
 Chapters 10, 11, 14 – Dynamics, Attractors and chaos

 Prusinkiewicz and Lindenmeyer [1996] The algorithmic beauty of plants.
 Chapter 1

readings

bit.ly/atBIC


