biologically-inspired computing

ISE-483/SSIE-583 - spring 2023
luis m. rocha

office hours:
thursdays 9:00-11:30am, EB S04 binghamton.zoom.us/my/luismrocha

office hours:

???
EB K1 and zoom link on Brightspace
casci.binghamton.edu/academics/i-bic
key events coming up

- Labs: 35\% (ISE-483)
- Complete 5 (best 4 graded) assignments based on algorithms presented in class

■ Lab 0 : January 29th

- Introduction to Python (No Assignment)
- Delivered by SSIE583 Group 2
- Lab 1 : February 5 ${ }^{\text {th }}$
- Measuring Information (Assignment 1)
- Delivered by SSIE583 Group 3
- SSIE - 583 -Presentation and Discussion: 25\%
- Present and lead the discussion of an article related to the class materials
- Enginet students post/send video or join by Zoom
- First presentation January 29th

■ Langton, C. [1989]. "Artificial Life" In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.

- Pattee, H. [1989], "Simulations, Realizations, and Theories of Life". In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 63-77.
- Presented by Amahury Lopez Diaz
- Discussion by all

Next lectures

readings

- Class Book

- Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press. Preface.
- Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman \& Hall. Chapter 1, pp. 1-23.
- Lecture notes
- Chapter 1: "What is Life?"
- posted online @ http://informatics.indiana.edu/rocha/i-bic
- Papers for Presentations
- Logical mechanisms of life (optional for SSIE 483)
- Langton, C. [1989]. "Artificial Life" In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.
- Pattee, H. [1989], "Simulations, Realizations, and Theories of Life". In Artificial Life. C. Langton (Ed.). pp. 63-77
- Other Readings
- Life and Information
- Dennet, D.C. [2005]. "Show me the Science". New York Times, August 28, 2005

■ Polt, R. [2012]. "Anything but Human". New York Times, August 5, 2012

- Optional
- Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
- Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503-506.
- Aleksander, I. [2002]. "Understanding Information Bit by Bit". In: It must be beautiful : great equations of modern science. G. Farmelo (Ed.), Grant
- James, R., and Crutchfield, J. (2017). Multivariate Dependence beyond Shannon Information. Entropy, 19(10), 531.
- Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information-theoretic primer on complexity, self-organization, and emergence." Complexity 15.1 (2009): 11-28.

uncertainty, about outcome. How much information is gained when symbol is known

■on average, how many yes-no questions need to be asked to establish what the symbol is

■"structure" of uncertainty in situations

$$
H_{S} \in=-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2}\left(p\left(x_{i}\right)\right)
$$

Uniform distribution

english entropy (rate)

from letter frequency

	p(x)	$\log 2(p(x))$	-p(x). $\log 2(p(x))$
e	0.124167	-3.0096463	0.373698752
t	0.096923	-3.3670246	0.326340439
a	0.082001	-3.6082129	0.295877429
i	0.076805	-3.7026522	0.284382943
n	0.076406	-3.7101797	0.283478135
0	0.07141	-3.8077402	0.271908822
S	0.070677	-3.8226195	0.270170512
r	0.066813	-3.903723	0.260820228
1	0.044831	-4.4793659	0.200813559
d	0.036371	-4.7810716	0.173891876
h	0.035039	-4.8349111	0.169408515
c	0.034439	-4.8598087	0.167367439
u	0.028777	-5.11894	0.147307736
m	0.028 Hartley Measure	Hartley Measure 094755	
f	$0.023 \mathrm{H}(\|26\|) 4.7004397220629$		
p	$\begin{array}{\|l\|l\|l\|} \hline 0.020517 & -0.0211011 \\ \hline \end{array}$		0.114205704
Y	0.018918	-5.7240814	0.108289316
g	0.018119	-5.7863688	0.104842059
w	0.013523	-6.2084943	0.083954364
v	0.012457	-6.3269343	0.078812722
b	0.010658	-6.5519059	0.069830868
k	0.00393	-7.9911852	0.031406876
x	0.002198	-8.8294354	0.019409218
j	0.001998	-8.9669389	0.017919531
q	0.000933	-10.066609	0.009387113
z	0.000599	-10.705156	0.006412389
		Entropy	4.14225193

[^0]
entropy and meaning

- entropy quantifies information (surprise), but it does not consider information content
- semantic aspects of information are irrelevant to the engineering problem in Shannon's conception

We were good, we were gold Kinda dream that can't be sold We were right 'til we weren't Built a home and watched it burn

Mm, I didn't wanna leave you I didn't wanna lie Started to cry, but then remembered I I can buy myself flowers Write my name in the sand Talk to myself for hours Say things you don't understand I can take myself dancing And I can hold my own hand Yeah, I can love me better than you can

wdeo eog geWI ewr e deorw aainhmta d rettoeKandl dsbc eeeier ntw hWttr ewrgliwe oriaedatmht ndc lwn thuaBeuib
eanm dtal vewdi nl o unMay al indn nltawde i cl rettedtebrmSrb reemntuy da oth e
uolrawe blnffmsyylc es
niWe dty ne rsehmntiama arem TII ssytrfu fkoooh nyoh e gdodudtnaraustsi tnynS
atf Ik emcnegyn snlicad a
hmhydcndAwannoo n dl I a
tlhl eatta nom Ybrueny h ee oaavn cce

entropy according to probabilistic model

```
0th}\mathrm{ order model: equiprobable symbols
```

$$
H(A)=\log _{2}|A|
$$

Hartley Measure
$\mathrm{H}(\|27\|) 4.7548875$

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

OCRO HLI RGWR NMIELWIS EU LL NBNESBEYA TH EEI ALHENHTTPA OOBTTVA NAH BRL

```
2 nd order model: frequency of digrams
```

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

$$
3^{\text {rd }} \text { order model: frequency of trigrams }
$$

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE
$4^{\text {th }}$ order model: frequency of tetragrams THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG INSTATES CONS ERATION NEVER ANY OF PUBLE AND TO THEORY EVENTIAL CALLEGAND TO ELAST BENERATED IN WITH PIES AS IS WITH THE

Most common digrams: th, he, in, en, nt, re, er, an, ti, es, on, at, se, nd, or, ar, al, te, co, de, to, ra, et, ed, it, sa, em, ro.

Most common trigrams: the, and, tha, ent, ing, ion, tio, for, nde, has, nce, edt, tis, oft, sth, men

$$
H_{S}=2.8
$$

including more structure reduces surprise

uncertainty

other measures to infer structure and organization in nature and society

- Mutual Information
- Amount of information about one variable that can be gained (uncertainty reduced) by observing another variable
- Information Gain (Kullback-Leibler Divergence)
- Difference between two probability distributions p and q,
- average number of bits per data point needed in order to represent q (model approximation) as it deviates from p ("true" or theoretical distribution)
- Transfer Entropy
- transfer of information between two random processes in time
- Amount of information (in bits) gained, or uncertainty lost, in knowing future values of Y , knowing the past values of X and Y.

$$
I(X ; Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right) \log _{2} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}
$$

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

$$
\operatorname{IG}(p(X), q(X))=\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}
$$

$$
T_{X \rightarrow Y}=H\left(Y_{t} \mid Y_{t-1: t-L}\right)-H\left(Y_{t} \mid Y_{t-1: t-L}, X_{t-1: t-L}\right)
$$

uncertainty

other measures to infer structure and organization in nature and society

- Mutual Information

- Amaint nf infnumntion nhnıt nnn …ninhin that can be gained (uncertainty reduced) by Tuytsfofijfirslx?

 fsiojr jwishj 3^{\prime} Htr uqj \}ñ $6: 36 \% 755>$. $\% 627=3$


```
ence)
```

tions p and q,
in order to represent q (model approximation) as it n)
n processes in time
rtainty lost, in knowing future values of Y , knowing

$$
I(X ; Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right) \log _{2} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}
$$

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

$$
\operatorname{IG}(p(X), q(X))=\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}
$$

$$
T_{X \rightarrow Y}=H\left(Y_{t} \mid Y_{t-1: t-L}\right)-H\left(Y_{t} \mid Y_{t-1: t-L}, X_{t-1: t-L}\right)
$$

information as decrease in uncertainty

$$
H(A)=\log _{2}|A|
$$

Measured in bits

Hartley, R.V.L., "Transmission of Information", Bell System Technical Journal, July 1928, p. 535.

including more structure reduces surprise

information is surprise

C. E. annon [1948], "A mathematical theory of communication". Bell System Technical Journal, 27:379-423 and 623-656

Next lectures

readings

- Class Book
- Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press.

Preface.

- Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman \& Hall. Chapter 1, pp. 1-23.

- Lecture notes

- Chapter 1: "What is Life?"
- Chapter 2: The logical Mechanisms of Life
- posted online @ casci.binghamton.edu/academics/i-bic
- Papers and other materials
- Life and Information
- Dennet, D.C. [2005]. "Show me the Science". New York Times, August 28, 2005
- Polt, R. [2012]. "Anything but Human". New York Times, August 5, 2012
- Logical mechanisms of life
- Langton, C. [1989]. "Artificial Life" In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.

- Pattee, H. [1989], "Simulations, Realizations, and Theories of Life". In Artificial Life. C. Langton (Ed.). pp. 63-77
- Optional
- Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
- Aleksander, I. [2002]. "Understanding Information Bit by Bit". In: It must be beautiful : great equations of modern science. G. Farmelo (Ed.), Grant
- James, R., and Crutchfield, J. (2017). Multivariate Dependence beyond Shannon Information. Entropy, 19(10), 531.
- Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information-theoretic primer on complexity, self-organization, and emergence." Complexity 15.1 (2009): 11-28.

[^0]: http://www.macfreek.nl/memory/Letter_Distribution

