

evolutionary systems and biologically-inspired computing Resources /wor/leval/ske/svi • web page casci.binghamton.edu/academics/i-bic/ below (million) online class Link on Brightspace blog: life inspired • life-inspired.blogspot.com Brightspace brightspace.binghamton.edu/d2l/home/305125 fer in range def somern e wall, % #11s.\n luis m. rocha

ISE-483/SSIE-583 - spring 2023

office hours:

thursdays 9:00- 11:30am, EB S04 binghamton.zoom.us/my/luismrocha

office hours:

???

EB K1 and zoom link on Brightspace

rocha@binghamton.edu casci.binghamton.edu/academics/i-bic

samer abubaker

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

course outlook

key events coming up

- Labs: 35% (ISE-483)
 - Complete 5 (best 4 graded) assignments based on algorithms presented in class
 - Lab 0 : January 29th
 - Introduction to Python (No Assignment)
 - Delivered by SSIE583 Group 2
 - Lab 1 : February 5th
 - Measuring Information (Assignment 1)
 - Delivered by SSIE583 Group 3
- SSIE 583 Presentation and Discussion: 25%
 - Present and lead the discussion of an article related to the class materials
 - Enginet students post/send video or join by Zoom
 - First presentation January 29th
 - Langton, C. [1989]. "Artificial Life" In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.
 - Pattee, H. [1989], "Simulations, Realizations, and Theories of Life". In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 63-77.
 - Presented by Amahury Lopez Diaz
 - Discussion by all

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

Next lectures

readings **Class Book** Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press. Preface. Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall. **Chapter 1**, pp. 1-23. Lecture notes Chapter 1: "What is Life?" posted online @ http://informatics.indiana.edu/rocha/i-bic Papers for Presentations Logical mechanisms of life (optional for SSIE 483) Langton, C. [1989]. "Artificial Life" In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47. Pattee, H. [1989], "Simulations, Realizations, and Theories of Life", In Artificial Life, C. Langton (Ed.), pp. 63-77 Other Readings Life and Information Dennet, D.C. [2005]. "Show me the Science". New York Times, August 28, 2005 Polt, R. [2012]. "Anything but Human". New York Times, August 5, 2012 Optional Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8. Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503-506. Aleksander, I. [2002]. "Understanding Information Bit by Bit". In: It must be beautiful : great equations of modern science. G. Farmelo (Ed.), Grant James, R., and Crutchfield, J. (2017). Multivariate Dependence beyond Shannon Information. Entropy, 19(10), 531. Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information-theoretic primer on complexity, self-organization." and emergence." Complexity 15.1 (2009): 11-28. rocha@indiana.edu BINGHAMTON

casci.binghamton.edu/academics/i-bic

UNIVERSITY

Next lectures readings BINGHAMTON UNIVERSITY Spring 2024 Evolutionary Sys & Bio-Ins... Ð Â Luis Rocha \square LR ft **Class Book** Course Home Calendar Content Assignments Quizzes Discussions Evaluation - Classlist Course Tools - Help -Floreano, D. and (**Preface**. nologies. MIT Press. Nunes de Castr Readings ~ *ications*. Chapman & Hall. Setting: Chapter 1, pp. Lecture notes Syllabus / Overview Add dates and restrictions... • Chapter 1: "Wh Ω Bookmarks posted online See all class readings at: https://casci.binghamton.edu/academics/i-bic/index.php#material Papers for Present Course Schedule Class Book Logical mechanisr • Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, ■ Langton, C. [1] Table of Contents and Technologies. MIT Press. Available in electronic format for SUNY students. • Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Pattee, H 63-77 Concepts, Algorithms, and Applications. Chapman & Hall. Chapter 1, pp. 1-23. Syllabus Other Readings Lecture notes Life and Informatic # Office Hours • • 1. What is Life? Dennet, D.C. ■ Polt, R. [2012 II Class Recordings Articles Optional • Dennet, D.C. [2005]. "Show me the Science". New York Times. August 28, 2005 Lecture Slides and Gleick, J. [20] # • Polt, R. [2012]. "Anything but Human". New York Times, August 5, 2012 Other Materia Cobb. Matthe **Optional Readings** Aleksander, I. tions of modern science. G. # Readings Farmelo (Ed. Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8. James, R., ar Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503-506. ntropy, 19(10), 531. Papers for • Aleksander, I. [2002]. "Understanding Information Bit by Bit". In: It must be beautiful : great nplexity, self-organization, Prokopenko. Presentations equations of modern science. G. Farmelo (Ed.), Grant and emergen - James, R., and Crutchfield, J. (2017). Multivariate Dependence beyond Shannon Information. Add a module ... Entropy, 19(10), 531. Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information-theoretic primer on complexity, self-organization, and emergence." Complexity 15.1 (2009): 11-28. ha@indiana.edu casci.binghamton.edu/academics/i-bic UNIVERSIT

what it measures

on average, how many yes-no questions need to be asked to establish what the symbol is

"structure" of uncertainty in situations

english entropy (rate)

from letter frequency

	n(v)	$\log 2(n/x)$	$n(x) \log 2(n(x))$																							p(x)	log2(p(x)) -r	o(x).log2(p(x))
0	0 12/167	-3 0006/62	-p(x).i0g2(p(x))										Mo	ost con	nmon	lette	rs in l	Engli	sh te	xts					Space	0.18288	-2.45099	43	0.448249175
e †	0.124107	-3 3670246	0.373098732	14%	_	-	-				-	-			-	-	-	-	-	-		-		-	E	0.10267	-3.28396	25	0.337152952
a	0.082001	-3.6082129	0.295877429																						т	0.07517	-3.73369	95	0.280662128
i	0.076805	-3 7026522	0 284382943																						A	0.06532	-3.93629	45	0.257125332
•	0.076406	2 71 01 707	0.204302345	12%	1																				0	0.06160	-4.02102	49	0.247678132
n	0.076406	-3./101/9/	0.283478135																						N	0.05712	-4.12985	74	0.235897914
0	0.07141	-3.8077402	0.271908822																						I	0.05668	-4.14090	36	0.234724772
S	0.070677	-3.8226195	0.270170512	10%																					S	0.05317	-4.23324	23	0.225081718
r	0.066813	-3.903723	0.260820228			T																			R	0.04988	-4.32542	12	0.215748053
I	0.044831	-4.4793659	0.200813559																						н	0. <u>04979</u>	-4.32812	65	<u>0.2</u> 15478547
d	0.036371	-4.7810716	0.173891876	0.07			Т																		L	0. Hart	lev Mea	sur	e 63015644
h	0.035039	-4.8349111	0.169408515	8%				L	-																D	0. ப/ -			61811184
с	0.034439	-4.8598087	0.167367439					4 _	<u> </u>																U	0.02270	<u>-</u> .4./	240 241	0.124201198
u	0.028777	-5.11894	0.147307736						11		T.	Т													С	0.02234	-5.48443	63	0.122504535
m	0.028 Ha	artley Mea	sure 094755	6%						1															М	0.02027	-5.62481	77	0.113990747
f	0.023 H(26) 4.7	004397 220629								1														F	0.01983	-5.65612	27	0.112164711
р	0.020517	-3.0211017	0.114205704											-											W	0.01704	-5.87502	08	0.100104113
у	0.018918	-5.7240814	0.108289316	4%									T	-											G	0.01625	-5.94350	13	0.096576215
g	0.018119	-5.7863688	0.104842059	110									1	1											P	0.01504	-6.05474	06	0.091082933
w	0.013523	-6.2084943	0.083954364												I	Ι									Y	0.01428	-6.13019	71	0.087518777
v	0.012457	-6.3269343	0.078812722												1		Į.	Ŧ.	Т	-		_			В	0.01259	-6.31171	46	0.079456959
b	0.010658	-6.5519059	0.069830868	2%															1	4	i.	Ι.	T		V	0.00796	-6.97280	48	0.055511646
k	0.00393	-7.9911852	0.031406876																			÷ Г			ĸ	0.00561	-7.47787	94	0.041948116
х	0.002198	-8.8294354	0.019409218																					I.	X	0.00141	-9.47090	63	0.013346416
j	0.001998	-8.9669389	0.017919531	0%																					1	0.00098	-10 0019	87	0.009754119
q	0.000933	-10.066609	0.009387113		Е	Т	Α	0 1	I I	S	R	Н	L	D	U	С	М	F	w	G	Р	Y I	B V	Κ	0	0.00084	-10 2229	07	0.008554069
z	0.000599	-10.705156	0.006412389																						7	0.00051	-10 9291	84	0.005604998
		Entropy	4.14225193																						<u> </u>	0.00031	Entropy	,	4 0940451
																											спаору	·	4.0049451
http://www.macfreek.nl/memory/Letter_DistributionBINGHAMTON											ON	rocha@binghamton.edu																	
						p.//		muor			,	, _ e		21301	Juli	011					UN	IVI	ERSI	TY	casci.	bingham	ton.edu/	aca	demics/i-bic
																					UTAIL	ONTFERD		IOKK					

entropy and meaning

entropy quantifies information (surprise), but it does not consider information content
 semantic aspects of information are irrelevant to the engineering problem in Shannon's conception

predicting english

entropy according to probabilistic model

0^{th} order model: equiprobable symbols H ($(A) = \log_2 A $ Hartley Measure H(27) 4.7548875
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGX	YD QPAAMKBZAACIBZLHJQD
1 st order model: frequency of symbols $H_s(A)$	$H_{S} = -\sum_{i=1}^{n} p(x_{i}) \log_{2}(p(x_{i})) \qquad H_{S} = 4.08$
OCRO HLI RGWR NMIELWIS EU LL NBNESBEYA TH EEI	ALHENHTTPA OOBTTVA NAH BRL
2 nd order model: frequency of digrams	Most common <i>digrams</i> : th, he, in, en, nt,
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE	re, er, an, ti, es, on, at, se, nd, or, ar, al, te, co, de, to, ra, et, ed, it, sa, em, ro.
3 rd order model: frequency of trigrams	Most common <i>trigrams</i> : the, and, tha, ent, ing, ion, tio, for, nde, has, nce, edt, tis, oft, sth, men
IN NO IST LAT WHEY CRATICT FROURE BERS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE	
4 th order model: frequency of tetragrams	$H_{s} = 2.8$
THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG INSTATES CONS ERATION NEVER ANY OF PUBLE AND T THEORY EVENTIAL CALLEGAND TO ELAST BENERATED WITH PIES AS IS WITH THE	on including more structur ■ reduces surprise
http://pages.central.edu/emp/LintonT/clas	ses/spring01/cryptography/letterreghtmlmTON rocha@binghamton.edu

http://everything2.com/title/entropy+of+English

rocha@binghamton.edu casci.binghamton.edu/academics/i-bic

UNIVERSITY OF NEW

Т

uncertainty

other measures to infer structure and organization in nature and society

- transfer of information between two random processes in time
 - Amount of information (in bits) gained, or uncertainty lost, in knowing future values of Y, knowing the past values of X and Y.

$$I(X;Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2 \frac{p(x_i, y_j)}{p(x_i)p(y_j)}$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$IG(p(X), q(X)) = \sum_{i=1}^{n} p(x_i) \log_2 \frac{p(x_i)}{q(x_i)}$$

В

$$T_{X \to Y} = H(Y_t | Y_{t-1:t-L}) - H(Y_t | Y_{t-1:t-L}, X_{t-1:t-L})$$

INGHAMTON	rocha@indiana.edu
NIVERSITY ATE UNIVERSITY OF NEW YORK	casci.binghamton.edu/academics/i-bic

uncertainty

other measures to infer structure and organization in nature and society

Mutual Information Tuytsf@wjfirslx%	that can be gained (uncertainty reduced) by
Uwtptujspt & nomfnq&fgnt & txhmjyn&fsi & gj } & & ~fs & <u>Fs</u> nsktwr fynts & mjtwjynh & wr jwkts & htrugj } ny~& & jd& wl fsn; fynts & fsi & jwljshj & Htrugj } ny~ 6:36755>.%6627=3	ence) tions <i>p</i> and <i>q</i> , in order to represent <i>q</i> (model approximation) as it n)
Ofr jx1W31£si%Hwzyhmknjqi1103&756<.3%R zqn{fwfyj&jujsijshj% gj~tsi%Mnfssts%tktwr fynts'3Jsyxtu~166>-65.1£:863	n processes in time rtainty lost, in knowing future values of Y, knowing

$$I(X;Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2 \frac{p(x_i, y_j)}{p(x_i)p(y_j)}$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$IG(p(X), q(X)) = \sum_{i=1}^{n} p(x_i) \log_2 \frac{p(x_i)}{q(x_i)}$$

$$T_{X \to Y} = H(Y_t | Y_{t-1:t-L}) - H(Y_t | Y_{t-1:t-L}, X_{t-1:t-L})$$

BINGHAMTON	rocha@indiana.edu
UNIVERSITY OF NEW YORK	casci.binghamton.edu/academics/i-bic

uncertainty-based information

information as decrease in uncertainty.

information of sequential messages

Next lectures

readings

Class Book

- Floreano, D. and C. Mattiussi [2008]. *Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies*. MIT Press. **Preface**.
 - Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall. Chapter 1, pp. 1-23.
- Lecture notes
 - Chapter 1: "What is Life?"
 - Chapter 2: The logical Mechanisms of Life
 - posted online @ casci.binghamton.edu/academics/i-bic
- Papers and other materials
 - Life and Information
 - Dennet, D.C. [2005]. "Show me the Science". New York Times, August 28, 2005
 - Polt, R. [2012]. "Anything but Human". New York Times, August 5, 2012
 - Logical mechanisms of life
 - Langton, C. [1989]. "Artificial Life" In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.
 - Pattee, H. [1989], "Simulations, Realizations, and Theories of Life". In Artificial Life. C. Langton (Ed.). pp. 63-77
 - Optional
 - Gleick, J. [2011]. *The Information: A History, a Theory, a Flood*. Random House. **Chapter 8**.
 - Aleksander, I. [2002]. "Understanding Information Bit by Bit". In: It must be beautiful : great equations of modern science. G. Farmelo (Ed.), Grant
 - James, R., and Crutchfield, J. (2017). Multivariate Dependence beyond Shannon Information. Entropy, 19(10), 531.
 - Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information-theoretic primer on complexity, self-organization, and emergence." Complexity 15.1 (2009): 11-28.

