lecture 19

- Emergent behavior
- Intricate structures and behavior from the interaction of many simple agents or rules
- Examples
- Cellular Automata, Ant colonies, development, morphogenesis, brains, immune systems, economic markets
- Mechanism
- Parallelism, multiplicity, stigmergy, multi-solutions, redundancy
- Design causes
- Natural selection, self-organization, epigenetics, language, culture
pheromone evaporation and self-generated chemoattractants

Tweedy, et al [2020]. "Seeing around Corners: Cells Solve Mazes and Respond at a Distance Using Attractant Breakdown." Science 369 (6507): eaay9792.

chemotaxis path discovery

pheromone evaporation and self-generated chemoattractants

Tweedy, et al [2020]. "Seeing around Corners: Cells Solve Mazes and Respond at a Distance Using Attractant Breakdown." Science 369 (6507): eaay9792.
foraging, routing, and optimization
stigmergy at work: ant colony optimization

J.L. Deneubourg, S. Aron, S. Goss, J.M. Pasteels [1990] "The selforganizing exploratory pattern of the argentine ant". Journal of Insect Behavior.

After an initial transitory phase lasting few minutes during which some oscillations can appear, ants tend to converge on the same path
foraging, routing, and optimization
stigmergy at work

S Goss, S Aron, JL Deneubourg, JM Pasteels [1989]. "Self-organized shortcuts in the Argentine ant". Naturwissenschaften, 76, pp. 579-581.
foraging, routing, and optimization
ant colony optimization

- Path optimization
- Stigmergy
- Reinforcement: Shortest path contains probabilistically more pheromone
- First ants to get to food source are those using the shortest path, so pheromone remains stronger in the whole path, which makes them choose the path more often when going back
- Dependence on dynamic parameters (self-organization)
- Pheromone evaporation, number of ants, length of paths
- If shortest path is introduced much later, it will not be chosen unless pheromone evaporates very quickly
- Pheromone release is proportional to food source quality
- Exploitation of better sources
- Ants wander off path with a certain probability

■ Random behavior necessary for exploration of space

- Distributed search
- Population of foraging ants
- Collective Path Optimization (global coordination)
- A single ant (one solution) cannot solve it, path optimization is a property of the collective

finding the shortest path
- Start with a weighted graph where edge weights are distances $d(e)$.
- A solution is a path from vertex s to vertex d
- Length of path p is $\sum_{e \in p} d(e)$
- Pheromone level on edge $e_{i, j}$: $\tau_{i, j}$
- Pheromone evaporates
- $\tau_{i, j}(t+1)=(1-\rho) \tau_{i, j}(t)$
- Population of artificial ants
- Ant z traverses an edge (or path) at each iteration t
- Releases pheromone every time it traverses an edge: $\Delta \tau$
- Chooses next edge/path $\left(v_{j}\right)$ to traverse after reaching vertex v_{i} :

Collective signal

Traveling-sales ants
ant colony optimization

- $d_{i j}=$ distance between city i and city j
- $\tau_{i j}=$ virtual pheromone on edge (i, j)
- m agents, each building a tour
- At each step of a tour, the probability to go from city i to city j is proportional to $\left(\tau_{i j}\right)^{a}\left(d_{i j}\right)^{-b}$
- After building a tour of length L, each agent reinforces the edges is has used by an amount proportional to $1 / L$
- The virtual pheromone evaporates: $\tau \rightarrow(1-\rho) \tau$

ant colony optimization (ACO)
For the traveling salesman problem
- Pheromone release proportional to quality of solution

Dorigo M. \& L.M. Gambardella (1997). Ant Colonies for the Traveling Salesman Problem. BioSystems, 43:73-81.

$$
p_{i, j}^{z}=\frac{\left(\tau_{i, j}\right)^{a}\left(d_{i, j}\right)^{-b}}{\sum_{k \in N_{i}}\left[\left(\tau_{i, k}\right)^{a}\left(d_{i, k}\right)^{-b}\right]}
$$

bio-inspired collective robotics

Box pushing tasks

Taxis-based action (reflex translation or rotation in response to stimulus) and kinesthetic-based action (or proprioception)

+ realignment and repositioning

natural architecture

From Guy Theraulaz

Typical tasks for social insects: find appropriate place to build nest, build and maintain nest, task allocation,feed colony, find food, respond to challenges, send an alarm, etc.
natural organization

- Self-assembly algorithm
- Agents move randomly on a 3D grid of sites.
- An agent deposits a brick every time it finds a stimulating configuration.
- Rule table contains all such configurations
- A rule table defines a particular selfassembly algorithm.
- Rule space is very large

From E. Bonabeau. "Swarm Intelligence".

"space-station" by dynamic concepts (dynamic-concepts.com)

Phase 1: Simulating construction rules
robotic self-assembly
by dynamic concepts (phase two)

Phase 2: prototype robots

Artificial Ants in Digital Image Habitats

Artificial Ants in Digital Image Habitats

Leonel Moura

casci.binghamton.edu/academics/i-bic

Leonel Moura's RAP (Robotic Action Painter)

@ The American Museum of Natural History

- sensors
- to avoid obstacles, to perceive the presence of visitors near the case, to check the paper, and most important to detect color.
- Two modes
- Random until color threshold is detected.
- Random sketching
- Random seed from relative direction measured by an onboard compass.
- Reactive After passing color threshold
- Does not go back
- Draws only where color exceeds threshold.
- Stopping criteria
- Pattern in color sensor grid
- signs off at the corner and flashes lights

modeling traffic and human group behavior

Humans as particle systems

- Vehicles and people modeled as particles in a fluid medium
- Free traffic: behaves as a gas
- Particles move freely
- Congested traffic: behaves as a liquid
- movement of particles strongly depends on surrounding dynamics
- Shock waves
- emerge from density variations
- Example in congested traffic
- The velocity change of a vehicle propagates (with a homogenous time
 delay) in the opposite direction of traffic as downstream vehicle respond to changes in upstream vehicles
- propagation speed aprox. $-15 \mathrm{~km} / \mathrm{h}$ (In free traffic = free vehicle velocity).

D. Helbing: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73, 1067-1141 (2003).

Dirk Helbing's Group

- People modeled as self-driven many-particle systems
- Testing individualistic vs herding behavior as well as environmental solutions

D. Helbing, A. Johansson and H. Z. Al-Abideen (2007) The Dynamics of Crowd Disasters: An Empirical Study. Physical Review E 75, 046109.

Dirk Helbing's Group

- People modeled as self-driven many-particle systems
- Testing individualistic vs herding behavior as well as environmental solutions

D. Helbing, A. Johansson and H. Z. Al-Abideen (2007) The Dynamics of Crowd Disasters: An Empirical Study. Physical Review E 75, 046109.

