biologically-inspired computing
lecture 12

key events coming up

- Labs: 35\% (ISE-483)
- Complete 5 (best 4 graded) assignments based on algorithms presented in class
- Lab 3: March $11^{\text {th }}$
- Cellular Automata and Boolean Networks (Assignment 3)
- Delivered'by
- Lab 4 : April $2^{\text {nd }}$ (Tuesday after Easter break)????
- Evolutionary Algorithms, (Assignment 4)
- Delivered by SSIE583 Group 2
- SSIE - 583 -Presentation and Discussion: 25\%

- Present and lead the discussion of an article related to the class materials
- Enginet students post/send video or join by Zoom
- Dates TBA
- Conrad, M. [1990]. "The geometry of evolution." Biosystems 24: 61-81.
- Mario Franco
- Stanley, Kenneth O., Jeff Clune, Joel Lehman, and Risto Miikkulainen. "Designing Neural Networks through Neuroevolution." Nature Machine Intelligence 1, no. 1 (January 2019): 24-35.
- Jessica Lasebikan
- Lindgren, K. [1991]."Evolutionary Phenomena in Simple Dynamics." In: Artificial Life II. Langton et al (Eds). Addison-wesley, pp. 295-312.
- Akshay Gangadhar
- Salahshour, Mohammad. "Interaction between Games Give Rise to the Evolution of Moral Norms of Cooperation." PLOS Computational Biology 18, no. 9 (September 29, 2022): e1010429
- Srikanth Iyer
- Discussion by all
－Class Book
－Floreano，D．and C．Mattiussi［2008］．Bio－Inspired Artificial Intelligence：Theories，Methods，and Technologies．MIT Press．Preface，Chapters 1 and 4.
－Lecture notes
－Chapter 1：What is Life？
－Chapter 2：The logical Mechanisms of Life
－Chapter 3：Formalizing and Modeling the World
－Chapter 4：Self－Organization and Emergent Complex Behavior
－Chapter 5：Reality is Stranger than Fiction
－posted online＠http：／／informatics．indiana．edu／rocha／i－bic
－Papers and other materials

－Optional
－Nunes de Castro，Leandro［2006］．Fundamentals of Natural Computing：Basic Concepts， Algorithms，and Applications．Chapman \＆Hall．
－Chapter 2，7， 8
－Chapter 3，sections 3.1 to 3.5
－Flake＇s［1998］，The Computational Beauty of Life．MIT Press．
－Chapters 10，11， 14 －Dynamics，Attractors and chaos
- Projects
- Due by May $6^{\text {th }}$ in Brightspace, "Final Project Paper" assignment - ALIFE 2023
- Not to submit to actual conference due date (April 3rd , 2024)
- https://2024.alife.org/
- 8 pages, author guidelines:
- https://2024.alife.org/call paper.html
- MS Word and Latex/Overleaf templates
- Preliminary ideas by March 15
- Submit to "Project Idea" assignment in Brightspace.
- Individual or group
- With very definite tasks assigned per member of group

ALIFE 2024

Tackle a real problem using bio-inspired algorithms, such as those used in the labs.
key contributions (most relevant to biocomplexity)

"The chemical basis of morphogenesis"

- Turing, A. M. Phil. Trans. R. Soc. Lond. B 237, 37-72 (1952).
- Reaction-diffusion systems
- "Computing machinery and intelligence"
- Turing, A. M. Mind 49, 433-460 (1950).
- The "Turing Test"
- "On computable numbers with an application to the Entscheidungsproblem"
- Turing, A. M. Proc. Lond. Math. Soc. s2-42, 230-265 (1936-37).
- Turing machine, universal computation, decision problem

A fundamental principle of computation

- "On computable numbers with an application to the Entscheidungsproblem"
- Turing, A. M. Proc. Lond. Math. Soc. s2-42, 230-265 (1936-37).
- Turing machine, universal computation, decision problem
- Machine's state is controlled by a program, while data for program is on limitless external tape
- every machine can be described as a number that can be stored on the tape (for itself or another machine)
- Including a Universal machine
- distinction between numbers that mean things (data) and numbers that do things (program)

"The fundamental, indivisible unit of information is the bit. The fundamental, indivisible unit of digital computation is the transformation of a bit between its two possible forms of existence: as [memory] or as [code]. George Dyson, 2012.

A Turing Machine

A Turing Machine

imagine automata as agents
quorum sensing or what decision to take? (Density Classification)

$$
K^{|N|}=2^{7}=128
$$

local neighbourhood (LNC) contains seven cells two allowed states (red or white) $->\mathbf{2}^{\mathbf{7}}$ possible LNCs

A possible strategy, out of $\mathbf{2}^{\mathbf{2}^{7}}$ possible strategies...

Each cell only has
LOCAL information

local strategy: majority rule density classification task

$$
K^{|N|}=2^{7}=128
$$

BINGHAMTON	rocha@binghamton.edu
UNIVER S I T Y	casci.binghamton.edu/academics/i-bic

block expansion strategy

density classification task

$$
K^{|N|}=2^{7}=128
$$

$$
\mathfrak{P} \in[53 \%, 60 \%]
$$ two allowed states (red or white) $->\mathbf{2}^{7}$ possible LNCs

"blind" spreading of local information No information integration Not much better than random choice
emergent computation strategies
density classification task

$$
K^{|N|}=2^{7}=128
$$

BINGHAMTON	rocha@binghamton.edu
U N I I Ver in il	casci.binghamton.edu/academics/i-bic

for DST

Some other rules that are capable of collective information processing over time and space can solve this task with a range of performances where $P_{149}^{10^{5}}>80 \%$

> Integration and transmission of information across population

How to characterize complex behavior?

collective (emergent) computation via computational mechanics
GA to evolve rules for DC

Crutchfield \& Mitchell [1995]. PNAS
92: $10742-10746$

Das, Mitchell \& Crutchfield [1994]. In: Parallel Problem Solving from Nature-III: 344-353.

Table I: Catalog of regular domains, particles and particle interactions for rule \$DMc
\&

Regular Domains	$\Lambda^{0}-\{0+\}, \Lambda^{1}-\{1+\}, \Lambda^{2}=\{(01)+\}$	
Particles (velocities)	$\alpha \sim \Lambda^{0} \Lambda^{1}(-), \beta \sim \Lambda^{1} \Lambda^{0}(0), \gamma \sim \Lambda^{0} \Lambda^{2}(-1), \mu \sim \Lambda^{2} \Lambda^{1}(1)$, $\delta \sim \Lambda^{2} \Lambda^{0}(-3), \eta \sim \Lambda^{1} \Lambda^{2}(3)$	
	decay	$\alpha \rightarrow \gamma+\mu$
	react	$\beta+\gamma \rightarrow \eta, \mu+\beta \rightarrow \delta, \eta+\delta \rightarrow \beta$
	annihilate	$\eta+\mu \rightarrow \Lambda^{1}, \gamma+\delta \rightarrow \Lambda^{0}$

Hanson,J.E., Crutchfield,J.P., [1992].
Tournal of Statistical Physics. 66 (5/6), 1415-1462
Crutchfield,J.P., Hanson,J.E., [1993]. Physica D. 69, 279-301.

Jcha@binghamton.edu
asci.binghamton.edu/academics/i-bic

How do best rules solve the problem?
comparison of different automata

How do best rules solve the problem?
comparison of different automata

redundancy in causal logic of automata (canalization)

 effective graph: nonlinear measure of effective connectivity

Prime Implicants (Quine-McCluskey)

github.com/CASCI-Iab/CANA

It takes redundancy to solve
Ignores most incoming information

- Solving by schemata
- Each automaton ignores most inputs

- 6 particles

search in redescription (canalization) space

 canalization (redundancy) improves evolutionary search- Created much smoother search space
- Allows more focused search of rules
- Canalization, neutrality, robustness?
- Second best rule in 1-D CA (best-known PS rule)
- Best split-performance
- Best rule in 2-D CA
- reason about emergent computation in new ways
- Process-symmetry

Marques-Pita \& Rocha. [2008]. ALIFE XI. MIT Press: 390-397.

Annihilation

$\{1,0,1,0, \#, \#, \#\}$
$\{1,0, \#, 0, \#, 1,1\}$
$\{1,1, \#, 0,1, \#, \#\}$
$\{1, \#, 1,0,1, \#, \#\}$
$\{1, \#, 1,0, \#, \#, \#\}$
$\{1, \#, \#, 0,1,1, \#\}$
$\{1, \#, \#, 0,1, \#, 1\}$
$\{\#, 0,0,0,0,1,1\}$
$\{\#, 1,0,0,1, \#, \#\}$
$\{\#, 1, \#, 0,1,0, \#\}$
$\{\#, 1, \#, 0,1, \#, 0\}$
$\{\#, \#, 0,0,1,0,1\}$

$\{0,0,1,1,1,1, \#\}$ $\{0,0, \#, 1, \#, 1,0\}$ $\{0,1,0,1,1, \#, \#\}$ $\{0, \#, 0,1, \#, \#, 0\}$ $\{1, \#, 0,1, \#, 0, \#\}$ $\{\#, 0,0,1, \#, \#, 0\}$ $\{\#, 1,0,1, \#, 0, \#\}$ \{\#, 1, \#, 1, 0, \#, 0\} $\{\#, \#, 0,1,0, \#, 0\}$ $\{\#, \#, 0,1,1,0, \#\}$
$\{\#, \#, 0,1, \#, 0,0\}$
$\{\#, \#, \#, 1,0,1,0\}$
rocha@indiana.edu
linking local and global/collective behavior

- Are emergent patterns good for explanation?
- Do stripes or spots explain the "system"?
- Canalization (dynamical redundancy) is a powerful idea
- Capture loci of control and building blocks of information transmission

```
GP Rule
```

```
GP Rule
```

- > 10 domains
- > 90 particles!!!

Rule	Hexadecimal Representation	$\mathcal{P}_{149}^{10^{5}}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Produced } \\ \text { by } \end{array} \\ \hline \end{array}$	Source
$\phi_{\text {GKL }}$	5t005t005t005t005ff5t005ff5t	0.8143	HE	Gacs et al., 1978
$\Phi_{\text {GP1995 }}$	500550505005505554f55455 fi5 ff	0.8212	GP	Andre et al., 1996

linking local and global/collective behavior

- Are emergent patterns good for explanation?
- Do stripes or spots explain the "system"?
- Canalization (dynamical redundancy) is a powerful idea
- Capture loci of control and building blocks of information transmission

John Horton Conway

2-D

Sum N^{8}	0	1	2	3	4	5	6	7	8
$x_{i, i}=0$	0	0	0	1	0	0	0	0	0
$x_{i, i}=1$	0	0	1	1	0	0	0	0	0

1) Any living cell with fewer than two neighbors dies of loneliness.
2) Any living cell with more than three neighbors dies of crowding.
3) Any dead cell with exactly three neighbors comes to life.
4) Any living cell with two or three neighbors lives, unchanged, to the next generation

Introduced in Martin Gardner's Scientific American "Mathematical Games" Column in 1970.
Conway was interested in a rule that for certain initial conditions would produce patterns that grow without limit, and some others that fade or get stable.
Popularized CAs.

BINGHAMTON	rocha@binghamton.edu
	casci.binghamton.edu/academics/i-bic

wide dynamic range
Simple Attractors

More complicated attractors

-:-

the glider gun

Unbounded growth but not complexity

Fires a glider every 30 iterations.
unbounded complexity requires information

information in attractor patterns

- Radius 1
- Neighborhood $=3$
- Binary
- $2^{3}=8$ input neighborhoods
- $2^{8}=256$ rules

rule 110

http://mathworld.wolfram.com/Rule110.html

computing structures in rule 110

将

- Universal Computation
- Identification of gliders, spaceships, and other long-range or self-perpetuating patterns
- On the background domain produced by rule 110
- 14 cells repeat every seven iterations: 00010011011111
- Collisions and combinations of glider patterns are exploited for computation.

computation and the edge of chaos

is self-organization enough?

- systems biology models operate in near critical regime, though many are ordered
- Dynamical systems capable of computation exist before the edge of chaos
- A wider transition due to redundancy?
- Most important information transmission and computation in Biology an altogether different process than self-organization
- Turing/Von Neumann memory

Next lectures

readings

- Class Book
- Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press.
- Chapter 2.
- Lecture notes
- Chapter 1: What is Life?
- Chapter 2: The logical Mechanisms of Life
- Chapter 3: Formalizing and Modeling the World

- Chapter 4: Self-Organization and Emergent Complex Behavior
- posted online @ http://informatics.indiana.edu/rocha/i-bic
- Papers and other materials
- Optional
- Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman \& Hall.
- Chapter 2, all sections
- Chapter 7, sections 7.3 - Cellular Automata
- Chapter 8 , sections $8.1,8.2,8.3 .10$

■ Flake's [1998], The Computational Beauty of Life. MIT Press.

- Chapters 10, 11, 14 - Dynamics, Attractors and chaos

