

course outlook

key events coming up

readings

bit.ly/atBIC

UNIVERSITY CASCI.binghamton.edu/academics/i-bic

final project schedule

Projects Due by May 6th in Brightspace, "Final Project Paper" assignment ALIFE 2023 Not to submit to actual conference due date (April 3rd, 2024) <u>https://2024.alife.org/</u> 8 pages, author guidelines: <u>https://2024.alife.org/call_paper.html</u> MS Word and Latex/Overleaf templates Preliminary ideas <u>by March 15</u> Submit to "Project Idea" assignment in Brightspace. Individual or group With very definite tasks assigned per member of group

ALIFE 2024

Tackle a real problem using bio-inspired algorithms, such as those used in the labs.

The 2024 Conference on Artificial Life

Copenhagen, Denmark | July 22-26, 2024

rocha@indiana.edu casci.binghamton.edu/academics/i-bic

Alan Turing (1912-1954)

key contributions (most relevant to biocomplexity)

"The chemical basis of morphogenesis"

Turing, A. M. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).
 Reaction-diffusion systems

"Computing machinery and intelligence"

Turing, A. M. *Mind* 49, 433–460 (1950).
 The "Turing Test"

On computable numbers with an application to the Entscheidungsproblem"

Turing, A. M. *Proc. Lond. Math. Soc.* s2–42, 230–265 (1936–37).
Turing machine, universal computation, decision problem

Brenner, Sydney. [2012]. "Life's code script." Nature 482 (7386): 461-461.

BINGHAMTON rocha

rocha@indiana.edu casci.binghamton.edu/academics/i-bic

Turing's tape

A fundamental principle of computation

- "On computable numbers with an application to the *Entscheidungsproblem*"
 - Turing, A. M. *Proc. Lond. Math. Soc.* s2–42, 230–265 (1936–37).
 Turing machine, universal computation, decision problem
 - Machine's state is controlled by a program, while data for program is on limitless external tape
 every machine can be described as a number that can be stored on the tape (for itself or another machine)
 - - Including a Universal machine
 - distinction between numbers that mean things (data) and numbers that do things (program)

A Turing Machine

imagine automata as agents

quorum sensing or what decision to take? (Density Classification)

random strategies

density classification task

local strategy: majority rule

density classification task

block expansion strategy

density classification task

emergent computation strategies

density classification task

 $P_{149}^{10^5} > 80 \%$

Integration and <u>transmission</u> of information across population

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

best CA rules

for DST

Some other rules that are capable of collective information processing over time and space can solve this task with a range of performances where $P_{149}^{10^5} > 80 \%$

Rule	Hexadecimal Representation	$\mathcal{P}_{149}^{10^5}$	Produced by	Source	
Φ_{GKL}	5f005f005f005f005fff5f005fff5f	0.8143	HE	Gacs et al., 1978	
Φ_{Davis95}	2f035f001fcf1f002ffc5f001fff1f	0.8188	HE	Andre et al., 1996	
Φ_{Das95}	70007ff0f0000fff0f00007ff0f310fff	0.8215	HE	Andre et al., 1996	
Φ_{GP1995}	50055050500550555ff55ff55ff55ff	0.8212	GP	Andre et al., 1996	
Φ_{DMO}	504058705000f77037755837bffb77f	0.7784	GA	Das et al., 1994	
Φ_{COE1}	11430d7110f395705b4ff17f13df957	0.8498	CE	Juillè and Pollack, 1998	
Φ_{COE2}	1451305c0050ce5f1711ff5f0f53cf5f	0.8601	CE	Juillè and Pollack, 1998	
Φ_{GEP1}	50005ff050005ff05ff05ff05ff05ff	0.8119	GEP	Ferreira, 2001	
Φ_{GEP2}	550077005500770f550f77ff55ff77	0.8250	GEP	Ferreira, 2001	

Integration and <u>transmission</u> of information across population

UIN LY ERSLII Casci.pmgnamton.edu/academics/i-bic

mton.edu

Table I: Catalog of regular domains, particles and particle interactions for rule ϕ_{DMC}

Regular Do	mains	$\Lambda^0 = \{0+\}, \Lambda$	$\Lambda^{1} = \{1+\}, \Lambda^{2} = \{(01)+\}$	Hanson, J.E., Crutchfield, J.P., [1992] Journal of Statistical Physics. 66 (5/6)			
Particle (velocitie), $\beta \sim \Lambda^1 \Lambda^0$ (0), $\gamma \sim \Lambda^0 \Lambda^2$ (-1), $\mu \sim \Lambda^2 \Lambda^1$ (1),), $\eta \sim \Lambda^1 \Lambda^2$ (3)	Crutchfield, J.P., Hanson, J.E., [1993]. <i>Physica D</i> . 69 , 279-301.			
		decay	$\alpha \rightarrow \gamma + \mu$	1 hysica D. 09 , 219-301.			
Observe Interacti		react	$\beta + \underline{\gamma} \rightarrow \underline{\eta}, \underline{\mu} + \underline{\beta} \rightarrow \underline{\delta}, \underline{\eta} + \underline{\delta} \rightarrow \underline{\beta}$				
		annihilate	$\eta + \mu \rightarrow \Lambda^1, \gamma + \delta \rightarrow \Lambda^0$	ocha@binghamton.edu asci.binghamton.edu/academics/i-bic			
			STATE UNIVERSITE OF NEW TORK	asci.bilignalitton.euu/acadelitics/1-bic			

How do best rules solve the problem?

comparison of different automata

How do best rules solve the problem?

search in redescription (canalization) space

canalization (redundancy) improves evolutionary search

- Created much smoother search space
 - Allows more focused search of rules
 - Canalization, neutrality, robustness?
 - Second best rule in 1-D CA (best-known PS rule)
 - Best split-performance
 - Best rule in 2-D CA
- reason about emergent computation in new ways
 - Process-symmetry

Marques-Pita & Rocha. [2008]. ALIFE XI. MIT Press: 390-397.

CONTRACTOR AND ADDRESS AND ADDRESS ADDR				internet in the second s	1	L	
					RULE	Generation	Annihilation
			Ф _{MM2D320} {#,#,#,; {#,#,1,;	neration Annihilation #,0,#,#,1,1} {0,0,#,#,1,#,#,##} #,0,1,#,#,#} {0,0,#,#,1,#,#,#,#} #,0,1,#,#,#} {#,#,#,0,1,#,0,#,#} #,0,1,#,#,#} {#,#,#,0,1,#,#,0,#}] Ф _{ММ080}	$2 \begin{cases} \{1, 0, 1, 0, \#, \#, \#\} \\ \{1, 0, \#, 0, \#, 1, 1\} \\ \{1, 0, \#, 0, 1, \#, \#\} \\ \{1, \#, 1, 0, 1, \#, \#\} \\ \{1, \#, 1, 0, \#, 0, \#\} \\ \{1, \#, \#, 0, 1, 1, \#\} \\ \{1, \#, \#, 0, 1, 1, \#\} \\ \{1, \#, 0, 0, 0, 0, 1, 1\} \\ \{\#, 0, 0, 0, 0, 1, 1\} \\ \{\#, 1, 0, 0, 1, \#, \#\} \\ \{\#, 1, \#, 0, 1, 0, \#\} \\ \{\#, 1, \#, 0, 1, 0, 1\} \end{cases}$	$ \{0, 0, 1, 1, 1, 1, \#\} \\ \{0, 0, \#, 1, \#, 1, 0\} \\ \{0, 1, 0, 1, 1, \#, \#\} \\ \{0, \#, 0, 1, \#, \#, 0\} \\ \{1, \#, 0, 1, \#, 0, \#\} \\ \{\#, 0, 0, 1, \#, 0, \#\} \\ \{\#, 1, 0, 1, \#, 0, \#\} \\ \{\#, 1, 0, 1, 0, \#, 0\} \\ \{\#, \#, 0, 1, 0, \#, 0\} \\ \{\#, \#, 0, 1, 1, 0, \#\} \\ \{\#, \#, 0, 1, \#, 0, 0\} \\ \{\#, \#, \#, 1, 0, 1, 0\} $
Marques-Pita , Mitchell & 1	Rocha. [2008]. <i>U</i>	<i>C08</i> . LNCS. 5146 -	163. 204:		BINGHAM U N I V E R S state university of N		.edu on.edu/academics/i-bic

Studying emergence

casci.binghamton.edu/academics/i-bic

linking local and global/collective behavior

- Are emergent patterns good for explanation?
 - Do stripes or spots explain the "system"?
- Canalization (dynamical redundancy) is a powerful idea
 - Capture loci of control and building blocks of information transmission

UNIVERSITY

Studying emergence

linking local and global/collective behavior

- Are emergent patterns good for explanation?
 - Do stripes or spots explain the "system"?
- Canalization (dynamical redundancy) is a powerful idea
 - Capture loci of control and building blocks of information transmission

the game of life

John Horton Conway

$$x_{i,j} = \{0,1\}$$

2-D

Sum N^8	0	1	2	3	4	5	6	7	8
$x_{i,i} = 0$	0	0	0	1	0	0	0	0	0
$x_{i,i} = 1$	0	0	1	1	0	0	0	0	0

- 1) Any living cell with fewer than two neighbors dies of loneliness.
- 2) Any living cell with more than three neighbors dies of crowding.
- 3) Any dead cell with exactly three neighbors comes to life.
- 4) Any living cell with two or three neighbors lives, unchanged, to the next generation

Introduced in Martin Gardner's *Scientific American* "Mathematical Games" Column in 1970.

Conway was interested in a rule that for certain initial conditions would produce patterns that grow without limit, and some others that fade or get stable.

Popularized CAs.

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic wide dynamic range

Simple Attractors

block

Blinkers

More complicated attractors

BINGHAMTON UNIVERSITY OF NEW YORK STATE UNIVERSITY OF NEW YORK

game of life

moving patterns

unbounded growth

a threshold of complexity?

runs 1103 steps before settling down into 6 gliders, 8 blocks, 4 blinkers, 4 beehives, 1 boat, 1 ship, and 1 loaf.

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

the glider gun

Unbounded growth but not complexity

life and information

Rule 110

information in attractor patterns

• Neighborhood =3

Binary

- 2³ = 8 input neighborhoods
- 2⁸ = 256 rules

http://mathworld.wolfram.com/Rule110.html

Universal Computation

- Identification of gliders, spaceships, and other long-range or self-perpetuating patterns
 - On the background domain produced by rule 110
 - 14 cells repeat every seven iterations: 00010011011111
- Collisions and combinations of glider patterns are exploited for computation.

computing structures in rule 110

UNIVERSITY OF NEW YORK

casci.binghamton.edu/academics/i-bic

Next lectures

casci.binghamton.edu/academics/i-bic

UNIVERSITY

