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course outlook

 Labs: 35% (ISE-483)
 Complete 5 (best 4 graded) assignments based on algorithms presented in class

 Lab 3: March 11th

 Cellular Automata and Boolean Networks (Assignment 3)
 Delivered by SSIE583 Group 3
 Due: March 25th

 SSIE – 583 -Presentation and Discussion: 25% 
 Present and lead the discussion of an article related to the class materials

 Enginet students post/send video or join by Zoom 
 Dates TBA

 Conrad, M. [1990]. "The geometry of evolution.“ Biosystems 24: 61-81.
 Mario Franco

 Stanley, Kenneth O., Jeff Clune, Joel Lehman, and Risto Miikkulainen. “Designing Neural Networks 
through Neuroevolution.” Nature Machine Intelligence 1, no. 1 (January 2019): 24–35.

 Jessica Lasebikan 
 Lindgren, K. [1991]."Evolutionary Phenomena in Simple Dynamics." In: Artificial Life II. Langton et al 

(Eds). Addison-wesley, pp. 295-312.
 Akshay Gangadhar

 Salahshour, Mohammad. “Interaction between Games Give Rise to the Evolution of Moral Norms of 
Cooperation.” PLOS Computational Biology 18, no. 9 (September 29, 2022): e1010429

 Srikanth Iyer
 Discussion by all

key events coming up

bit.ly/atBIC
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readings

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press. 

Preface, Chapter 2. 
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall. 

Chapter 1, pp. 1-23. Chapter 7, sections 7.1-7.4, Appendix B.3.1, Chapter 2, Chapter 8, sections 8.1, 8.2, 8.3.10

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior

 posted online @ http://informatics.indiana.edu/rocha/i-bic 
 Papers and other materials

 Dynamical Systems
 Kauffman, S.A. [1969]. "Metabolic stability and epigenesis in randomly constructed genetic nets". Journal of 

Theoretical Biology 22(3):437-467.
 Optional

 Prusinkiewicz and Lindenmeyer [1996] The algorithmic beauty of plants.
 Chapter 1

 Flake’s [1998], The Computational Beauty of Life. MIT Press.
 Chapters 10, 11, 14 – Dynamics, Attractors and chaos

until now

bit.ly/atBIC
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final project schedule

 Projects
 Due by May 6th in Brightspace, “Final Project Paper” assignment

 ALIFE 2023
 Not to submit to actual conference due date (April 3rd , 2024)
 https://2024.alife.org/
 8 pages, author guidelines:
 https://2024.alife.org/call_paper.html
 MS Word and Latex/Overleaf templates

 Preliminary ideas by March 15
 Submit to “Project Idea” assignment in Brightspace. 

 Individual or group
 With very definite tasks assigned per member of group

ALIFE 2024
Tackle a real problem using bio-inspired 

algorithms, such as those used in the labs. 
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evolution requires life in critical regime which is small, how come life is not chaotic?

self-organization easily chaotic

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides buffering (self-
organization). But still easily chaotic.

robustness of phenotypes is the result of a buffering of 
the developmental process. 

Structure (topological organization), can provide larger 
stable or critical universe, but still easily chaotic.
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Cellular automata
homogenous lattice of state-determined systems
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cellular automata

 Parallel updating
 Artificial physics

 Local interactions only
 No actions at a distance

 Homogeneous
 Unpredictable global behavior

 Emergence
 2-levels: rules (micro-level) and 

attractor behavior (macro-level)
 Irreversible

 Self-organization
 Example rules

 Rug (diffusion)
 256 states
 Average of 8 neighbors in 2-d grid, if 

state is 255 -> 0.
 Vote/majority

 binary
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elementary CA rules

 Radius 1
 Neighborhood =3

 Binary
 23 = 8 input neighborhoods
 28 = 256 rules

http://mathworld.wolfram.com/CellularAutomaton.html

xx-1 x+1

Cellular Automata

x

t
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state-determined transitions

Cellular automata
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state-determined transitions

Cellular automata
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Living patterns easily replicated in CA
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What’s a CA?
more formally

D-dimensional lattice L with a finite 
automaton in each lattice site (cell)

 State-determined system

 finite number of states Σ: K=| Σ|
E.g. Σ = {0,1}

 finite input alphabet α

 transition function Δ: α→Σ

 uniquely ascribes state s in Σ to input patterns α

Neighborhood template
N

NN K  ,

Number of possible neighborhood states

NKKD 

Number of possible 
transition functions

Example (ECA)

K=2, N=3,

|α|=23=8

D = 28=256
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What’s a CA?
more formally

D-dimensional lattice L with a finite 
automaton in each lattice site (cell)

 State-determined system

 finite number of states Σ: K=| Σ|
E.g. Σ = {0,1}

 finite input alphabet α

 transition function Δ: α→Σ

 uniquely ascribes state s in Σ to input patterns α

Neighborhood template
N

NN K  ,

Number of possible neighborhood states

NKKD 

Number of possible 
transition functions

Example

K=8

N=5

|α|=37,768

D 1030,000

Example (ECA)

K=2, N=3,

|α|=23=8

D = 28=256



Langton’s parameter

N

N

K

nK 


 Statistical analysis
 Identify classes of transition functions with similar behavior

 Similar dynamics (statistically)
 Via Higher level statistical observables

 Like Kauffman

 The Lambda Parameter (similar to bias in BN)
 Select a subset of D characterized by λ

 Arbitrary quiescent state: sq
 Usually 0

 A particular function Δ has n transitions to this state and (KN-n) transitions to other states s of Σ
 (1-λ) is the probability of having a sq in every position of the rule table

Finding the structure of all possible transition functions

Langton, C.G. [1990]. “Computation at the edge of chaos: phase transitions and 
emergent computation”. Artificial Life II. Addison-Wesley.

λ = 0: all transitions lead to sq (n =KN)

λ = 1: no transitions lead to sq (n =0)

λ = 1-1/K: equally probable  states ( n=1/K . KN)

Range: from most homogeneous to most 
heterogeneous
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Langton’s observations

 λ only correlates well with dynamic behavior for fairly large values of K and N
 E.g. K≥4 and N≥5

 Experiments
 K=4, N=5
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Langton’s results
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Langton’s results

Approximate time 
when density is 
within 1% of 
long-term 
behavior



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

Langton’s results

Approximate 
time when 
density is 
within 1% of 
long-term 
behavior



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

Langton’s results

Approximate 
time 
when 
density is 
within 1% 
of long-
term 
behavior



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

Edge of chaos

 Transient growth in the vicinity of phase transitions 
 Length of CA lattice only relevant around phase transition (λ=0.5)

 Conclusion: more complicated behavior found in the phase transition between order and chaos
 Patterns that move across the lattice

A phase transition?



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

Computation at the edge of chaos?

 Transition region
 Supports both static and propagating structures

 λ =0.4+
 Propagating waves (“signals”?) across the CA lattice

 Necessary for computation?
 Signals and storage?

 Computation
 Requires storage and transmission of information
 Any dynamical system supporting computation must exhibit 

long-range signals in space and time
 Wolfram’s CA classes

 I: homogeneous state
 Steady-state

 II: periodic state 
 Limit cycles

 III: chaotic
 IV: complex patterns of localized structures

 Long transients
 Capable of universal computation
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Bias and lambda parameter

Edge of chaos

xx-1 x+1

Cellular Automata

Boolean Networks
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current theory for random networks and the finite cases

criticality in Boolean networks

Derrida & Pomeau. [1986] EPL . 1.2: 45.

Manicka, Marques-Pita, &  Rocha, [2022]. J. Royal Society Interface. 19(186):20210659.

homogeneous networks heterogenous networks

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

𝑃 𝑘 = 𝑐. 𝑘ିఊ

Aldana, M. [2003]. Physica D. 185: 45–66
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redundancy in causal logic of automata (canalization)
effective graph: nonlinear measure of effective connectivity

Marques-Pita &  Rocha, [2013]. PLoS ONE, 8(3): e55946. 
Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

Measuring dynamical redundancy
and its dual effectiveness

Chaos et al [2006]. J. of Plant 
Growth Regulation. 25(4): 278-289.

Correia, Gates, Wang & Rocha [2018]. Frontiers in Physyology 9: 1046. 

p: bias, ratio of “1’s” in output

p(x) = 2/8 = 0.25
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redundancy in causal logic of automata (canalization)
effective graph: nonlinear measure of effective connectivity

Marques-Pita &  Rocha, [2013]. PLoS ONE, 8(3): e55946. 

input redundancy:input redundancy:
kr(x) = mean number of “#” in LUT

𝑘(𝑥ସ) = 3

Prime Implicants (Quine-McCluskey)

𝑥ସ = 𝑥ଵ ∧ 𝑥ଶ

𝑘௘(𝑥ସ) = 1.25𝑘௘(𝑥ସ) = 1.25

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

Measuring dynamical redundancy
and its dual effectiveness

Chaos et al [2006]. J. of Plant 
Growth Regulation. 25(4): 278-289.

effective connectivity:effective connectivity:
𝑘௘ 𝑥 = 𝑘 𝑥 − 𝑘௥ 𝑥

github.com/CASCI-lab/CANA

Correia, Gates, Wang & Rocha [2018]. Frontiers in Physyology 9: 1046. 

𝑘௥(𝑥ସ) = 1.75𝑘௥(𝑥ସ) = 1.75

p: bias, ratio of “1’s” in output

p(x) = 2/8 = 0.25
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arabidopsis thaliana network

effective graph

Chaos et al [2006]. J. of Plant 
Growth Regulation. 25(4): 278-289.

redundant variables and more 
effective control pathways revealed

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
Gates & Rocha [2016]. Scientific Reports 6, 24456. 
Marques-Pita &  Rocha, [2013]. PLoS ONE, 8(3): e55946. 

𝑘(𝐴𝐺) = 9

𝑘௘(𝐴𝐺) = 2.1𝑘௘(𝐴𝐺) = 2.1

github.com/CASCI-lab/CANA
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arabidopsis thaliana network

effective graph

Chaos et al [2006]. J. of Plant 
Growth Regulation. 25(4): 278-289.

redundant variables and more 
effective control pathways revealed

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
Gates & Rocha [2016]. Scientific Reports 6, 24456. 
Marques-Pita &  Rocha, [2013]. PLoS ONE, 8(3): e55946. 

Interaction graph obtained from 
pairwise estimation of interaction. No 
dynamics represented in graph; 
many dynamics fit same structure.

Effective graph redundancy in (nonlinear) dynamics is 
integrated probabilistically (not estimated). Provides 
causal explanation of how likely dynamical perturbation 
and control signals propagate in biochemical pathways.

𝑘(𝐴𝐺) = 9

𝑘௘(𝐴𝐺) = 2.1𝑘௘(𝐴𝐺) = 2.1

github.com/CASCI-lab/CANA
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probabilistic and precise characterization of causal (nonlinear) dynamics
effective graph

Interaction graph typically obtained 
from (qualitative) pairwise estimation 
of interaction. No dynamics 
represented in graph; many 
dynamics fit same structure.

Effective graph redundancy in dynamics is integrated 
probabilistically (not estimated). Reveals network of nonlinear 
interactions that escapes pairwise estimation. Provides 
causal explanation of how dynamical perturbation and 
control signals propagate in biochemical pathways.

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
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8,220 interactions (of over 
3K automata) in 78 models

redundant pathways are ubiquitous in biochemical regulation
effective graph

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

dynamical redundancy is pervasive in systems 
biology models of regulation and signaling: 
biochemical variables are controlled by substantially 
fewer inputs than interaction graph suggests.

effectiveness is heterogenous: 
only few inputs are very effective, 
most are ineffective or redundant.   

robustness to most 
perturbations

node-level edge-level

Interaction graph
Contain fully 

redundant 
edges

21
57

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 
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8,220 interactions (of over 
3K automata) in 78 models

redundant pathways are ubiquitous in biochemical regulation
effective graph

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

dynamical redundancy is pervasive in systems 
biology models of regulation and signaling: 
biochemical variables are controlled by substantially 
fewer inputs than interaction graph suggests.

effectiveness is heterogenous: 
only few inputs are very effective, 
most are ineffective or redundant.   

robustness to most 
perturbations

node-level edge-level

Interaction graph
Contain fully 

redundant 
edges

21
57

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Albert &  Othmer [2003]. J. Theor. Bio. 223:  1-18.
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effective connectivity enables greater robustness (random ensembles)

criticality in the presence of canalization/redundancy

 xkxkxk re  )()(

௘௘

Aldana, M. [2003]. Physica D. 185: 45–66

Derrida & Pomeau. [1986] EPL . 1.2: 45.

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.
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effective connectivity enables greater robustness (random ensembles)

criticality in the presence of canalization/redundancy

 xkxkxk re  )()(

௘௘

Aldana, M. [2003]. Physica D. 185: 45–66

Derrida & Pomeau. [1986] EPL . 1.2: 45.

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

Stable biochemical networks can exist well 
into expected chaotic behavior, provided 
canalization is selected for: dynamics 

“buffers” underlying interaction structure 
New theory uses only dynamical 

redundancy properties 
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effective connectivity enables greater robustness (random ensembles)

criticality in the presence of canalization/redundancy

௘௘

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

𝑃 𝑘 = 𝑐. 𝑘ିఊ

homogeneous networks heterogenous networks

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

Stable biochemical 
networks can exist well into 
expected chaotic behavior, 
provided canalization is 
selected for: dynamics 

“buffers” underlying 
interaction structure 

𝜎ଶ =  𝑝 1 − 𝑝𝜎ଶ =  𝑝 1 − 𝑝
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low effective connectivity leads networks closer to “edge of chaos”

ubiquitous canalization in (experimentally-validated) systems biology models

63 Biochemical regulation models with 
very low effective connectivity despite high 

connectivity. In new theory networks are 
near criticality

௘௘

Manicka, Marques-Pita, &  Rocha, [2022]. J. Royal Society Interface. 19(186):20210659.
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low effective connectivity leads networks closer to “edge of chaos”

ubiquitous canalization in (experimentally-validated) systems biology models

63 Biochemical regulation models with 
very low effective connectivity despite high 

connectivity. In new theory networks are 
near criticality

௘௘

Manicka, Marques-Pita, &  Rocha, [2022]. J. Royal Society Interface. 19(186):20210659.
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effective connectivity better predicts critical transition

ubiquitous canalization in (experimentally-validated) systems biology models

Biochemical regulation models 
have very low effective 

connectivity despite high 
connectivity. Accounting for 

heterogeneity and canalization 
better predicts dynamical regime

c. 𝑘௘. 𝑝 1 − 𝑝 = 1c. 𝑘௘. 𝑝 1 − 𝑝 = 1

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

homogeneous networks heterogenous networks

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

𝜎ଶ =  𝑝 1 − 𝑝𝜎ଶ =  𝑝 1 − 𝑝
c. 𝑘. 𝑝 1 − 𝑝 = 1c. 𝑘. 𝑝 1 − 𝑝 = 1
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but is there an edge of chaos boundary?

ubiquitous canalization in (experimentally-validated) systems biology models

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

homogeneous networks

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

IQR Of Derrida

Optimal classification thresholds

Once canalization (dynamical 
redundancy) is considered 
optimal critical region very 

small and dynamical range is 
better predicted. 

heterogenous networks
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but is there an edge of chaos boundary?

ubiquitous canalization in (experimentally-validated) systems biology models

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.
Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

More accurate measures of dynamical regime  
show that experimentally-validated systems 

biology are far from the edge of chaos

Park, Costa,  Rocha,  Albert, & Rozum [2023]. PRX Life. 1, 023009. 

Large disorder by 
usual measures

Much less disorder 
after accounting for 

time-shifts

Criticality might arise from 
interactions of amongst 
largely stable modules
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Thaliana control pathways (using structure and dynamics information)

effective graph

The effective graph helps
understand how control

actually operates to inform
actionable strategies

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

Structural control theories fail: 
LFY is master-regulator, WUS 
autoregulator, others redundant.   

Gates & Rocha [2016]. Sci. Rep. 6, 24456. 

𝑒௝௜ ≥ 0.2 𝑒௝௜ ≥ 0.4 Chaos et al [2006]. J. of Plant 
Growth Regulation. 25(4): 278-289.
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Boolean networks, control, sound, art, and education

control and the cybernetics of life

Chaos et al [2006]. “From Genes to Flower Patterns and 
Evolution: Dynamic Models of Gene Regulatory Networks”. 
Journal of Plant Growth Regulation. 25(4): 278-289.
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Boolean networks, control, sound, art, and education

control and the cybernetics of life

Chaos et al [2006]. “From Genes to Flower Patterns and 
Evolution: Dynamic Models of Gene Regulatory Networks”. 
Journal of Plant Growth Regulation. 25(4): 278-289.
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Boolean networks, control, sound, art, and education

control and the cybernetics of life

Chaos et al [2006]. “From Genes to Flower Patterns and 
Evolution: Dynamic Models of Gene Regulatory Networks”. 
Journal of Plant Growth Regulation. 25(4): 278-289.
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predicting drug and therapy targets in causal models

discrete modeling of cancer networks

discrete modeling of within-cell oncogenic 
signal transduction, recapitulates known 
resistance PI3K inhibitors. Suggests novel 

combinatorial interventions.

Reka Albert

Jorge 
Zañudo

Integrative, causal models for simulations
• built from inductive parameter estimation and 

knowledge synthesis 



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

uncovering and characterizing control pathways for drug therapy

ER+ breast cancer model

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
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uncovering and characterizing control pathways for drug therapy

ER+ breast cancer model

𝑒௝௜ ≥ 0.2

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
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uncovering and characterizing control pathways for drug therapy

ER+ breast cancer model

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

𝑒௝௜ ≥ 0.4
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causal (modular) dynamics via conditional effective connectivity

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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causal (modular) dynamics via conditional effective connectivity
ER+ baseline

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

causal (modular) dynamics via conditional effective connectivity
ER+ baseline

+ Alpelisib

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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causal (modular) dynamics via conditional effective connectivity
ER+ baseline

+ Alpelisib

+ Fulvestrant

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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causal (modular) dynamics via conditional effective connectivity
ER+ baseline

+ Alpelisib

+ Fulvestrant

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

uncovers probabilistic causal dynamics
• analytically, not via Monte-Carlo simulations
• scalable
• preferred control pathways
• explains criticality better in finite networks
• study and predict unobserved events

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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dynamically-decoupled modules
effective modularity

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

Most networks preserve a large 
weakly connected component up to 
edge effectiveness ≤ 0.4.

But most break into dynamically-
decoupled modules for edge 
effectiveness > [0.4, 0.6].

Allows comparisons between 
networks regarding the ability to 
effectively propagate signals.

Experimentally-validated models suggest biochemical 
regulation highly modular with low effectiveness interactions 
between modules granting robustness to perturbations.

Manicka, Marques-Pita, &  Rocha, [2022]. J. Royal Society Interface. 19(186):20210659.
Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
Park, Costa,  Rocha,  Albert, & Rozum [2023]. PRX Life. 1, 023009. 
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from evolutionary robustness to network and dynamical redundancy

canalization as a key mechanism for resilience

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides buffering (self-
organization). But still easily chaotic.

robustness of phenotypes is the result of a buffering of 
the developmental process. 

canalized genetic control ignores some inputs (redundancy) 
to attain necessary resilience (tradeoff stability/evolvability)Aldana, M. [2003]. Physica D. 185: 45–66

Structure (topological organization), can provide larger 
stable or critical universe, but still easily chaotic.Michael Conrad

Evolvability: extradimensional 
bypass, neutrality, redundancy, 
controllability and robustness tradeoff.


