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course outlook

 Labs: 35% (ISE-483)
 Complete 5 (best 4 graded) assignments based on algorithms presented in class

 Lab 3: March 11th

 Cellular Automata and Boolean Networks (Assignment 3)
 Delivered by SSIE583 Group 3
 Due: March 18th

 SSIE – 583 -Presentation and Discussion: 25% 
 Present and lead the discussion of an article related to the class materials

 Enginet students post/send video or join by Zoom 
 Dates TBA

 Conrad, M. [1990]. "The geometry of evolution.“ Biosystems 24: 61-81.
 Mario Franco

 Stanley, Kenneth O., Jeff Clune, Joel Lehman, and Risto Miikkulainen. “Designing Neural Networks 
through Neuroevolution.” Nature Machine Intelligence 1, no. 1 (January 2019): 24–35.

 Jessica Lasebikan 
 Lindgren, K. [1991]."Evolutionary Phenomena in Simple Dynamics." In: Artificial Life II. Langton et al 

(Eds). Addison-wesley, pp. 295-312.
 Akshay Gangadhar

 Salahshour, Mohammad. “Interaction between Games Give Rise to the Evolution of Moral Norms of 
Cooperation.” PLOS Computational Biology 18, no. 9 (September 29, 2022): e1010429

 Srikanth Iyer
 Discussion by all

key events coming up
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readings

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press. 

Preface, Chapter 2. 
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall. 

Chapter 1, pp. 1-23. Chapter 7, sections 7.1-7.4, Appendix B.3.1, Chapter 2, Chapter 8, sections 8.1, 8.2, 8.3.10
 Lecture notes

 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior

 posted online @ http://informatics.indiana.edu/rocha/i-bic 
 Papers and other materials

 Dynamical Systems
 Kauffman, S.A. [1969]. "Metabolic stability and epigenesis in randomly constructed genetic nets". Journal of 

Theoretical Biology 22(3):437-467.
 Optional

 Prusinkiewicz and Lindenmeyer [1996] The algorithmic beauty of plants.
 Chapter 1

 Flake’s [1998], The Computational Beauty of Life. MIT Press.
 Chapters 10, 11, 14 – Dynamics, Attractors and chaos

until now

bit.ly/atBIC
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final project schedule

 Projects
 Due by May 6th in Brightspace, “Final Project Paper” assignment

 ALIFE 2023
 Not to submit to actual conference due date (April 3rd , 2024)
 https://2024.alife.org/
 8 pages, author guidelines:
 https://2024.alife.org/call_paper.html
 MS Word and Latex/Overleaf templates

 Preliminary ideas by March 15
 Submit to “Project Idea” assignment in Brightspace. 

 Individual or group
 With very definite tasks assigned per member of group

ALIFE 2024
Tackle a real problem using bio-inspired 

algorithms, such as those used in the labs. 
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discrete dynamical systems
examples

xx-1 x+1

Cellular Automata

x
t

NK Boolean Network (N=13, K=3)
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the drosophila segment polarity network
dynamical models of regulation from qualitative data

Albert &  Othmer [2003]. J. Theor. Bio. 223:  1-18.

Based on the ODE model of von Dassow et al. (2000), consists of  4-cell parasegments, 
each cell with 15 interacting genes and proteins.

260 network configurations
Reproduces wild-type and mutant gene expression patterns in development of fruit fly

2 intercellular inputs: nhh (hedgehog), nWG (wingless)
1 intracellular input: SLP (sloppy paired)

Reka Albert
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Barman & Kwon.PloS one 12.2 
(2017): e0171097.



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

dynamical behavior

 Observing the state-transition graph
 converges to one of 10 possible 

stable configurations
 Steady-state attractors

 observed experimentally
 wildtype

 plus 3 variants
 broad stripe
 no-segmentation
 Ectopic

 plus 3 variants

cell-types in a spatial arrangement

Albert &  Othmer [2003]. J. Theor. Bio. 223:  1-18.
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higher-dimensional hyper-cube
representations

Planar representation

16 state drosophila segment polarity network 
(from Willadsen and Wiles , 2007

9-dimension representation
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Self-organization

 Emergent Behavior from 
system/environment coupling
 Classifies Walls and Other Robots
 Self-organization
 Embodied cognition

Robot example

Jonathan Connell ‘s Muramator
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random Boolean networks

 Discrete dynamical systems
 Extremely large number o coupled elements
 Systems of binary variables (0,1), coupled to one another in a network

 The activity of each element depends on previous state of other elements
 Simplifies continuous systems while maintaining essential behavior

 Statistical properties of sets of networks
 Understanding of macroscopic, emergent properties

 Similar to temperature
 Typically irreversible

self-organization
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biological interpretations of attractor behavior

 Genetic regulatory networks
 Genes are on or off
 Development, morphogenesis
 Attractors interpreted as different cell types

 Classification in Immune networks
 Representation in artificial neural networks
 Stable patterns of species abundances in ecosystems

self-organization

attractors spontaneous order To be improved by 
natural selection

Order is the raw material for evolution: how much of life is 
Natural Selection and how much is self-organization? 
(credit assignment problem)
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attractors

 Phase-space as landscape
 State of the system as a drop of water 

released in hills and valleys

(energy) landscape metaphor

Waddington CH (1942). 
Nature.150 (3811):563–565

See: Conrad, M. [1990]. "The geometry of 
evolution.“ Biosystems 24: 61-81

Michael Conrad
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evolution does not need to encode all details and is constrained
self-organization as a key mechanism for order and robustness

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides 
buffering (self-organization). 

robustness of phenotypes is the result of a 
buffering of the developmental process. 
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Boolean networks

 basin of attraction
 All states in trajectories leading to an attractor (state cycle)

 length of cycle
 Number of states in cycle

 1 to 2N

 perturbation (minimal)
 Flipping of one node to the opposite state

 Damage
 Change in behavior from a perturbation

 Structural perturbation
 Permanent in connections or Boolean rules in the network

definitions
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ensemble dynamics for same structure
Boolean network dynamics, perturbations, and control

Gates & Rocha [2016]. Sci. Rep. 6, 24456. 




N

i

ik

1

22

# different Boolean networks 
for same structure

a) 64
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ensemble dynamics for same structure
Boolean network dynamics, perturbations, and control

Gates & Rocha [2016]. Sci. Rep. 6, 24456. 




N

i

ik

1

22

# different Boolean networks 
for same structure

a) 64

configuration vs 
attractor control

and
perturbation vs. 
pinning control
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Kauffman’s statistical analysis

 Random networks
 Started with random initial conditions

 Self-organization is not a result of special initial conditions
 Statistical analysis

 K  2
 Steady state, ordered, crystallization

 (5  K to ) K=N
 Disordered, chaotic
 Mean length of cycles: 0.5 x 2N/2

 Mean number of cycles: N/e
 High reachability, sensitive to perturbation

 Number of other state cycles system can reach after 
perturbation

 K=2
 Mean length: n1/2

 Mean number of cycles: n1/2

 Low reachability
 Percolation of frozen clusters (isolated subsets)
 Not very sensitive to perturbation

Of NK-Boolean Networks

Kauffman, SA. J. theoretical biology 22.3 (1969): 437-467.

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

edge of chaos on Boolean Networks

 2  K  5
 Good for evolvability?
 Some changes with large repercussions
 Best capability to perform information exchange

 Information can be propagated more easily
 Problems with analysis

 Network topology is random
 Not scale-free, as later explored by Aldana

 Real genetic networks tend to have lower values of K (in ordered regime)
 Genes as simply Boolean may be oversimplification

 Though a few states can approximate very well continuous data

criticality
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dynamical behavior of ensembles of networks
criticality in Boolean networks

Aldana, M. [2003]. Physica D. 185: 45–66

Random topology

scale-free topology

𝑃 𝑘 𝑐.𝑘



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

evolution requires life in critical regime which is small, how come life is not chaotic?
self-organization easily chaotic

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides buffering (self-
organization). But still easily chaotic.

robustness of phenotypes is the result of a buffering of 
the developmental process. 

Aldana, M. [2003]. Physica D. 185: 45–66
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Structure (topological organization), can provide larger 
stable or critical universe, but still easily chaotic.
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Next lectures

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, 

Methods, and Technologies. MIT Press. 
 Chapter 2. 

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior

 posted online @ http://informatics.indiana.edu/rocha/i-bic 
 Papers and other materials

 Optional
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, 

and Applications. Chapman & Hall. 
 Chapter 2, all sections
 Chapter 7, sections 7.3 – Cellular Automata
 Chapter 8, sections 8.1, 8.2, 8.3.10

 Flake’s [1998], The Computational Beauty of Life. MIT Press.
 Chapters 10, 11, 14 – Dynamics, Attractors and chaos

readings


