
A New Algorithm for Learning Range Restricted

Horn Expressions (Extended Abstract)

?

Appears in the Proceeding of ILP 2000

Marta Arias and Roni Khardon

Division of Informatics, University of Edinburgh

The King's Buildings, Edinburgh EH9 3JZ, Scotland

fmarta,ronig@dcs.ed.ac.uk

Abstract. A learning algorithm for the class of range restricted Horn

expressions is presented and proved correct. The algorithm works within

the framework of learning from entailment, where the goal is to exactly

identify some pre-�xed and unknown expression by making questions to

membership and equivalence oracles. This class has been shown to be

learnable in previous work. The main contribution of this paper is in

presenting a more direct algorithm for the problem which yields an im-

provement in terms of the number of queries made to the oracles. The

algorithm is also adapted to the class of Horn expressions with inequal-

ities on all syntactically distinct terms where a signi�cant improvement

in the number of queries is obtained.

1 Introduction

This paper considers the problem of learning an unknown �rst order expression

1

T from examples of clauses that T entails or does not entail. This type of learning

framework is known as learning from entailment. [FP93] formalised learning from

entailment using equivalence queries and membership queries and showed the

learnability of propositional Horn expressions. Generalising this result to the �rst

order setting is of clear interest. Learning �rst order Horn expressions has become

a fundamental problem in Inductive Logic Programming [MR94]. Theoretical

results have shown that learning from examples only is feasible for very restricted

classes [Coh95a] and that, in fact, learnability becomes intractable when slightly

more general classes are considered [Coh95b]. To tackle this problem, learners

have been equipped with the ability to ask questions. It is the case that with

this ability larger classes can be learned. In this paper, the questions that the

learner is allowed to ask aremembership and equivalence queries. While our work

is purely theoretical, there are systems that are able to learn using equivalence

and membership queries (MIS [Sha83], CLINT [RB92], for example). These ideas

have also been used in systems that learn from examples only [Kha00].

A learning algorithm for the class of range restricted Horn expressions is

presented. The main property of this class is that all the terms in the conclusion

?

This work was partly supported by EPSRC Grant GR/M21409.

1

The unknown expression to be identi�ed is commonly referred to as target expression.

of a clause appear in the antecedent of the clause, possibly as subterms of more

complex terms. This work is based on previous results on learnability of function

free Horn expressions and range restricted Horn expressions. The problem of

learning range restricted Horn expressions was solved in [Kha99b] by reducing

it to the problem of learning function free Horn expressions, solved in [Kha99a].

The algorithm presented here has been obtained by retracing this reduction

and using the resulting algorithm as a starting point. However, it has been

signi�cantly modi�ed and improved. The algorithm in [Kha99a,Kha99b] uses

two main procedures. The �rst, given a counterexample clause, minimises the

clause while maintaining it as a counterexample. The minimisation procedure

used here is stronger, resulting in a clause which includes a syntactic variant

of a target clause as a subset. The second procedure combines two examples

producing a new clause that may be a better approximation for the target.

While the algorithm in [Kha99a,Kha99b] uses direct products of models we use

an operation based on the lgg (least general generalisation [Plo70]). The use

of lgg seems a more natural and intuitive technique to use for learning from

entailment, and it has been used before, both in theoretical and applied work

[Ari97,RT98,RS98,MF92].

We extend our results to the class of fully inequated range restricted Horn

expressions. The main property of this class is that it does not allow uni�cation of

its terms. To avoid uni�cation, every clause in this class includes in its antecedent

a series of inequalities between all its terms. With a minor modi�cation to the

learning algorithm, we are able to show learnability of the class of fully inequated

range restricted Horn expressions. The more restricted nature of this class allows

for better bounds to be derived.

The rest of the paper is organised as follows. Section 2 gives some preliminary

de�nitions. The learning algorithm is presented in Section 3 and proved correct in

Section 4. The results are extended to the class of fully inequated range restricted

Horn expressions in Section 5. Finally, Section 6 compares the results obtained

in this paper with previous results and includes some concluding remarks.

2 Preliminaries

We consider a subset of the class of universally quanti�ed expressions in �rst

order logic. De�nitions of �rst order languages can be found in standard texts,

e.g. [Llo87]. We assume familiarity with notions such as term, atom, literal,

Horn clause in the part of syntax and interpretation, truth value, satis�ability

and logical implication in the part of semantics.

A Range Restricted Horn clause is a de�nite Horn clause in which every term

appearing in its consequent also appears in its antecedent, possibly as a subterm

of another term. A Range Restricted Horn Expression is a conjunction of Range

Restricted Horn clauses.

Amulti-clause is a pair of the form [s; c], where both s and c are sets of literals

such that s\c = ;; s is the antecedent of the multi-clause and c is the consequent.

Both are interpreted as the conjunction of the literals they contain. Therefore,

the multi-clause [s; c] is interpreted as the logical expression

V

b2c

s! b. An

ordinary clause C = s

c

! b

c

corresponds to the multi-clause [s

c

; fb

c

g].

We say that a logical expression T implies a multi-clause [s; c] if it implies

all of its single clause components. That is, T j= [s; c] i� T j=

V

b2c

s! b.

A multi-clause [s; c] is correct w.r.t an expression T i� T j= [s; c]. A multi-

clause [s; c] is exhaustive w.r.t T if every literal b 62 s such that T j= s ! b is

included in c. A multi-clause is full w.r.t T if it is correct and exhaustive w.r.t.

T .

The size of a term is the number of occurrences of variables plus twice the

number of occurrences of function symbols (including constants). The size of an

atom is the sum of the sizes of the (top-level) terms it contains plus 1. Finally,

the size of a multi-clause [s; c] is the sum of sizes of atoms in s.

Let s

1

; s

2

be any two sets of literals. We say that s

1

subsumes s

2

(denoted

s

1

� s

2

) if and only if there exists a substitution � such that s

1

� � � s

2

. We also

say that s

1

is a generalisation of s

2

.

Let s be any set of literals. Then ineq(s) is the set of all inequalities between

terms appearing in s. As an example, let s be the set fp(x; y); q(f(y))g with

terms fx; y; f(y)g. Then ineq(s) = fx 6= y; x 6= f(y); y 6= f(y)g also written as

(x 6= y 6= f(y)) for short.

Least General Generalisation. The algorithm proposed uses the least general

generalisation or lgg operation [Plo70]. This operation computes a generalisation

of two sets of literals. It works as follows.

The lgg of two terms f(s

1

; :::; s

n

) and g(t

1

; :::; t

m

) is de�ned as the term

f(lgg(s

1

; t

1

); :::; lgg(s

n

; t

n

)) if f = g and n = m. Otherwise, it is a new variable

x, where x stands for the lgg of that pair of terms throughout the computa-

tion of the lgg of the set of literals. This information is kept in what we call

the lgg table. The lgg of two compatible atoms p(s

1

; :::; s

n

) and p(t

1

; :::; t

n

) is

p(lgg(s

1

; t

1

); :::; lgg(s

n

; t

n

)). The lgg is only de�ned for compatible atoms, that

is, atoms with the same predicate symbol and arity. The lgg of two compatible

positive literals l

1

and l

2

is the lgg of the underlying atoms. The lgg of two

compatible negative literals l

1

and l

2

is the negation of the lgg of the underlying

atoms. Two literals are compatible if they share predicate symbol, arity and

sign. The lgg of two sets of literals s

1

and s

2

is the set flgg(l

1

; l

2

) j (l

1

; l

2

) are

two compatible literals of s

1

and s

2

g.

Example 1. Let s

1

= fp(a; f(b)); p(g(a; x); c); q(a)g and s

2

= fp(z; f(2)); q(z)g

with lgg(s

1

; s

2

) = fp(X; f(Y)); p(Z; V); q(X)g. The lgg table produced during

the computation of lgg(s

1

; s

2

) is

[a - z => X] (from p(a; f(b)) with p(z; f(2)))

[b - 2 => Y] (from p(a; f(b)) with p(z; f(2)))

[f(b) - f(2) => f(Y)] (from p(a; f(b)) with p(z; f(2)))

[g(a,x) - z => Z] (from p(g(a; x); c) with p(z; f(2)))

[c - f(2) => V] (from p(g(a; x); c) with p(z; f(2)))

2.1 The Learning Model

We consider the model of exact learning from entailment [FP93]. In this model

examples are clauses. Let T be the target expression,H any hypothesis presented

by the learner and C any clause. An example C is positive for a target theory T

if T j= C, otherwise it is negative. The learning algorithm can make two types

of queries. An Entailment Equivalence Query (EntEQ) returns \Yes" if H = T

and otherwise it returns a clause C that is a counter example, i.e., T j= C and

H 6j= C or vice versa. For an Entailment Membership Query (EntMQ), the

learner presents a clause C and the oracle returns \Yes" if T j= C, and \No"

otherwise. The aim of the learning algorithm is to exactly identify the target

expression T by making queries to the equivalence and membership oracles.

2.2 Transforming the target expression

In this section we describe the transformation U(T) performed on any target ex-

pression T . This transformation is never computed by the learning algorithm; it

is only used in the analysis of the proof of correctness. Related work in [SEMF98]

also uses inequalities in clauses, although the learning algorithm and approach

are completely di�erent.

The idea is to create from every clause C in T the set of clauses U(C). Every

clause in U(C) corresponds to the original clause C with its terms uni�ed in a

unique way, di�erent from every other clause in U(C). All possible uni�cations

of terms of C are covered by one of the clauses in U(C). The clauses in U(C)

will only be satis�ed if the terms are uni�ed in exactly that way. To achieve this,

a series of appropriate inequalities are prepended to every transformed clause's

antecedent. This process is described in Figure 1. It uses the most general uni�er

operation or mgu. Details about the mgu can be found in [Llo87].

1. Set U(T) to be the empty expression (T is the expression to be transformed).

2. For every clause C = s

c

! b

c

in T and for every partition � of the set of terms

(and subterms) appearing in C do

{ Let the partition � be f�

1

; �

2

; :::; �

l

g. Set �

0

to ;.

{ For i = 1 to l do

� If �

i

� �

i�1

is uni�able, then �

i

= mgu(�

i

� �

i�1

) and �

i

= �

i�1

� �

i

.

� Otherwise, discard the partition.

{ If there are two classes �

i

and �

j

(i 6= j) such that �

i

��

l

= �

j

��

l

, then discard

the partition.

{ Otherwise, set U

�

(C) = ineq(s

c

��

l

); s

c

��

l

! b

c

��

l

and U(T) = U(T)^U

�

(C).

3. Return U(T).

Fig. 1. The transformation algorithm

We construct U(T) from T by considering every clause separately. For a

clause C in T with set of terms T , we generate a set of clauses U(C). To do

that, consider all partitions of the terms in T ; each such partition, say �, can

generate a clause of U(C), denoted U

�

(C). Therefore, U(T) =

V

C2T

U(C) and

U(C) =

V

�2Partitions(T)

U

�

(C). The clause U

�

(C) is computed as follows. Tak-

ing one class at a time, compute its mgu if possible. If there is no mgu, discard

that partition. Otherwise, apply the unifying substitution to the rest of elements

in classes not handled yet, and continue with the following class. If the repre-

sentatives

2

of any two distinct classes happen to be equal, then discard that

partition as well. This is because the inequality between the representatives of

those two classes will never be satis�ed (they are equal!), and the resulting clause

is superuous. When all classes have been uni�ed, we proceed to translate the

clause C. All (top-level) terms appearing in C are substituted by the mgu found

for the class they appear in, and the inequalities are included in the antecedent.

This gives the transformed clause U

�

(C).

Example 2. Let the clause to be transformed be C = p(f(x); f(y); g(z)) !

q(x; y; z). The terms appearing in C are fx; y; z; f(x); f(y); g(z)g. We consider

some possible partitions:

{ When � = fx; yg; fzg; ff(x); f(y)g; fg(z)g.

Stage mgu � � Partitions Left

0 ; fx; yg; fzg; ff(x); f(y)g; fg(z)g

1 fx; yg fy 7! xg fy 7! xg fzg; ff(x); f(x)g; fg(z)g

2 fzg ; fy 7! xg ff(x); f(x)g; fg(z)g

3 ff(x); f(x)g ; fy 7! xg fg(z)g

4 fg(z)g ; fy 7! xg

C � �

4

= p(f(x); f(x); g(z))! q(x; x; z) and

U

�

(C) = (x 6= z 6= f(x) 6= g(z)); p(f(x); f(x); g(z))! q(x; x; z).

{ When � = fx; y; zg; ff(x); g(z)g; ff(y)g.

Stage mgu � � Partitions Left

0 ; fx; y; zg; ff(x); g(z)g; ff(y)g

1 fx; y; zg fy; z 7! xg fy; z 7! xg ff(x); g(x)g; ff(x)g

2 ff(x); g(x)g No mgu PARTITION DISCARDED

If the target expression T has m clauses, then the number of clauses in the

transformation U(T) is bounded by mt

t

, with t being the maximum number of

distinct terms appearing in one clause of T (the number of partitions of a set

with t elements is bounded by t

t

). Notice however that there are many partitions

that will be discarded by the process, for example all those partitions containing

some class with two functional terms with di�erent top-level function symbol,

or partitions containing some class with two terms such that one is a subterm

of the other. Therefore, the number of clauses in the transformation will be in

practice much smaller than mt

t

.

The transformation U(T) of a range restricted expression T is also range

restricted. It can be also proved that T j= U(T), since every clause in U(T) is

2

We call the representative of a class any of its elements applied to the mgu.

subsumed by some clause in T . As a consequence, U(T) j= C implies T j= C

and hence U(T) j= [s; c] implies T j= [s; c].

3 The Algorithm

The algorithm keeps a sequence S of representative counterexamples. The hy-

pothesis H is generated from this sequence, and the main task of the algorithm

is to re�ne the counterexamples in S in order to get a more accurate hypothesis

in each iteration of the main loop, line 2, until hypothesis and target expression

coincide.

There are two basic operations on counterexamples that need to be explained

in detail. These are minimisation (line 2b), that takes a counterexample as

given by the equivalence oracle and produces a positive, full counterexample;

and pairing (line 2c), that takes two counterexamples and generates a series of

candidate counterexamples. The counterexamples obtained by combination of

previous ones (by pairing them) are the candidates to re�ne the sequence S.

These operations are carefully explained in the following sections 3.1 and 3.2.

The algorithm uses the procedure rhs. The �rst version of rhs has 1 in-

put parameter only. Given a set of literals s, rhs(s) computes the set of all

literals not in s implied by s w.r.t. the target expression. That is, rhs(s) =

fb 62 s j EntMQ(s! b) = Y esg :

The second version of rhs has 2 input parameters. Given the sets s and c,

rhs(s; c) outputs those literals in c that are implied by s w.r.t. the target ex-

pression. That is, rhs(s; c) = fb 2 c j b 62 s and EntMQ(s! b) = Y esg : Notice

that in both cases the literals b considered are literals containing terms that

appear in s only. Both versions ask membership queries to �nd out which of the

possible consequents are correct. The resulting sets are in both cases �nite since

the target expression is range restricted.

1. Set S to be the empty sequence and H to be the empty hypothesis.

2. Repeat until EntEQ(H) returns \Yes":

(a) Let x be the (positive) counterexample received (T j= x and H 6j= x).

(b) Minimise counterexample x - use calls to EntMQ.

Let [s

x

; c

x

] be the minimised counterexample produced.

(c) Find the �rst [s

i

; c

i

] 2 S such that there is a basic pairing [s; c] of terms of

[s

i

; c

i

] and [s

x

; c

x

] satisfying:

i. size(s) � size(s

i

)

ii. rhs(s; c) 6= ;

(d) If such an [s

i

; c

i

] is found then replace it by the multi-clause [s; rhs(s; c)].

(e) Otherwise, append [s

x

; c

x

] to S.

(f) Set H to be

V

[s;c]2S

fs ! b j b 2 cg.

3. Return H

Fig. 2. The learning algorithm

3.1 Minimising the counterexample

The minimisation procedure has to transform a counterexample clause x as

generated by the equivalence query oracle into a multi-clause counterexample

[s

x

; c

x

] ready to be handled by the learning algorithm. This is done by removing

literals and generalising terms.

1. Let x be the counterexample obtained by the EntEQ oracle.

2. Let s

x

be the set of literals fb j H j= antecedent(x)! bg and set c

x

to rhs(s

x

).

3. Repeat until no more changes are made

{ For every functional term t appearing in s

x

, in decreasing order of size, do

� Let [s

0

x

; c

0

x

] be the multi-clause obtained from [s

x

; c

x

] after substituting all

occurrences of the term f(t) by a new variable x

f(t)

.

� If rhs(s

0

x

; c

0

x

) 6= ;, then set [s

x

; c

x

] to [s

0

x

; rhs(s

0

x

; c

0

x

)].

4. Repeat until no more changes are made

{ For every term t appearing in s

x

, in increasing order of size, do

� Let [s

0

x

; c

0

x

] be the multi-clause obtained after removing from [s

x

; c

x

] all

those literals containing t.

� If rhs(s

0

x

; c

0

x

) 6= ;, then set [s

x

; c

x

] to [s

0

x

; rhs(s

0

x

; c

0

x

)].

5. Return [s

x

; c

x

].

Fig. 3. The minimisation procedure

The minimisation procedure constructs �rst a full multi-clause that will be

re�ned in the following steps. To do this, all literals implied by antecedent(x)

and the clauses in the hypothesis will be included in the �rst version of the new

counterexample's antecedent: s

x

(line 2). This can be done by forward chain-

ing using the hypothesis' clauses, starting with the literals in antecedent(x).

Finally, the consequent of the �rst version of the new counterexample (c

x

) will

be constructed as rhs(s

x

).

Next, we enter the loop in which terms are generalised (line 3). We do this

by considering every term that is not a variable (constants are also included),

one at a time. The way to proceed is to substitute every occurrence of the term

by a new variable, and then check whether the multi-clause is still positive. If so,

the counterexample is updated to the new multi-clause obtained. The process

�nishes when there are no terms to be generalised in [s

x

; c

x

]. Note that if some

term cannot be generalised, it will stay so during the computation of this loop, so

that by keeping track of the failures, unnecessary computation time and queries

can be saved.

Finally, we enter the loop in which literals are removed (line 4). We do this by

considering one term at a time. We remove every literal containing that term in

s

x

and c

x

and check if the multi-clause is still positive. If so, the counterexample

is updated to the new multi-clause obtained. The process �nishes when there

are no terms to be dropped in [s

x

; c

x

].

Example 3. Parentheses are omitted and the function f is unary. Let T be the

single clause p(fx) ! q(x). We start with counterexample [p(fa); q(b) ! q(a)]

as obtained after step 2 of the minimisation procedure.

[s

x

; c

x

] Stage [s

0

x

; c

0

x

] rhs(s

0

x

; c

0

x

) To check

GEN ffa; a; bg

[p(fa); q(b)! q(a)] fa 7! X [p(X); q(b)! q(a)] ; fa; bg

[p(fa); q(b)! q(a)] a 7! X [p(fX); q(b)! q(X)] q(X) fbg

[p(fX); q(b)! q(X)] b 7! Y [p(fX); q(Y)! q(X)] q(X) fg

DROP fX;Y; fXg

[p(fX); q(Y)! q(X)] X [q(Y)! ;] ; fY; fXg

[p(fX); q(Y)! q(X)] Y [p(fX)! q(X)] q(X) ffXg

[p(fX)! q(X)] fX [; ! q(X)] ; fg

[p(fX)! q(X)]

3.2 Pairings

A crucial process in the algorithm is how two counterexamples are combined

into a new one, hopefully yielding a better approximation of some target clause.

The operation proposed here uses pairings of clauses, based on the lgg.

We have two multi-clauses, [s

x

; c

x

] and [s

i

; c

i

] that need to be combined. To

do so, we generate a series of matchings between the terms of s

x

and s

i

, and any

of these matchings will produce the candidate to re�ne the sequence S.

Matchings. A matching is a set whose elements are pairs of terms t

x

�t

i

, where

t

x

2 s

x

and t

i

2 s

i

. If s

x

contains less terms than s

i

, then there should be an

entry in the matching for every term in s

x

. Otherwise, there should be an entry

for every term in s

i

. That is, the number of entries in the matching equals the

minimum of the number of terms in s

x

and s

i

. We only use 1-1 matchings, i.e.,

once a term has been included in the matching it cannot appear in any other

entry of the matching. Usually, we denote a matching by the Greek letter �.

Example 4. Let [s

x

; c

x

] be [fp(a; b)g; fq(a)g] with terms fa; bg. Let [s

i

; c

i

] be

[fp(f(1); 2)g; fq(f(1))g] with terms f1; 2; f(1)g. The possible matchings are:

�

1

= fa� 1; b� 2g �

3

= fa� 2; b� 1g �

5

= fa� f(1); b� 1g

�

2

= fa� 1; b� f(1)g �

4

= fa� 2; b� f(1)g �

6

= fa� f(1); b� 2g

An extended matching is an ordinary matching with an extra column added

to every entry of the matching. This extra column contains the lgg of every pair

in the matching. The lggs are simultaneous, that is, they share the same table.

An extended matching � is legal if every subterm of some term appearing

as the lgg of some entry, also appears as the lgg of some other entry of �. An

ordinary matching is legal if its extension is.

Example 5. Let �

1

be fa� c; f(a) � b; f(f(a)) � f(b); g(f(f(a))) � g(f(f(c)))g

and �

2

= fa � c; f(a) � b; f(f(a)) � f(b)g. The matching �

1

is not legal, since

the term f(X) is not present in its extension column and it is a subterm of

g(f(f(X))), which is present. The matching �

2

is legal.

Extended �

1

Extended �

2

[a - c => X] [a - c => X]

[f(a) - b => Y] [f(a) - b => Y]

[f(f(a)) - f(b) => f(Y)] [f(f(a)) - f(b) => f(Y)]

[g(f(f(a))) - g(f(f(c))) => g(f(f(X)))]

Our algorithm considers yet a more restricted type of matching. A basic

matching � is de�ned for two multi-clauses [s

x

; c

x

] and [s

i

; c

i

] such that the

number of terms in s

x

is less than or equal to the number of terms in s

i

. It

is a 1-1, legal matching such that if entry f(t

1

; :::; t

n

) � g(r

1

; :::; r

m

) 2 �, then

f = g, n = m and t

i

� r

i

2 � for all i = 1; :::; n. Notice this is not a symmetric

operation, since [s

x

; c

x

] is required to have less distinct terms than [s

i

; c

i

].

To construct basic matchings given [s

x

; c

x

] and [s

i

; c

i

], consider all possible

matchings between the variables in s

x

and the terms in s

i

only. Complete them

by adding the functional terms in s

x

that are not yet included in the basic

matching in an upwards fashion, beginning with the more simple terms. For

every term f(t

1

; :::; t

n

) in s

x

such that all t

i

� r

i

(with i = 1; :::; n) appear

already in the basic matching, add a new entry f(t

1

; :::; t

n

)�f(r

1

; :::; r

n

). Notice

this is not possible if f(r

1

; :::; r

n

) does not appear in s

i

or the term f(r

1

; :::; r

n

)

has already been used. In this case, we cannot complete the matching and it is

discarded. Otherwise, we continue until all terms in s

x

appear in the matching.

By construction, constants in s

x

must be matched to the same constants in s

i

.

Example 6. Let s

x

be fp(a; fx)g containing the terms fa; x; fxg. Let s

i

be

fp(a; f1); p(a; 2)g containing terms fa; 1; 2; f1g. No parentheses for functions

are written. The basic matchings to consider are the following.

{ Starting with [x - a]: cannot add [a - a], therefore discarded.

{ Starting with [x - 1]: can be completed with [a - a] and [fx - f1].

{ Starting with [x - 2]: cannot add [fx - f2], therefore discarded.

{ Starting with [x - f1]: cannot add [fx - ff1], therefore discarded.

One of the key points of our algorithm lies in reducing the number of match-

ings needed to be checked by ruling out some of the candidate matchings that

do not satisfy some restrictions imposed. By doing so we avoid testing too many

pairings and hence avoid making unnecessary calls to the oracles. One of the

restrictions has already been mentioned, it consists in considering basic pairings

only as opposed to considering every possible matching. This reduces the t

t

pos-

sible distinct matchings to only t

k

distinct basic pairings

3

. The other restriction

on the candidate matching consists in the fact that every one of its entries must

appear in the original lgg table.

Pairings. The input to a pairing consists of 2 multi-clauses together with a

matching between the terms appearing in them. We say that the pairing is

3

There are a maximum of t

k

basic matchings between [s

x

; c

x

] with k variables and

[s

i

; c

i

] with t terms, since we only combine variables of s

x

with terms in s

i

.

induced by the matching under consideration. A basic pairing is a pairing for

which the inducing matching is basic.

The antecedent s of the pairing is computed as the lgg of s

x

and s

i

restricted

to the matching inducing it. An atom is included in the pairing only if all its

top-level terms appear as entries in the extended matching. This restriction is

quite strong in the sense that, for example, if an atom p(a) appears in both s

x

and s

i

then their lgg p(a) will not be included unless the entry [a - a => a]

appears in the matching. Therefore an entry in the matching is relevant only if

it appears in the lgg table. We consider matchings with relevant entries only,

i.e., matchings that are subsets of the lgg table.

To compute the consequent c of the pairing, the union of the sets lgg

j

�

(s

x

; c

i

),

lgg

j

�

(c

x

; s

i

) and lgg

j

�

(c

x

; c

i

) is computed. Note that in the consequent all the

possible lggs of pairs among fs

x

; c

x

; s

i

; c

i

g are included except lgg

j

�

(s

x

; s

i

), that

constitutes the antecedent. When computing any of the lggs, the same table is

used. That is, the same pair of terms will be bound to the same expression in

any of the four possible lggs that are computed in a pairing. To summarise:

[s; c] = [lgg

j

�

(s

x

; s

i

); lgg

j

�

(s

x

; c

i

) [lgg

j

�

(c

x

; s

i

) [lgg

j

�

(c

x

; c

i

)]:

Example 7. Both examples have the same terms as in Example 6, so there is

only one basic matching. Ex. 7.1 shows how to compute a pairing. Ex. 7.2 shows

that a basic matching may be rejected if it does not agree with the lgg table.

Example 7.1 Example 7.2

s

x

fp(a; fx)g fp(a; fx)g

s

i

fp(a; f1); p(a; 2)g fq(a; f1); p(a; 2)g

lgg(s

x

; s

i

) fp(a; fX); p(a; Y)g fp(a; Y)g

lgg table [a - a => a] [a - a => a]

[x - 1 => X] [fx - 2 => Y]

[fx - f1 => fX]

[fx - 2 => Y]

basic � [a-a=>a][x-1=>X][fx-f1=>fX] [a-a=>a][x-1=>X][fx-f1=>fX]

lgg

j

�

(s

x

; s

i

) fp(a; fX)g PAIRING REJECTED

As the examples demonstrate, the requirement that the matchings are both

basic and comply with the lgg table is quite strong. The more structure examples

have, the greater the reduction in possible pairings and hence queries is, since

that structure needs to be matched. While it is not possible to quantify this e�ect

without introducing further parameters, we expect this to be a considerable

improvement in practice.

4 Proof of correctness

During the analysis, s will stand for the cardinality of P , the set of predicate

symbols in the language; a for the maximal arity of the predicates in P ; k for

the maximum number of distinct variables in a clause of T ; t for the maximum

number of distinct terms in a clause of T ; e

t

for the maximum number of distinct

terms in a counterexample; m for the number of clauses of the target expression

T ; m

0

for the number of clauses of the transformation of the target expression

U(T) as described in Section 2.2. Due to lack of space, some proofs have been

reduced to simple sketches or even omitted. For a detailed account of the proof,

see [AK00b]. Before starting with the proof, we give some de�nitions.

A multi-clause [s; c] covers a clause ineq(s

t

); s

t

! b

t

if there is a mapping �

from variables in s

t

into terms in s such that s

t

�� � s and ineq(s

t

) �� � ineq(s).

Equivalently, we say that ineq(s

t

); s

t

! b

t

is covered by [s; c].

A multi-clause [s; c] captures a clause ineq(s

t

); s

t

! b

t

if there is a mapping

� from variables in s

t

into terms in s such that ineq(s

t

); s

t

! b

t

is covered by

[s; c] via � and b

t

� � 2 c. Equivalently, we say that ineq(s

t

); s

t

! b

t

is captured

by [s; c].

It is clear that if the algorithm stops, then the returned hypothesis is correct.

Therefore the proof focuses on assuring that the algorithm �nishes. To do so,

a bound is established on the length of the sequence S. That is, only a �nite

number of counterexamples can be added to S and every re�nement of an existing

multi-clause reduces its size, and hence termination is guaranteed.

Lemma 1. If [s; c] is a positive example for a Horn expression T , then there is

some clause ineq(s

t

); s

t

! b

t

of U(T) such that s

t

� � � s, ineq(s

t

) � � � ineq(s)

and b

t

� � 62 s, where � is some substitution mapping variables of s

t

into terms of

s. That is, ineq(s

t

); s

t

! b

t

is covered by [s; c] via � and b

t

� � 62 s.

Proof. Consider the interpretation I whose objects are the di�erent terms ap-

pearing in s plus an additional special object �. Let D

I

be the set of objects in

I . Let � be the mapping from terms in s into objects in I . The function map-

pings in I are de�ned following �, or � when not speci�ed. We want I to falsify

the multi-clause [s; c]. Therefore, the extension of I , say ext(I), includes exactly

those literals in s (with the corresponding new names for the terms), that is,

ext(I) = s ��, where the top-level terms in s are substituted by the image in D

I

given by �.

It is easy to see that this I falsi�es [s; c], because s \ c = ; by de�nition of

multi-clause. Since I 6j= [s; c] and T j= [s; c], we can conclude that I 6j= T . That

is, there is a clause C = s

c

! b

c

in T such that I 6j= C and there is a substitution

�

0

from variables in s

c

into domain objects in I such that s

c

� �

0

� ext(I) and

b

c

� �

0

62 ext(I).

Complete the substitution �

0

by adding all the remaining functional terms of

C. The image that they are assigned to is their interpretation using the function

mappings in I and the variable assignment �

0

. When all terms have been in-

cluded, consider the partition � induced by the completed �

0

, that is, two terms

are included in the same class of the partition i� they are mapped to the same

domain object by the completed �

0

. Now, consider the clause U

�

(C). This clause

is included in U(T) because the classes are uni�able (the existence of [s; c] is the

proof for it) and therefore it is not rejected by the transformation procedure.

We claim that this clause U

�

(C) is the clause ineq(s

t

); s

t

! b

t

mentioned in

the lemma. Let

^

� be the mgu used to obtain U

�

(C) from C with the partition �.

That is, U

�

(C) = ineq(s

c

�

^

�); s

c

�

^

� ! b

c

�

^

�. Let �

00

be the substitution such that

�

0

=

^

� � �

00

. The substitution �

00

exists since

^

� is a mgu and by construction �

0

is

also a uni�er for every class in the partition. The clause U

�

(C) = ineq(s

t

); s

t

!

b

t

is falsi�ed using the substitution �

00

: s

c

� �

0

= s

c

�

^

� � �

00

= s

t

� �

00

� ext(I), and

b

c

� �

0

= b

c

�

^

� � �

00

= b

t

� �

00

62 ext(I).

Now we have to �nd a � for which the three conditions stated in the lemma

are satis�ed. We de�ne � as �

00

��

�1

. Notice � is invertible since all the elements

in its range are di�erent. It can also be composed to �

00

since all elements in the

range of �

00

are in D

I

, and the domain of � consists precisely of all objects in

D

I

. Notice also that s = ext(I) � �

�1

, and this can be done since the object �

does not appear in ext(I). It is left to show that:

{ s

t

� � � s: s

t

� �

00

� ext(I) implies s

t

� � = s

t

� �

00

� �

�1

� ext(I) � �

�1

= s.

{ ineq(s

t

) �� � ineq(s). Take any two di�erent terms t; t

0

of s

t

. The inequality

t 6= t

0

2 ineq(s

t

), since we have assumed they are di�erent. The terms t � �; t

0

� �

appear in s, since s

t

� � � s. In order to be included in ineq(s) they need to

be di�erent terms. Hence, we only need to show that the terms t � �; t

0

� � are

di�erent terms. By way of contradiction, suppose they are not, i.e. t � � = t

0

� �,

so that t ��

00

��

�1

= t

0

��

00

��

�1

. The substitution �

�1

maps di�erent objects into

di�erent terms, hence t and t

0

were mapped into the same domain object of I by

�

00

. Or equivalently, the terms t

c

; t

0

c

of s

c

for which t = t

c

�

^

� and t

0

= t

0

c

�

^

� were

mapped into the same domain object. But then they fall into the same class of the

partition, hence they have the same representative in s

t

and t = t

c

�

^

� = t

0

c

�

^

� = t

0

,

which contradicts our assumption that t and t

0

are di�erent.

{ b

t

� � 62 s: b

t

� �

00

62 ext(I) implies b

t

� � = b

t

� �

00

� �

�1

62 ext(I) � �

�1

= s. �

Lemma 1 implies that every full multi-clause w.r.t. T , say [s; c], captures some

clause in U(T). This is because [s; c] is full and b

t

� � 62 s, and hence b

t

� � 2 c.

Also, rhs(s; c) cannot be empty since the correct b

t

� � 2 c must survive.

A multi-clause [s; c] is a positive counterexample for some target expression

T and some hypothesisH if T j= [s; c], c 6= ; and for all literals b 2 c,H 6j= s! b.

Notice that the hypothesis H is always entailed by the target T and therefore

the equivalence oracle can only give positive counterexamples. This is because

all multi-clauses in the sequence S are correct at any time.

Let [s

x

; c

x

] be any minimised counterexample. Then, the multi-clause [s

x

; c

x

]

is full w.r.t. T and it is a positive counterexample w.r.t. target T and hypothesis

H . Both properties can be proved by induction on the number of times [s

x

; c

x

]

is updated during the minimisation process.

Lemma 2. Let [s

x

; c

x

] be a multi-clause as generated by the minimisation pro-

cedure. If [s

x

; c

x

] captures some clause ineq(s

t

); s

t

! b

t

of U(T), then it must be

via some substitution � such that � is a variable renaming, i.e., � maps distinct

variables of s

t

into distinct variables of s

x

only.

Proof. [s

x

; c

x

] is capturing ineq(s

t

); s

t

! b

t

, hence there must exist a substitu-

tion � from variables in s

t

into terms in s

x

such that s

t

� � � s

x

, ineq(s

t

) � � �

ineq(s

x

) and b

t

� � 2 c

x

. We will show that � must be a variable renaming.

By way of contradiction, suppose that � maps some variable v of s

t

into a

functional term t of s

x

(i.e. v � � = t). Consider the generalisation of the term t

in step 3 of the minimisation procedure. We will see that the term t should have

been generalised and substituted by the new variable x

t

, contradicting the fact

that the variable v was mapped into a functional term.

Let �

t

= ft 7! x

t

g and [s

0

x

; c

0

x

] = [s

x

� �

t

; c

x

� �

t

]. Consider the substitution

� � �

t

. We will see that [s

0

x

; c

0

x

] captures ineq(s

t

); s

t

! b

t

via � � �

t

and hence

rhs(s

0

x

; c

0

x

) 6= ; and therefore t must be generalised to the variable x

t

. To see

this we need to show:

{ s

t

� � � �

t

� s

0

x

. By hypothesis s

t

� � � s

x

implies s

t

� � � �

t

� s

x

� �

t

= s

0

x

.

{ ineq(s

t

) � � � �

t

� ineq(s

0

x

). Let t

1

; t

2

two distinct terms of s

t

. We have to

show that t

1

� � � �

t

and t

2

� � � �

t

are two di�erent terms of s

0

x

and therefore their

inequality appears in ineq(s

0

x

). It is easy to see that they are terms of s

0

x

since

s

t

� � � �

t

� s

0

x

. To see that they are also di�erent terms, notice �rst that t

1

� �

and t

2

� � are di�erent terms of s

x

, since the clause ineq(s

t

); s

t

! b

t

is captured

by [s

x

; c

x

]. It is su�cient to show that if t

0

1

; t

0

2

are any two distinct terms of s

x

,

then t

0

1

� �

t

and t

0

2

� �

t

are also distinct terms.

Notice the substitution �

t

maps the term t into a new variable x

t

that does

not appear in s

x

. Consider the �rst position where t

0

1

and t

0

2

di�er. Then, t

0

1

� �

t

and t

0

2

� �

t

will also di�er in this same position, since at most one of the terms

can contain t in that position. Therefore they also di�er after applying �

t

.

{ b

t

� � � �

t

2 c

0

x

. By hypothesis b

t

� � 2 c

x

implies b

t

� � � �

t

2 c

x

� �

t

= c

0

x

. �

Another property satis�ed by minimised multi-clauses is that the number of

distinct terms appearing in a minimised multi-clause coincides with the number

of distinct terms of any clause of U(T) it captures. This is because the min-

imisation procedure detects and drops the superuous term in s

x

. Let t be the

bound for the number of distinct terms in any clause of U(T). Then, t bounds

the number of distinct terms of any minimised multi-clause.

Let [s

i

; c

i

] be any multi-clause covering a clause in U(T). It can be shown

that the number of distinct terms in s

i

is greater or equal than the number of

terms in the clause it covers. This happens because the substitution showing the

covering of [s

i

; c

i

] does not unify terms. We can conclude that if [s

i

; c

i

] covers a

clause captured by a minimised [s

x

; c

x

], then s

x

has no more terms than s

i

.

It can be shown that if [s

x

; c

x

] and [s

i

; c

i

] are two full multi-clauses w.r.t. the

target expression T , � is a basic matching between the terms in s

x

and s

i

that

is not rejected by the pairing procedure, and [s; c] is the basic pairing of [s

x

; c

x

]

and [s

i

; c

i

] induced by �, then the multi-clause [s; rhs(s; c)] is also full w.r.t. T .

This, together with the fact that every minimised counterexample [s

x

; c

x

] is full

w.r.t. T implies that every multi-clause in the sequence S is full w.r.t. T , since its

elements are constructed by initially being a full multi-clause and subsequently

pairing full multi-clauses.

Lemma 3. Let S be the sequence [[s

1

; c

1

]; [s

2

; c

2

]; :::; [s

k

; c

k

]]. If a minimised

counterexample [s

x

; c

x

] is produced such that it captures some clause in U(T)

ineq(s

t

); s

t

! b

t

covered by some [s

i

; c

i

] of S, then some multi-clause [s

j

; c

j

] will

be replaced by a basic pairing of [s

x

; c

x

] and [s

j

; c

j

], where j � i.

Proof (Sketch). We will show that if no element [s

j

; c

j

] where j < i is replaced,

then the element [s

i

; c

i

] will be replaced. We have to prove that there is a basic

pairing [s; c] of [s

x

; c

x

] and [s

i

; c

i

] with the following two properties: rhs(s; c) 6= ;

and size(s) � size(s

i

).

We have assumed that there is some clause ineq(s

t

); s

t

! b

t

2 U(T) cap-

tured by [s

x

; c

x

] and covered by [s

i

; c

i

]. Let �

0

x

be the substitution showing

ineq(s

t

); s

t

! b

t

being captured by [s

x

; c

x

] and �

0

i

the substitution showing

ineq(s

t

); s

t

! b

t

being covered by [s

i

; c

i

]. Thus the following holds: s

t

� �

0

x

� s

x

;

ineq(s

t

) � �

0

x

� ineq(s

x

); b

t

� �

0

x

2 c

x

and s

t

� �

0

i

� s

i

; ineq(s

t

) � �

0

i

� ineq(s

i

).

We construct a matching � that includes all entries [t � �

0

x

- t � �

0

i

=> lgg(t �

�

0

x

; t � �

0

i

)] such that t is a term appearing in s

t

(only one entry for every distinct

term of s

t

).

Example 8. Let s

t

be fp(g(c); x; f(y); z)g containing 6 terms: c, g(c), x, y, f(y)

and z. Let s

x

be fp(g(c); x

0

; f(y

0

); z); p(g(c); g(c); f(y

0

); c)g, containing 6 terms:

c, g(c), x

0

, y

0

, f(y

0

), z. Let s

i

be fp(g(c); f(1); f(f(2)); z)g, containing 8 terms: c,

g(c), 1, f(1), 2, f(2), f(f(2)), z. The substitution �

0

x

is fx 7! x

0

; y 7! y

0

; z 7! zg

and it is a variable renaming. The substitution �

0

i

is fx 7! f(1); y 7! f(2); z 7! zg.

The lgg(s

x

; s

i

) is fp(g(c); X; f(Y); z); p(g(c); Z; f(Y); V)g and it produces the

following lgg table.

[c - c => c] [g(c) - g(c) => g(c)] [x' - f(1) => X]

[y' - f(2) => Y] [f(y') - f(f(2)) => f(Y)] [z - z => z]

[g(c) - f(1) => Z] [c - z => V]

The lgg

j

�

(s

x

; s

i

) is fp(g(c); X; f(Y); z)g and the extended matching � is

c) [c - c => c] g(c)) [g(c) - g(c) => g(c)])

x) [x' - f(1) => X] y) [y' - f(2) => Y]

f(y)) [f(y') - f(f(2)) => f(Y)] z) [z - z => z]

The matching � as described above is 1-1 and it is not discarded by the

pairing procedure. Moreover, the number of entries in � equals the minimum of

the number of distinct terms in s

x

and s

i

. Let [s; c] denote the pairing of [s

x

; c

x

]

and [s

i

; c

i

] induced by �.

We �rst claim that the matching � is legal and basic. This can be shown

by induction on the structure of the terms in s

t

that induce every entry in �.

The induction hypothesis is the following. If t is a term in s

t

, then the term

lgg(t ��

0

x

; t ��

0

i

) and all its subterms appear in the extension of some other entries

of �. The induction uses the fact that s

x

contains a variant of s

t

. Thus � is

considered by the algorithm.

Next, we argue that the conditions rhs(s; c) 6= ; and size(s) � size(s

i

) hold.

Let � be the substitution that maps all variables in s

t

to their corresponding

expression assigned in the extension of �. That is, � maps any variable v of s

t

to the term lgg(v � �

0

x

; v � �

0

i

). In our example, � = fx 7! X; y 7! Y; z 7! zg. The

proof of rhs(s; c) 6= ; consists in showing that [s; c] captures ineq(s

t

); s

t

! b

t

via �.

The use of 1-1 matchings in pairings guarantees that the number of literals in

the antecedent of a pairing never exceeds that of the multi-clauses originating it,

since at most one copy of every atom in the original multi-clauses is included in

the pairing. Thus, size(s) � size(s

i

). To see that the relation is strict, consider

the literal b

t

� �

0

i

. The proof is by cases. If b

t

� �

0

i

2 s

i

, then the size of s must be

smaller than that of s

i

because its counterpart in s (b

t

� �) does not appear in s

and the lgg never substitutes a term by one of greater size. If b

t

� �

0

i

62 s

i

, then

either s

i

contains an extra literal (thus size(s) � size(s

i

)), or [s

x

; c

x

] can not be

a counterexample. �

As a direct consequence, we obtain that whenever a counterexample is ap-

pended to the end of the sequence S, it is because there is no other element in

S capturing a clause in U(T) that is also captured by [s

x

; c

x

].

Lemma 4. Let [s

1

; c

1

] and [s

2

; c

2

] be two full multi-clauses. Let [s; c] be any

legal pairing between them. If [s; c] captures a clause ineq(s

t

); s

t

! b

t

, then the

following holds:

1. Both [s

1

; c

1

] and [s

2

; c

2

] cover ineq(s

t

); s

t

! b

t

.

2. At least one of [s

1

; c

1

] or [s

2

; c

2

] captures ineq(s

t

); s

t

! b

t

.

Proof. By assumption, ineq(s

t

); s

t

! b

t

is captured by [s; c], i.e., there is a �

such that s

t

� � � s, ineq(s

t

) � � � ineq(s) and b

t

� � 2 c. This implies that if

t; t

0

are two distinct terms of s

t

, then t � � and t

0

� � are distinct terms appearing

in s. Let � be the 1-1 legal matching inducing the pairing. The antecedent s is

de�ned to be lgg

j

�

(s

1

; s

2

), and therefore there exist substitutions �

1

and �

2

such

that s � �

1

� s

1

and s � �

2

� s

2

.

Condition 1. We claim that [s

1

; c

1

] and [s

2

; c

2

] cover ineq(s

t

); s

t

! b

t

via

� ��

1

and � ��

2

, respectively. Notice that s

t

�� � s, and therefore s

t

�� ��

1

� s ��

1

.

Since s � �

1

� s

1

, we obtain s

t

� � � �

1

� s

1

. The same holds for s

2

. It remains

to show that ineq(s

t

) � � � �

1

� ineq(s

1

) and ineq(s

t

) � � � �

2

� ineq(s

2

). Observe

that all top-level terms appearing in s also appear as one entry of the matching

�, because otherwise they could not have survived. Further, since � is legal, all

subterms of terms of s also appear as an entry in �. Let t; t

0

be any distinct

terms appearing in s

t

. Since s

t

� � � s and � includes all terms appearing in s,

the distinct terms t � � and t

0

� � appear as the lgg of distinct entries in �. These

entries have the form [t �� ��

1

- t �� ��

2

=> t ��], since lgg(t �� ��

1

; t �� ��

2

) = t ��.

Since � is 1-1, we know that t � � � �

1

6= t

0

� � � �

1

and t � � � �

2

6= t

0

� � � �

2

.

Condition 2. By hypothesis, b

t

� � 2 c and c is de�ned to be lgg

j

�

(s

1

; c

2

) [

lgg

j

�

(c

1

; s

2

) [lgg

j

�

(c

1

; c

2

). Observe that all these lggs share the same table, so

the same pairs of terms will be mapped into the same expressions. Observe also

that the substitutions �

1

and �

2

are de�ned according to this table, so that if

any literal l 2 lgg

j

�

(c

1

; �), then l � �

1

2 c

1

. Equivalently, if l 2 lgg

j

�

(�; c

2

), then

l � �

2

2 c

2

. Therefore we get that if b

t

� � 2 lgg

j

�

(c

1

; �), then b

t

� � � �

1

2 c

1

and

if b

t

� � 2 lgg

j

�

(�; c

2

), then b

t

� � � �

2

2 c

2

. Now, observe that in any of the three

possibilities for c, one of c

1

or c

2

is included in the lgg

j

�

. Thus it is the case

that either b

t

� � � �

1

2 c

1

or b

t

� � � �

2

2 c

2

. Since both [s

1

; c

1

] and [s

2

; c

2

] cover

ineq(s

t

); s

t

! b

t

, one of [s

1

; c

1

] or [s

2

; c

2

] captures ineq(s

t

); s

t

! b

t

. �

It is crucial for Lemma 4 that the pairing involved is legal. It is indeed possible

for a non-legal pairing to capture some clause that is not even covered by some

of its originating multi-clauses.

Lemma 5. Every time the algorithm is about to make an equivalence query, it

is the case that every multi-clause in S captures at least one of the clauses of

U(T) and every clause of U(T) is captured by at most one multi-clause in S.

Proof (Sketch). All counterexamples included in S are full positive multi-clauses.

Therefore, every [s; c] in S captures some clause of U(T). An induction on the

number of iterations of the main loop in line 2 of the learning algorithm shows

that no two di�erent multi-clauses in S capture the same clause of U(T). �

Recall that m

0

stands for the number of clauses in the transformation U(T).

Lemma 5 provides us with the bound m

0

on jSj required to guarantee termina-

tion of the algorithm. Counting carefully the number of queries made in every

procedure we arrive to our main result.

Theorem 1. The algorithm exactly identi�es range restricted Horn expressions

making O(m

0

st

a

) equivalence queries and O(m

0

s

2

t

a

e

a+1

t

+ m

0

2

s

2

t

2a+k

) mem-

bership queries. The running time is polynomial in the number of membership

queries.

5 Fully Inequated Range Restricted Horn Expressions

Clauses of this class can contain a new type of literal, that we call inequation

or inequality and has the form t 6= t

0

, where both t and t

0

are terms. Inequated

clauses may contain any number of inequalities in its antecedent. Let s be any

conjunction of atoms and inequations. Then, s

p

denotes the conjunction of atoms

in s and s

6=

the conjunction of inequalities in s. That is s = s

p

^ s

6=

. We say s

is completely inequated if s

6=

contains all possible inequations between distinct

terms in s

p

, i.e., if s

6=

= ineq(s

p

). A clause s ! b is completely inequated i� s

is. A multi-clause [s; c] is completely inequated i� s is. A fully inequated range

restricted Horn expression is a conjunction of fully inequated range restricted

clauses.

Looking at the way the transformation U(T) described in Section 2.2 is used

in the proof of correctness, the natural question of what happens when the target

expression is already fully inequated (and T = U(T)) arises. We will see that the

algorithm presented in Figure 2 has to be slightly modi�ed in order to achieve

learnability of this class.

The �rst modi�cation is in the minimisation procedure. It can be the case that

after generalising or dropping some terms (as it is done in the two stages of the

minimisation procedure), the result of the operation is not fully inequated. More

precisely, there may be superuous inequalities that involve terms not appearing

in the atoms of the counterexample's antecedent. These should be eliminated

from the counterexample, yielding a fully inequated minimised counterexample.

Given a matching � and two multi-clauses [s

x

; c

x

] and [s

i

; c

i

], its pairing [s; c]

is computed in the new algorithm as: s = ineq(lgg

j

�

(s

p

x

; s

p

i

)) [lgg

j

�

(s

p

x

; s

p

i

) and

c = lgg

j

�

(s

p

x

; c

i

) [lgg

j

�

(c

x

; s

p

i

) [lgg

j

�

(c

x

; c

i

): Notice that inequations in the an-

tecedents are ignored. The pairing is computed only for the atomic information,

and �nally the fully inequated pairing is constructed by adding all the inequa-

tions needed. This can be done safely because the algorithm only deals with fully

inequated clauses. The proof of correctness is very similar to the one presented

here. Complete details and proof can be found in [AK00a].

Theorem 2. The modi�ed algorithm exactly identi�es fully inequated range re-

stricted Horn expressions making O(mst

a

) calls to the equivalence oracle and

O(ms

2

t

a

e

a+1

t

+m

2

s

2

t

2a+k

) to the membership oracle. The running time is poly-

nomial in the number of membership queries.

6 Conclusions

The paper introduced a new algorithm for learning range restricted Horn expres-

sions (RRHE) and established the learnability of fully inequated range restricted

Horn expressions (FIRRHE). The structure of the algorithm is similar to pre-

vious ones, but it uses carefully chosen operations that take advantage of the

structure of functional terms in examples. This in turn leads to an improvement

of worst case bounds on the number of queries required, which is one of the main

contributions of the paper. The following table contains the results obtained in

[Kha99b] and in this paper.

Class EntEQ EntMQ

Result in [Kha99b] RRHE O(mst

t+a

) O(ms

2

t

t+a

e

a+1

t

+m

2

s

2

t

3t+2a

)

Our result RRHE O(mst

t+a

) O(ms

2

t

t+a

e

a+1

t

+m

2

s

2

t

2t+k+2a

)

Our result FIRRHE O(mst

a

) O(ms

2

t

a

e

a+1

t

+m

2

s

2

t

2a+k

)

Note that for RRHE the exponential dependence on the number of terms

is reduced from t

3t

to t

2t+k

. A more dramatic improvement is achieved for

FIRRHE where the comparable factor is t

k

so that the algorithm is polynomial

in the number of terms t though still exponential in the number of variables k.

This may be signi�cant as in many cases, while inequalities are not explicitly

written, the intention is that di�erent terms denote di�erent objects. The reduc-

tion in the number of queries goes beyond worst case bounds. The restriction

that pairings are both basic and agree with the lgg table is quite strong and

reduces the number of pairings and hence queries. This is not reected in our

analysis but we believe it will make a di�erence in practice. Similarly, the bound

m

0

� mt

t

on jU(T)j is quite loose, as a large proportion of partitions will be

discarded if T includes functional structure.

Finally, the use of lgg results in a more direct and natural algorithm. More-

over, it may help understand the relations between previous algorithms based on

lgg [Ari97,RT98,RS98] and algorithms based on direct products [Kha99a]. We

hope that this can lead to further understanding and better algorithms for the

problem.

References

[AK00a] M. Arias and R. Khardon. Learning Inequated Range Restricted Horn Ex-

pressions. Technical Report EDI-INF-RR-0011, Division of Informatics, Uni-

versity of Edinburgh, March 2000.

[AK00b] M. Arias and R. Khardon. A New Algorithm for Learning Range Restricted

Horn Expressions. Technical Report EDI-INF-RR-0010, Division of Infor-

matics, University of Edinburgh, March 2000.

[Ari97] Hiroki Arimura. Learning acyclic �rst-order Horn sentences from entailment.

In Proceedings of the International Conference on ALT, Sendai, Japan, 1997.

Springer-Verlag. LNAI 1316.

[Coh95a] W. Cohen. PAC-learning recursive logic programs: E�cient algorithms.

Journal of Arti�cial Intelligence Research, 2:501{539, 1995.

[Coh95b] W. Cohen. PAC-learning recursive logic programs: Negative results. Journal

of Arti�cial Intelligence Research, 2:541{573, 1995.

[FP93] M. Frazier and L. Pitt. Learning from entailment: An application to propo-

sitional Horn sentences. In Proceedings of the International Conference on

Machine Learning, pages 120{127, Amherst, MA, 1993. Morgan Kaufmann.

[Kha99a] R. Khardon. Learning function free Horn expressions. Machine Learning,

37:241{275, 1999.

[Kha99b] R. Khardon. Learning range restricted Horn expressions. In Proceedings of

the Fourth European Conference on Computational Learning Theory, pages

111{125, Nordkirchen, Germany, 1999. Springer-verlag. LNAI 1572.

[Kha00] Roni Khardon. Learning horn expressions with LOGAN-H. To appear in

ICML, 2000.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.

[MF92] S. Muggleton and C. Feng. E�cient induction of logic programs. In

S. Muggleton, editor, Inductive Logic Programming, pages 281{298. Aca-

demic Press, 1992.

[MR94] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and

methods. The Journal of Logic Programming, 19 & 20:629{680, May 1994.

[Plo70] G. D. Plotkin. A note on inductive generalization. Machine Intelligence,

5:153{163, 1970.

[RB92] L. De Raedt and M. Bruynooghe. An overview of the interactive concept-

learner and theory revisor CLINT. In S. Muggleton, editor, Inductive Logic

Programming, pages 163{192. Academic Press, 1992.

[RS98] K. Rao and A. Sattar. Learning from entailment of logic programs with local

variables. In Proceedings of the International Conference on Algorithmic

Learning Theory, Otzenhausen, Germany, 1998. Springer-verlag. LNAI 1501.

[RT98] C. Reddy and P. Tadepalli. Learning �rst order acyclic Horn programs from

entailment. In International Conference on Inductive Logic Programming,

pages 23{37, Madison, WI, 1998. Springer. LNAI 1446.

[SEMF98] G. Semeraro, F. Esposito, D. Malerba, and N. Fanizzi. A logic framework for

the incremental inductive synthesis of datalog theories. In Proceedings of the

International Conference on Logic Program Synthesis and Transformation

(LOPSTR'97). Springer-Verlag, 1998. LNAI 1463.

[Sha83] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge,

MA, 1983.

