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Abstract

The problem of learning universally quantified func-
tion free first order Horn expressions from equival-
ence and membership queries is studied. The res-
ults presented generalise the known algorithm for
propositional Horn expressions [AFP92] for sev-
eral models of learning in first order logic. It is
shown that exact learning is possible with member-
ship and equivalence queries with resources poly-
nomial in the number of clauses in the expression,
though superpolynomial in the number of univer-
sally quantified variables. Similar results for re-
lated models including entailment queries and ILP
are also derived.

1 Introduction

We study the problem of exactly identifying first order Horn
formulas using Angluin’s [Ang88] model of exact learning.
Much of the work in learning theory has dealt with learning
of Boolean expressions in propositional logic. Early treat-
ments of relational expressions appear in [Val85, Hau89],
but only recently more attention was given to the subject
in the form of Inductive Logic Programming (ILP) (see e.g.
[MDR94, Coh95a, Coh95b]), and many results on learning
from examples were derived. It is clear that the relational
learning problem is harder than the propositional one and
indeed except for very restricted cases it is computationally
hard [Coh95b]. To tackle this issue in the propositional do-
main various queries and oracles that allow for efficient learn-
ing have been studied [Val84, Ang88]. In particular, pro-
positional Horn expressions are known to be learnable in
polynomial time from equivalence and membership queries
[AFP92], and from entailment queries [FP93]. In the re-
lational domain, some forms of queries have been used in
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several systems (e.g. [Sha83, DRB92]) and results on learn-
ability in the limit were derived. More recently Reddy and
Tadepalli [RT97] considered the use of membership queries
and have shown that Horn definitions (where all clauses have
the same unique positive literal) are learnable.

In this paper we show that function free universally quan-
tified Horn expressions are exactly learnable. Our method
follows closely the ideas in [AFP92] and generalises the res-
ult by finding appropriate first order constructs. To illustrate
the results and parameters (exact definitions for the various
notions appear in the next section) consider the Horn expres-
sion

8x

1

; x

2

; x

3

;

(p

1

(x

1

; x

2

)p

2

(x

1

; x

3

) ! p

1

(x

2

; x

1

)) ^

(p

3

(x

3

; x

1

)p

1

(x

3

; x

1

) ! p

4

(x

3

)):

The language includes jP j = 4 predicates p
1

; : : : ; p

4

each of
arity at most a = 2, and the expression has k = 3 univer-
sally quantified variables, and m = 2 clauses. Our algorithm
learns this class of expressions with query complexity poly-
nomial in m; jP j; k

a

; k

k

; n where n is the number of objects
in the examples it sees, and time complexity polynomial in
the above parameters and nk.

In deriving the results we use a variant of the standard
semantics where each universally quantified variable in an
expression must be bound to a unique element. This setting
has been considered before by Haussler [Hau89]. Our main
result is that in this setting the number of equivalence queries
is polynomial in m; jP j; k

a

; n whereas the running time and
membership queries are as above. In fact our result can also
be seen as extending Haussler’s positive result (that shows
the learnability of a single clause) in having more than one
clause in the expression though restricting the clauses to be
Horn. While this model has its own merits we derive other
results for the standard model, entailment queries, and ILP
as corollaries. With entailment queries the running time does
not grow with nk. Some of these extensions hold for a more
expressive language allowing an arbitrary number of equal-
ities in the clauses, as in
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thus going somewhat beyond the pure Horn case.
Our learning algorithm uses pairings of examples, a vari-

ant of direct products that have been used before in similar
contexts (see e.g. [HST97]). Using pairings the progress of



the algorithm can be controlled so as to achieve the above
bounds.

We also show that in some sense these results are not
surprising. One can obtain similar bounds for a subset of
the language just by using an appropriate simulation of the
propositional algorithm in the first order domain. The direct
result is however stronger and naturally more appealing.

The rest of the paper is organised as follows. Section 2
defines the learning problem and Section 3 presents some
simple observations used throughout the paper. Section 4
shows how the propositional algorithm can be used in the
first order domain. Section 5 discusses the use of direct
products, Section 6 presents the main result on learning with
the special semantics, and Section 7 extends this result for
other models. In Section 8 we conclude with a brief discus-
sion.

2 Preliminaries

2.1 First Order Horn Expressions

We consider a subset of the class of universally quantified
expressions in first order logic. The learning problems un-
der consideration will assume a pre-fixed known and finite
signature of the language. That is, a finite set of predicates
P each with its associated arity is fixed (we do not allow
constants or other function symbols and thus these are not
needed). In addition a set of variables x

1

; x

2

; x

3

; : : : is used
to construct expressions. First order universally quantified
expressions over P are to be learned.

For definitions of first order languages see e.g. [CK90,
Llo87]; here we briefly introduce the necessary constructs.
A positive literal is predicate applied to a set of variables,
that is, p(X) where p 2 P and X is a set of variables of
an appropriate size (the arity of p). A negative literal is ob-
tained by adding the negation symbol to a positive literal, e.g.

p(X). A clause is a disjunction of literals where all variables
in the clause are (implicitly) universally quantified. A Horn
clause has at most one positive literal, and a Horn expres-
sion is a conjunction of Horn clauses. Note that any clause
can be written as c = (^

n2Negn) ! (_

p2Posp) where Neg

and Pos are the sets of negative and positive literals of C re-
spectively. When doing so we will refer to (^

n2Negn) as

the antecedent of c and to (_

p2Posp) as the consequent of c.

We will make use of several assumptions and restrictions on
expressions.
A1: The expressions are function free (and constant free).
A2: The arity of all predicates in P is bounded by a (small)
constant a.
A3: Every clause has at most one positive literal (i.e. a Horn
clause).
A4: All clauses under consideration are “non-generative” in
the following sense. Let c = (^

n2Negn) ! (_

p2Posp) be

as above, then every variable that appears in Pos also appears
in Neg, so that the rule does not generate knowledge on ob-
jects not tested in its condition, hence the name above.
A5: Every clause must have at least one negative literal.

Let F(P ) be the set of all expressions satisfying assump-
tions A1, A2, A3, and letF(P )

� be the set of all expressions
satisfying the assumptions A1, A2, A3, A4. (Note that when
A1 is assumed, A4 implies A5). For example p(x; y) !

q(x), is in F(P )

�, p(x; y) ! q(z) and q(x) are in F(P )

but not in F(P )

� (violate A4), p(x; y) ! q(x) _ q(y) is in
neither (violates A3).

Finally, let F(P;=) be the language F(P ) extended so
that clauses can have any number of literals of the form (x

i

=

x

j

), or (x
i

6= x

j

) where x
i

; x

j

are variables in the clause. An
example clause appears in the introduction. Hence, F(P;=)

goes somewhat beyond Horn expressions (if equalities are
considered as positive literals).

2.2 Examples

An example is an interpretation I of the predicates in P

[Llo87]. It lists a set of domain elements and the truth values
of all instantiations of predicates on these elements. The ex-
tension of a predicate in I is the set of positive instantiations
of it that are true in I. The extension of an interpretation is
the set of positive instantiations of predicates in P that are
true in it. Assumption A2 implies that the size of the exten-
sion of an example is polynomial in the number of domain
elements.

Examples of this form have been used in [Hau89] and
are motivated by the scenario of acting in structural domains
(e.g. [Kha96, RTR96, RT97]). They are also used in the
non-monotonicform of ILP [DRD94]. In structural domains,
domain elements are objects in the world and an instantiation
describes properties and relations of objects. We therefore
refer to domain elements as objects. For convenience we
assume a standard way of naming objects (and think of them
as a list of natural numbers).

For example, for the language of expressions given in the
introduction, I may have the extension fp

1

(1; 2); p

1

(3; 5);

p

2

(1; 5); p

4

(2)g for the set of objects f1; 2; 3; 4;5g. Notice
that no positive fact holds in I for the object 4.

2.3 Semantics

Note that the classes of expressions were defined syntactic-
ally. We attach a concept to each expression by defining ap-
propriate semantics. Since the paper discusses two differ-
ent semantics, an expression may be mapped to two differ-
ent concepts under these. When the chosen semantics is not
clear from the context we would specify which concept is
meant. For the meantime we define a single semantics, the
standard one [CK90, Llo87].

Let l(X) be a literal, I an interpretation and � a map-
ping of the variables in X to objects in I. The ground literal
l(�(X)) is obtained from l(X) by substituting variables in it
according to �. A ground positive literal p(�(X)) is true in I
if and only if it is in the extension of the relevant predicate.
A ground equality literal �(x

i

= x

j

) is true in I if and only
if � maps x

i

and x
j

to the same objects. A ground negative
literal is true in I if and only if its negation is not.

A clauseC 2 F(P ) is true in an interpretation I if for all
substitutions � of variables in C to objects in I at least one
of the literals in C(�) is true in I. An expression f 2 F(P )

is true in I if all clauses C in f are true in I. The terms (1) f
is true in I, (2) I is a positive example for f , (3) I satisfies f ,
(4) I is a model of f , and (5) I j= f , have the same meaning.
Let f; g 2 F(P ) then f implies g, denoted f j= g, if every
model of f is also a model of g.



2.4 Parametrising the Concept Class

The languages defined above can be further parametrised by
restricting the number of (universally quantified) variables
in each clause. Denote the respective classes where the num-
ber of variables is bounded by k, by Fk

(P );F

k

(P )

�, and
F

k

(P;=).
For f 2 F

k

(P;=), one can test whether I j= f by enu-
meration in time O(n

k

) if I has n objects. In general even
evaluating a single clause on a single interpretation is NP-
Hard (see e.g. [Val94] pp. 212) if k is not bounded. Re-
cent results [PY97] suggest that it is not likely to have an
algorithm polynomial in n even for small non-constant val-
ues of k. We will thus assume that k is constant whenever
such evaluation needs to be performed. Note that this re-
striction does not limit the size of clauses to be constant
but instead longer clauses must reuse the same variables re-
peatedly. Similar restrictions have been previously used by
Haussler [Hau89].

Other assumptions that ensure tractability have also been
used (e.g. determinacy in [DMR92]); we do not address such
restrictions here.

2.5 The Learning Model

The learning model uses several forms of queries [Ang88,
FP93]. Let F be a class under consideration, and let f 2 F

be the target function. For Equivalence Queries the learner
presents a hypothesis H 2 F and the oracle return “yes” if
H = f and otherwise it returns an interpretation I that is
a counter example (I j= f and I 6j= H or vise versa). For
Membership Queries the learner presents an interpretation
I and the oracle return “yes” iff I j= f . For Entailment
Queries, the learner presents C(�(X)), a ground instance of
a clause C 2 F (i.e. all variable are substituted to objects)
and the oracle return “yes” iff f j= C. Further definitions for
the ILP setting are given in Section 7.

In the learning model a target function f 2 F is fixed and
hidden from the learner. A learner interacts with the oracles
and has to find an expression H that is equivalent to f with
respect to j=.

3 Small Interpretations

The following lemmas indicate that we can always restrict
our attention to small interpretations. Let I be an interpret-
ation, and let A be a subset of the objects in I. Then I

jA

is
the interpretation induced from I by deleting the objects not
in A and all the instantiated predicates on these objects. Let
I

k be the set of interpretations where the number of objects
is at most k.

Lemma 3.1 Let f 2 F

k

(P ) and let I be any interpretation.
If I 6j= f then there is a set A of objects of I such that
(1) jAj = k, I

jA

2 I

k, and I
jA

6j= f

(2) 8B � A, I
jB

6j= f .

Proof: This follows since to falsify f a single substitution
� is sufficient and since f has at most k variables it is suffi-
cient to include in A the objects mentioned in �. Clearly, any
superset B of A can falsify f using the same �.

Lemma 3.2 Let f 2 F(P ), and let I be any interpretation.
If I j= f then for any set A of objects of I, I

jA

j= f .

Proof: Assume I
jA

6j= f . Then there is a substitution � and
a clause C in f such that C is not true in I

jA

. Clearly C is
not true in I under the same �.

We next show that if the domain is fixed then F(P )

� can
be simulated by propositional expressions. In order to relate
interpretations to the standard propositional setting we as-
sume a fixed number of objects k, and object names 1; 2; : : : ; k.
For each predicate r() of arity a we create ka propositional
variables r

(1;:::;1)

; : : : ; r

(k;:::;k)

, corresponding to all instan-

tiations of r() over objects in 1; 2; : : : ; k. An interpretation I
corresponds to an assignment of values in f0; 1g to the pro-
positional variables in a natural way. Namely, for a tuple
A of a objects in 1; : : : ; k, the propositional variable r

A

is
assigned 1 if and only if r(A) 2 I. When discussing propos-
itional expressions and the propositional learning algorithm
we implicitly assume that this translation is used.

Let f be a universally quantified Horn expression on a
set of variables X = (X

1

; : : : ; X

k

)

f = 8X; C

1

(X)C

2

(X) : : :C

m

(X):

Let �
1

; : : : ; �

k

k be an enumeration of all possible mappings
of k object variables to objects in an interpretation with ex-
actly k objects. Consider the propositional expression

f

p

= C

1

(�

1

(X))C

1

(�

2

(X)) : : :C

1

(�

k

k(X))

C

2

(�

1

(X))C

2

(�

2

(X)) : : :C

2

(�

k

k(X))

: : :

C

m

(�

1

(X))C

m

(�

2

(X)) : : :C

m

(�

k

k(X)):

For I 2 I

k define inflate(I) to be the interpretation with
the same extension as I but where the number of objects is
exactly k. Namely to get inflate(I) we add new “phantom”
objects to I. We have the following:

Lemma 3.3 Let f 2 F

k

(P )

�, I 2 I

k, and let f
p

be the
propositional version of f described above. Then the follow-
ing conditions are equivalent:
(1) I 6j= f

(2) inflate(I) 6j= f

(3) inflate(I) 6j= f

p

.

Proof: Clearly (1) implies (2) and (3) since the falsifying
substitution in I suffices. Now (3) implies (2) since the
clause falsified in f

p

supplies the falsifying substitution in f .
To see that (2) implies (1) notice that phantom assignments
do not change the truth value. For any � that maps a variable
to a phantom object, and any clause C that uses this variable,
C(�(X)) is true since the antecedent of C is false. This is
guaranteed by assumption A4 since if a variable appears in a
clause it must appear in the antecedent at least once.

4 Using the Propositional Algorithm

In this section we present a simulation result showing that
the propositional algorithm from [AFP92] can be adapted to
learn F(P )

�.

4.1 The Algorithm Prop-Horn

We describe the propositional algorithm which we refer to
later as Prop-Horn. We first define the basic operations of



1. Maintain an ordered set of interpretations S, initialised to ; and let H = candidates(S).

2. Repeat until H = f :

� Ask an equivalence query using H, to get a counter example in case H 6= f .

� On a positive counter example remove wrong clauses from H.

� On a negative counter example I:

For i = 1 to m (where S = fs

1

; : : : ; s

m

g)

If J = s

i

^ I is negative (use MQ), and its extension is smaller than that of s
i

then replace s
i

with J , and quit loop.

If no s
i

was replaced then add I as the last element of S.

After each negative counter example, recompute H as candidates(S).

Figure 1: The algorithm Prop-Horn

the algorithm. Let I be an interpretation, and let ant(I) be
the conjunction of all positive ground literals true in I, and
neg(I) be the set of all positive ground literals that are false
in I. The set candidates(I) is the set of clauses fant(I) !

A j A 2 neg(I)g [ fant(I)g. For a set of interpretations S,
candidates(S) = [

s2S

candidates(s).

Let I
1

; I

2

be interpretations with the same set of objects.
The intersection of I

1

; I

2

is defined to have the same objects
as in I

1

; I

2

, and its extension is defined to have the intersec-
tion of the positive ground literals in I

1

; I

2

. We denote the
intersection by I

1

^ I

2

. Note that while the class of universal
sentences is oblivious to naming of objects the propositional
treatment here is sensitive in this respect.

The algorithm is described in Figure 1. The algorithm
maintains an ordered set of “representative” negative examples
from which it builds its hypothesis by using the candidates()
operation. A new negative counter example either removes
a wrong clause, refines one of the current representative ex-
amples, or is otherwise added as a new representative ex-
ample. The correctness and efficiency of the algorithm fol-
low by showing that no two representative examples falsify
the same clause in the representation for f , and that each re-
finement makes progress is some measurable way [AFP92].

4.2 The Algorithm FOL-Horn-1

The observations in the previous section suggest a method
for learning F(P )

� by using the propositional algorithm.
The learning algorithm will use the propositional hypothesis
of Prop-Horn and will adapt the number of objects in counter
examples to be exactly k by using membership queries to
reduce the number of objects (relying on Lemma 3.1 and
Lemma 3.2) or using inflate() to set the number of objects
to k (relying on Lemma 3.3). This however does not quite
work if arbitrary examples rather than examples in Ik are
used since f

p

is not guaranteed to be correct on these.
We next show that this difficulty can be overcome by ad-

apting the algorithm to use a first order hypothesis. We call
the modified algorithm FOL-Horn-1.

The algorithm FOL-Horn-1 runs Prop-Horn using Ik as
the domain and simulating its oracles while interacting with
the first order oracles. Assume first that f 2 F

k

(P )

� and
the algorithm knows the correct value of k.

The algorithm uses Prop-Horn’s set of interpretations S
to generate its own hypothesis as follows. For an interpreta-

tion I, ant(I) is a conjunction of positive literals obtained
by listing all the positive literals in I and replacing each
object with a distinct variable. Let X be the set of vari-
ables in ant(I). Then candidates(I) includes the set of
Horn clauses of the form ant(I) ! p(Y ), where p is a
predicate in the language and Y is a subset of X of the ap-
propriate arity. In addition, the set candidates(I) also in-

cludes the clause ant(I) (i.e. the one with the empty con-
sequent). The hypothesis of the algorithm is generated as
H = ^

s

i

2S

candidates(s

i

). Initially S = ; and H is true
on any interpretation.

When Prop-Horn asks a membership query (by intersect-
ing x with the elements of S) the queries are passed directly
to the membership oracle and answered in the same way.

When Prop-Horn asks an equivalence query the algorithm
recomputes H as H = ^

s

i

2S

candidates(s

i

) and asks an
equivalence query. Given a positive counter example the al-
gorithm evaluates all clauses in H on it, and removes any
clause falsified by I from H. Evaluation of a single clause
on I can be done by iterating over all possible substitutions,
hence in time O(n

k

) where n is the number of objects in I.

Given a negative counter example if it has more than k

objects the algorithm first finds a subset of objects that is
sufficient as a counter example. This can be done greedily
by removing one object at a time and asking a membership
query. By Lemma 3.1 and Lemma 3.2 this yields a correct
counter example that has at most k objects. Let I be the
minimal counter example found; the algorithm renames the
objects of I using names in f1; 2; : : :; kg, and presents x =

inflate(I) to Prop-Horn as a counter example.

Note that Prop-Horn’s hypothesis is never evaluated (and
hence need not be generated). Its computation is restricted
to computing intersections and asking membership queries.
These in fact can be incorporated into FOL-Horn-1. The al-
gorithm can be adapted for the case when the value of k is
not known. This is discussed in the proof of the following
theorem that appears in the appendix.

Theorem 4.1 The classF(P )

� is learnable by the algorithm
FOL-Horn-1 using equivalence queries and membership quer-
ies. For f 2 Fk

(P )

� withm clauses, the number of queries
is polynomial inm; jP j; k

a

; k

k

; n, and the time complexity is
polynomial in the above parameters and n

k, where n is the
largest number of objects in the counter examples.



This result is improved upon in Section 7 where F(P;=)

is shown to be learnable (with slightly better bounds). The
result however may be useful for other possible generalisa-
tions.

5 Direct Products

Direct Products are a generalisation of the intersection oper-
ation appropriate for first order Horn expressions. Products
are in some sense the correct notion since they character-
ise Horn expressions just as intersections characterise pro-
positional Horn expressions (and intersections fall as a spe-
cial case of products for propositional logic). Products are
closely related to least general generalisations [Plo70] as poin-
ted out e.g. in [HT95, HST97]. Unfortunately, products are
difficult to handle since they result in an exponential growth
in hypothesis size, and in addition make it hard to identify
when “progress” is made as done in the propositional al-
gorithm. We briefly introduce these ideas and problems that
in turn serve to motivate our next result.

Let I
1

; I

2

; : : : ; I

j

be interpretations. The direct product
of I

1

; I

2

; : : : ; I

j

denoted 
(I
1

; I

2

; : : : ; I

j

) is an interpreta-
tion. The set of objects in 
(I

1

; I

2

; : : : ; I

j

) is the set of
tuples (a

1

; a

2

; : : : ; a

j

) where a
i

is an object in I

i

. The ex-
tension of 
(I

1

; I

2

; : : : ; I

j

) is defined as follows. Let P be
a predicate of arity l and let (c

1

; : : : ; c

l

) be a l-tuple of ele-
ments of 
(I

1

; I

2

; : : : ; I

j

), where c

i

= (a

i

1

; a

i

2

; : : : ; a

i

j

).
Then P (c

1

; : : : ; c

l

) is true in 
(I

1

; I

2

; : : : ; I

j

) if and only
if for all 1 � q � j P (a

1

q

; a

2

q

; : : : ; a

l

q

) is true in I

q

. In
words, P (c

1

; : : : ; c

l

) is true if and only if component-wise
P is true on the original tuples generating (c

1

; : : : ; c

l

) in the
corresponding interpretations. When j = 2 we also denote

(I

2

; I

2

) by I
1


 I

2

.

For example let I
1

= fp(1); p(2); q(1; 2)g, and I

2

=

fp(3); q(3; 3); q(4; 3)g, then the domain of 
(I
1

; I

2

) is
f(1; 3); (1; 4); (2;3); (2;4)g and


(I

1

; I

2

) = fp((1; 3)); p((2; 3)); q((1; 3); (2; 3));

q((1; 4); (2; 3))g:

Renaming the objects by f5; 6; 7; 8g (in the same order) we
get 
(I

1

; I

2

) = fp(5); p(7); q(5; 7); q(6; 7)g.
Products are important since they exactly characterise the

class of Horn expressions. The following theorem is due to
McKinsey [McK43] (see also [Hor51, CK90]). Our proofs
for Lemma 6.1 and Lemma 6.3 below, follow similar lines.

Theorem 5.1 [McK43] A universally quantified first order
expression is equivalent to a universally quantified first or-
der Horn expression if and only if its set of models is closed
under direct products.

The fact that models of Horn sentences are closed under
products is used by the algorithm Prop-Horn when deciding
whether to merge a counter example into the current s

i

or
not. If the intersection of s

i

and a counter example I is neg-
ative then they both “cover” the same clause of f . Also, if
both are falsified by the same clause then their intersection
is guaranteed to be negative. In fact as will be seen below
slightly more subtle properties are used though they rely on
this property.

It is therefore natural to try and generalise the algorithm
Prop-Horn by simply replacing the intersection operation by
the direct product, thus lifting it to the relational level. Sev-
eral difficulties however arise when this is done. Firstly,
the size of 
(I

1

; : : : ; I

j

) is exponential in j so we may end
up with large interpretations. Following Lemma 3.1 and
Lemma 3.2 one can try to reduce the size of interpretations
dealt with, simply by omitting objects from them. This leads
to further difficulties, mainly due to the fact that when evalu-
ating a clause on an interpretation, several variables in the
clause may bind to the same object. Such an object can
be expanded in a product and thus the size of the exten-
sion found cannot be used to distinguish whether progress
is made or not. These aspects are illustrated in the follow-
ing examples where a naive generalisation of the algorithm
is discussed. Recent results [RT98] show that it may be pos-
sible to overcome these problems if the Horn expression is
acyclic.

Example 1 Let

f = 8x; y; (P (x; y)! Q(x)) ^ (R(x; y)! S(x))

and let s
1

= fP (a; b); P (b; c)g, and I = fP (1; 1); R(1; 2);

Q(1)g. Then s

1


 I = fP (a1; b1); P (b1; c1)g is negative
for f . It does include more objects, namely, a2; b2; c2 (for
which no positive facts appear in the product). When these
are removed we get an interpretation that is isomorphic to s

1

.

Example 2 This example shows that it may be the case
that I falsifies C, s

i

“covers” C but all negative subsets
of J = s

i


 I do not have a smaller extension than s

i

.
This should be contrasted with Lemma 4 in [AFP92] and
Lemma 6.4 below. It also shows that this case may be con-
fused with the situation in Example 1. Consider

f = 8x; y; z;

(P (x; y)Q(y; z) ! S(x)) ^

(Q(x; y)P (y; z) ! S(x)):

Let
I

1

= fP (1; 2); P (2; 2); Q(2;2); S(2)g;

then s1
1

= I

1

(denoting versions of s by superscript), and

H = P (x; y)P (y; y)Q(y; y)S(y) ! S(x):

Let
I

2

= fP (b; b); Q(a; b); Q(b; b); S(b)g;

then

s

1


 I

2

= fP (1b; 2b); P (2b; 2b); Q(2a; 2b);

Q(2b; 2b); S(2b)g:

If we try to minimise the number of objects in the counter
example we have two options, omitting either 1b or 2a. If
we omit 2a then

s

2

1

= fP (1b; 2b); P (2b;2b);Q(2b;2b); S(2b)g

which is isomorphic to s

1

1

so the algorithm makes no pro-
gress. If we omit 1b then

s

2

1

= fP (2b; 2b); Q(2a;2b); Q(2b; 2b); S(2b)g

which is a dual case. By using I
3

= I

1

we get that s2
 I

3

is
isomorphic to s1 
 I

2

.



6 Unique Substitution Semantics

The above observations indicate that the problem might be-
come easier if a product could not expand a subset of the ob-
jects to an interpretation falsifying a new clause. We define
an alternative semantics that enforces this restriction, and
show that in this settingF(P ) is learnable with a polynomial
number of equivalence queries (i.e polynomial in k rather
than k

k). The approach we take is similar to the one taken
by [Hau89] where (translated to our setting) it is shown that
a single universally quantified clause is learnable from equi-
valence and membership queries (this holds for general clauses
not just Horn clauses). The result that follows shows that in
this model Horn expressions are also learnable. Thus we ex-
tend the result in having more than one clause but restrict the
clauses to be Horn.

Definition 6.1 Let I be an interpretation and f 2 F(P )

with variables inX. We say that f is d-true in I (and I is a d-
model of f), and denote it by I j=

d

f if for all 1-1substitutions
� that map each variable to a distinct object in I, f(�(X))

is true in I, where the semantics for ground clauses remains
as before.

Notice that if the number of objects in I is smaller than
the number of variables in C then I is positive for C. Cau-
tion must be taken with the use of standard inference rules
when using this definition because of the shift in semantics
(e.g. Modus Ponens must preserve the number of objects
in its conclusion). For our purposes it suffices to note that
if C

2

can be obtained from C

1

by adding literals to it, and
f j=

d

C

1

then f j=

d

C

2

. Note also that Lemma 3.1 and
Lemma 3.2 hold in this model as well. In the rest of the
section we discuss only j=

d

and omit the special d notation
whenever possible. The new semantics define the notion of
falsifying a clause. Similarly, we say that I d-covers a clause
if its antecedent is satisfied in I by a 1-1 substitution that
maps all variables of C. Note that this requires that I has
enough objects to be mapped to the variables of C. As for
falsification we omit d in the rest of the section.

For j=
d

McKinsey’s theorem does not hold. A product of
two models of f may not be a model of f .1 However, a sim-
pler operation we call pairing can be used instead of products
and it does not increase the size of the interpretations.

Let I
1

; I

2

be interpretations, a pairing of I
1

; I

2

is an in-
terpretation induced from I

1


 I

2

by a subset of the objects
that corresponds to a 1-1 matching of the objects in I

1

and
I

2

. The number of objects in a pairing is equal to the smal-
ler of the number of objects in I

1

; I

2

. Thus a pairing is not
unique and one must specify the matching of objects used to
create it. Similar to products we can define k-wise pairings.

Lemma 6.1 Let f 2 F(P ). Then the set of models of f is
closed under pairings.

Proof: Let f 2 F(P ), I
1

; I

2

models of f , and C a clause in
f . Assume that a pairing I falsifies C and consider a substi-
tution � = (�

1

; �

2

) such that C is falsified by I, where �
1

; �

2

1For example let f = P (X;Y ) ! Q(X), I
1

= fP (1; 1)g,
and I

2

= fP (a; b)Q(a)g. Both I

1

and I

2

are positive but their
product fP (1a; 1b)g is negative.

are the corresponding substitutions mapped to elements of
I

1

; I

2

. Since a pairing is 1-1, both �

1

and �

2

are 1-1. We
therefore get that the antecedent of C is true in I

1

w.r.t. �
1

,
and similarly for I

2

; �

2

. Moreover, for at least one of I
1

; I

2

the consequent ofC is false under the respective substitution.
We get that at least one of I

1

; I

2

falsifies the clause.

Corollary 6.2 If J is a pairing of I
1

and I
2

and J falsifies
C 2 F(P ) then at least one of I

1

; I

2

falsifies C, and both
cover C.

The following lemma shows that if A4 is assumed then
pairings completely characterise the class F(P )

�. This fact
is however not needed for our result that establishes learnab-
ility of F(P ).

Lemma 6.3 Let f be an expression satisfying A1, A2, A4.
If the set of d-models of f is closed under pairings then f

can be written as an expression satisfying A1, A2, A3, A4
(i.e. it is Horn).

Proof: The proof adapts the technique of [McK43] to the
current setting. Let f = 8X;C

1

^C

2

^ : : :^C

s

and assume
that C = C

1

is not Horn, namely it has j > 1 positive liter-
als, so thatC = :P

1

_: : :_:P

m

_P

m+1

_: : :_P

m+j

. Define
j “Horn-Strengthening” [SK96] clauses for C each includ-
ing one of the positive literals of C, so that for 1 � i � j,
C

i

= :P

1

_ : : :_ :P

m

_ P

m+i

.
We claim that for some i, f j= C

i and therefore f can be
rewritten as f = 8X;C

i

^C

2

^ : : :^C

s

. In this way all the
non-Horn clauses of f can be replaced with Horn clauses.

To prove the claim assume that for all i, f 6j= C

i and let
I

i

be be a model of f which is not a model of Ci (which
exists since f 6j= C

i). Let I be a j-pairing induced from


(I

1

; : : : ; I

j

) by the objects used in � = (�

1

; : : : ; �

j

) where

�

i

is the substitution for I
i

which falsifies Ci. For this note
that since f satisfies A4, all the variables of a clause appear
in all versions Ci of that clause and hence all �

i

’s have the
same variables.

We get that all negative literals of C are true in I (since
the component-wise literals must be true in order to falsify
the Ci), but for the positive literals at least one of the com-
ponents is false (e.g. for P

m+i

the component corresponding
to I

i

must be false in order to falsify Ci). We therefore get
that I 6j= C, which contradicts the fact that the models of f
are closed under pairings.

With pairings used, progress can be monitored similar
to the propositional case. The generalised algorithm FOL-
Horn-2 is described in Figure 2. The operations ant(I), and
candidates(I) are defined as in the relational case in Sec-
tion 4.2. The algorithm maintains an ordered set S of neg-
ative interpretations. These are used to generate the hypo-
thesis by using candidates(s

i

) for each s
i

2 S. On positive
counter examples wrong clauses are removed from H. On a
negative counter example (as in FOL-Horn-1) the algorithm
first greedily minimises the number of objects in the counter
example. This ensures that the resulting counter example has
at most k objects. The algorithm then tries to find a pairing
of this counter example with any of the interpretations s

i

in
S that results in a negative example which has an extension



1. Maintain an ordered set of interpretations S, initialised to ; and let H = candidates(S).

2. Repeat until H = f :

(a) On a positive counter example remove wrong clauses from H.

(b) On a negative counter example I:

i. Minimise the number of objects in I while still negative – (use MQ).

ii. For i = 1 to m (where S = fs

1

; : : : ; s

m

g)

For every pairing J of s
i

and I

if J is negative (use MQ) and it has less objects than s
i

or its extension is smaller than that of s
i

then
replace s

i

with J , and quit loop.

iii. If no s
i

was replaced then add I as the last element of S.

iv. Let j be the index of the updated s
i

or the added example (i.e. m + 1).
Update H by removing clauses generated by the previous s

j

(if a replace)
and adding the clauses in candidates(s

j

) to it.

Figure 2: The algorithm FOL-Horn-2

smaller than that of s
i

, or a smaller number of objects. This
can be done by trying all possible matchings of objects in
the corresponding interpretations and appealing to a mem-
bership query oracle.2 The first s

i

for which this happens is
replaced with the resulting pairing. In case no such pairing
is found for any of the s

i

the counter example I is added to
S as the last element. Note that the order of elements in S

is used in choosing the first s
i

to be replaced, and in adding
counter example as the last element. These are crucial for the
correctness of the algorithm. Finally, note that the algorithm
does not need to know the value of k.

The analysis of the algorithm follows the line of argu-
ment of [AFP92] establishing that similar properties hold in
the more general case. Intuitively, the argument shows that a
negative counter example will be “caught” by the first s

i

that
covers a clause falsified by it. This guarantees that two ele-
ments of S do not falsify the same clause of f (since if this
happens some previous counter example must not have been
caught), and hence yields a bound on the size of S. Since in
each step some measurable progress is made, bounds on the
number of queries can be derived.

Lemma 6.4 Let I be a negative counter example after the
minimisation of the number of objects (in Step 2(b)i). As-
sume that the algorithm tests s

i

(in Step 2(b)ii). If there is
a clause C 2 F(P ) such that f j= C, s

i

covers C, and I

falsifies C, then the algorithm replaces s
i

.

Proof: Assume the conditions of the lemma hold. Fix C,
and let �

1

be a substitutionshowing that s
i

covers C, and �
2

a
substitutionshowing that I falsifiesC. Then J , the pairing of
the objects that are bound to the same variables in �

1

; �

2

(this
can be done since �

1

; �

2

are 1-1), falsifies C with respect to
� = (�

1

; �

2

). Therefore J is negative for f .
Since I is negative for C and since its number of objects

has been minimised the number of objects in I is exactly the
number of variables in C. It follows that either I has less
objects than s

i

(in which case so do all the pairings and s

i

is replaced) in which case we are done, or I and s

i

have

2Obviously a better solution for this would be desirable. One
can show that certain greedy methods will not succeed.

exactly the same number of objects. Assume therefore that
the latter is the case; we argue that the pairing J has a smaller
extension than that of s

i

. To observe that notice first that a
pairing cannot increase the number of positive literals.

Furthermore, consider the clause in candidates(s
i

) that
corresponds to C and denote it by �. The clause � can be
obtained as follows. Since s

i

d-covers C there is a 1-1 map-
ping from objects in s

i

to variables in C (this is the inverse
of �

1

) so that by following this mapping we can obtain the
antecedent of C as a subset of ant(s

i

). To get �, assume
this mapping of variables is used, and pick the element of
candidates(s

i

) that has the same consequent as C. There
are two cases: if the consequent of C is already in ant(s

i

)

then � is trivially true (it has the consequent as part of the
antecedent). This happens if s

i

d-covers but does not d-
falsify C. In this case we may assume that � is in H. In
the other case, when the consequent of C is not in ant(s

i

),
� is indeed in candidates(s

i

). The next argument holds in
both cases.

Since � can be obtained from C by adding literals to it
we have that f j= � and therefore it is not removed from H

by any positive counter example. We also know that since
I is a negative counter example it is positive for �, and in
particular � is not falsified by I with respect to �

2

.3 Now
since I falsifies C under �

2

it must be the case that the con-
sequent of C is false in I under �

2

and since the consequent
is the same in C and � the same holds for �. We therefore
get that the antecedent of � is not true in I with respect �

2

, or
in other words there is a literal l(X) in � such that l(�

2

(X))

is false in I. The literal l(X) was generated by l(�

1

(X))

in s

i

. Since the pairing J matches objects according to the
variables they are bound to we get that, while l(�

1

(X)) is in
s

i

, l(�(X)) is not in J where � = (�

1

; �

2

), and thus J has a
smaller extension.

Lemma 6.5 At all times in the algorithm, for all k; i such
that k < i, and for all C 2 F(P ) such that f j= C, if s

i

falsifies C then s
k

does not d-cover C.

3Notice that since C and � have the same variables �
2

can be
used for both, and thus the above is well defined.



Proof: We argue by induction on the construction of S. The
claim clearly holds for the empty set. For the inductive step,
assume the claim does not hold; we show that a contradiction
arises. Let I be the last counter example, and let C be the
clause that exists if the claim does not hold.

Consider first the case where I = s

i

is appended. But in
this case I falsifies C, and by Lemma 6.4 s

k

is replaced if
tested.

Clearly we only need to argue about cases where either
s

i

or s
k

are replaced. Consider next the case where s

k

is
replaced by J . By Corollary 6.2, since J falsifies C, s

k

d-
covers C, and this contradicts the inductive assumption.

Consider next the case where s
i

is replaced by J . Then J
is negative and therefore (again by Corollary 6.2) both s

i

and
the counter example I, d-cover C, and at least one falsifies
C. If s

i

falsifies C we get a contradiction to the inductive as-
sumption. If I falsifies C then by Lemma 6.4 s

k

is replaced
if tested.

Theorem 6.6 The class F(P ) is learnable by the algorithm
FOL-Horn-2 using equivalence queries and membership quer-
ies under the unique substitution semantics. For f 2 Fk

(P )

withm clauses, the algorithm makes at mostE
N

+E

P

equi-
valence queries and (n+mk

k

)E

N

membership queries, where
E

N

� m(�+k), E
P

� E

N

�, n is the largest number of ob-
jects in any of the counter examples, and � = jP jk

a where a
is the bound on arity of predicates. The running time of the
algorithm is polynomial in the above bounds and nk.

Proof: Since all elements of S are negative, each falsifies
at least one clause of f . By Lemma 6.5, no two elements
falsify the same clause of f and hence at any time S has at
most m elements.

Every negative counter example either reduces the num-
ber of objects in some s

i

, or reduces the size of the exten-
sion of some s

i

, or introduces a new element s
i

. The size
of the extension of any I with at most k objects is bounded
by jP jka, and each s

i

has at least one and at most k objects.
The number of negative counter examples E

N

is therefore
bounded by m(� + k).

After each negative counter example the algorithm up-
dates H by changing the clauses of a single s

j

. Since the
number of possible consequents is bounded by � this pro-
duces at most � wrong clauses. Since every positive counter
example removes at least one wrong clause from H, there
are at most E

N

� positive counter examples. This derives the
bound on the number of equivalence queries.

For the membership queries notice that for each negative
counter example we need at most n queries for reducing the
number of objects, and at most mk

k queries to test pairings.
Considering the running time, the operations on negative

examples are polynomial in the above bounds. For a positive
counter example I the algorithm has to evaluate each clause
in H on I, and this can be done in time O(n

k

), since clauses
in H have at most k variables.

By careful recording we can make sure that each con-
sequent in candidates(s

i

) is removed only once and in this
way reduce the number of positive counter examples. This
can be done since if AB ! C is not implied by f (and it

is removed), then clearly A ! C is not implied by f . It
can be seen that for a fixed i, the antecedents of clauses in
candidates(s

i

) are subsets of previous antecedents. Hence
once a consequent is removed for s

i

, as a result of a pos-
itive counter example, it need not be generated again when
updating H. Hence E

P

can be reduced to m�. This idea is
discussed in detail for the propositional case in [AFP92].

7 Extensions

In this section we apply Theorem 6.6 to other settings. In do-
ing so we omit the exact bounds which can be easily derived.
For a related discussion and comparison of various models of
learning when queries are not allowed see [DR97].

7.1 Normal Semantics

We can apply the theorem to the normal semantics since ex-
pressions in Fk

(P ) under j=
d

can simulate expressions in
F

k

(P ) under j=.

Lemma 7.1 For every f 2 F

k

(P ) with m clauses there is
an expression U (f) 2 F

k

(P ) with at mostmk

k clauses such
that for all interpretations I, I j= f if and only if I j=

d

U (f).

Proof: We construct U (f) from f by considering every
clause separately. For a clause C in f with j variables gen-
erate set of clauses U (C). To do that, consider all partitions
of the j variables; each such partition generates a clause by
assigning a single new variable to all variables in a single
class. This covers all possibilities of unifying various sub-
sets of variables of C to each other. The number of such
clauses is equal to the number of partitions of a j element set
(the Bell number B

j

) that is obviously bounded by jj . Then
U (f) is the conjunction of all clauses generated for all its
clauses. The construction makes sure that all possible ways
to falsify a clause C in f by a non-unique substitution are
covered by a unique substitution for one of the clauses of
U (C). It is easy to check that the claim follows.

Hence the algorithm working under j=
d

can simply inter-
act with oracles working according to j= and still learn the
same class.

Corollary 7.2 The class F(P ) is learnable from equival-
ence and membership queries.

The above corollary improves upon Theorem 4.1 by ex-
tending the concept class. It does result however in an expan-
sion similar to the propositional one, though slightly better.
While the propositional expansion has an element of S for
each possible substitution for each clause, the current expan-
sion has an element for each partitionof its variables. Similar
differences hold for the bounds on the number of equivalence
queries.

7.2 Using Equality

As we now show another advantage of j=
d

is that it allows for
an easy incorporation of equalities and inequalities relative
to j=. In particular Fk

(P ) under j=
d

can simulate Fk

(P;=)

under j= hence yielding a learning result for F(P;=) under
j=.



Lemma 7.3 For every f 2 F

k

(P;=) with m clauses there
is an expression U

�

(f) 2 F

k

(P ) with at most mk

k clauses
such that for all interpretations I, I j= f if and only if I j=

d

U

�

(f).

Proof: We first show that for each f 2 F(P;=) there is an
expression g equivalent to f under j= such that no clause in
g includes inequalities; g has the same number of clauses as
f . (Hence inequalities are in some sense useless.) To get g
from f consider each clause separately. For each inequality
(x

i

6= x

j

) in a clause C replace all occurrence of x
i

and x
j

inC by xminfi;jg and remove the inequality from C. Repeat

this until there are no more inequalities in C.
Now, if I 6j= f then there is a substitution � and a clause

C that is falsified by it. Consider any inequality in C. Since
the inequality is not satisfied, � maps both its variables to the
same object. Hence all the variables of C re-mapped to a
single variable in g are mapped to a single object by �. Since
we kept one of these variables as the representative, all the
literals in the corresponding clause of g have the same value
under � an hence it is falsified by I.

On the other hand if I 6j= C

0 for a clause C 0 in g then one
can extend the substitution to cover variables of the corres-
ponding clause C in f by mapping all the variables unified
in the generation of C0 to the same object. Clearly, I falsi-
fies all literals that are retained in C 0 under this substitution.
By construction it also falsifies the inequalities, and hence
falsifies C.

We next construct U�

(f) from g by considering every
clause separately. For a clause C in g generate set of clauses
U

�

(C). Consider a clause C in g and the clauses U (C) as
generated in Lemma 7.1 ignoring equalities and inequalities.
Now consider a positive literal (x

i

= x

j

) in the clause C.
The clause is satisfied under any substitution in which x

i

and x
j

are mapped to the same object. Hence we can remove
from U (C) all those clauses where x

i

and x

j

were mapped
to the same variable. This can be repeated for all equalities
in C to generate U

�

(C). The conjunction of all clauses in
U

�

(C) for all C in g constitutes U�

(f).
Assume I 6j= g for some I. Thus some clause C in g is

falsified by I under some substitution �. Partition the vari-
ables of C according to the objects they are mapped to in �,
generating a clause from this partition as in the generation of
U (C). We claim that the resulting clause has not been re-
moved from U

�

(C). This is true since all equalities in C are
not satisfied and thus their variables are mapped to distinct
objects. Hence this clause is falsified by I under the same
substitution.

Finally, assume I 6j=

d

U

�

(f) for some I. Thus some
clause C0 in U�

(f) is falsified by I under some substitution
� mapping distinct variables to distinct objects. Let C be the
clause that generated C

0, and extend � to variables of C by
using the inverse mapping of the variable partitionused when
generating C 0 from C. We claim that I falsifies C under the
extended substitution. For this first observe that all literals
in C not involving equality are falsified since they have the
same values as in C

0 under �. Consider next an equality
(x

i

= x

j

) in C. All elements of U (C) in which x

i

and x

j

are mapped to the same variable have been removed from
U

�

(C). It follows that x
i

and x

j

are mapped to different
variables in C

0 and since � maps each variable of C 0 to a

unique object the equality is falsified. Hence all literals of C
are falsified, and I 6j= g.

We therefore get:

Corollary 7.4 The class F(P;=) is learnable from equival-
ence and membership queries.

Notice that in the above result the hypothesis of the al-
gorithm can be converted into an expression inF(P;=) with
respect to j=. This can be done by adding equalities on all the
variables in all clauses. That is p(x; y)p(y; z) ! q(z) (un-
der j=

d

) will be translated to p(x; y)p(y; z) ! q(z) _ (x =

y)_ (x = z)_ (y = z) or equivalently to p(x; y)p(y; z)(x 6=
y)(x 6= z)(y 6= z) ! q(z).

7.3 Entailment Queries

Another corollary can be derived showing that entailment or-
acles are also sufficient for learning. We first observe that
membership queries can be replaced with entailment quer-
ies. Let candidates(I) be the propositional operation of
Section 4.1.

Lemma 7.5 Let I be an interpretation and f 2 F(P ). Then
I 6j= f if and only if for some c 2 candidates(I), f j= c.

Proof: Clearly, for all c 2 candidates(I) the antecedent
of c is satisfied by I and its consequent is not, and therefore
I 6j= c. Hence, if f j= c, then I 6j= f .

For the other direction assume I 6j= f . Therefore it falsi-
fies some clause C of f under some substitution �. Consider
c

0

= C(�(X)) the ground instance of C obtained by follow-
ing �. Clearly, I 6j= c

0, and therefore its antecedent is true
in I (and therefore is a subset of the extension of I), and its
consequent is not. Now consider the clause c whose ante-
cedent is ant(I) and whose consequent is identical to the
consequent of c0. Then c is in candidates(I) and f j= C j=

c

0

j= c.

Therefore when the algorithm presents a membership query
we can ask a sequence of entailment queries and answer no
if and only if one of them is implied by f . Moreover, if
entailment queries are available we can make sure when cre-
ating a hypothesis that its clauses are always implied by f .
This can be done by asking an entailment query for each of
the clauses in candidates(s

i

). Since the relational version
of candidates() is used by the algorithm these clauses must
be translated to ground clauses. This can be done by sub-
stituting an arbitrary distinct object for every variable in the
clause. We therefore reduce the nk dependence in the run-
ning time (needed for positive counter examples). We get:

Corollary 7.6 The class F(P ) is learnable from equival-
ence queries and entailment queries.

7.4 ILP

A similar application can be obtained for ILP. We consider
the setting as defined in [Coh95b]. In this setting, back-
ground knowledge B is given to the learner and a Horn ex-
pression f is to be learned. It is assumed that the background
knowledgeB is a conjunction of positive ground literals.



An example is meant as a positive example for some
concept in the world (which is the consequent in some clause
in f). In particular an example is a pair (E;D) such that D
(for Description) is a conjunction of positive ground literals
and E is a single positive ground literal. An example (E;D)

is a positive example for f with respect to B if and only if
f^B^D j= E or alternatively f^B j= (D ! E). Thus we
see that a positive ILP example is the same as an “entailment
example”. Let a ILP equivalence oracle be such that when
presented with a hypothesis H, it answers yes if and only if
f ^ B is equivalent to H ^ B (under j=), and otherwise it
returns a ILP counter example, namely, a pair (E;D) which
is positive for one of f or H but not the other. The follow-
ing lemmas show that, when an entailment oracle is available
(and f j= H), a ILP equivalence oracle can be used instead
of the standard equivalence oracle. For the results to apply
we need one further restriction, known as definite clauses:
A3’: All clauses have exactly one positive literal.

Let F
D

(P ) be the class of expressions satisfying the as-
sumptions A1, A2, A3’.

Lemma 7.7 If f j= H and (E;D) is a counter example for
H then it is the case that f ^B j= (D ! E) and H ^B 6j=

(D ! E).

Proof: If H ^ B j= (D ! E) then f ^ B j= H ^ B j=

(D ! E).

Lemma 7.8 Let f;H 2 F

D

(P ). If f j= H and (E;D) is
a counter example for H then an interpretation I such that
I 6j= f and I j= H can be found in time O(jP jn

k

n

a

) where
n is the number of objects in E, D, and B.

Proof: Let I be an interpretation that includes the objects
in B, D, and E, and whose extension includes precisely
the positive literals in B and D. The idea [FP93, RT98] is
to compute the “closure” of I with respect to H. Clearly,
I 6j= f . If I j= H then we are done. Otherwise, we can find
a clause C of H falsified by I under a substitution �. Let the
ground consequent of C(�(X)) be 
; add 
 to I and repeat
the process until I j= H. This must eventually happen since
as a result of assumption A3’H is satisfied by the interpreta-
tion that has all ground literals true. We claim that I satisfies
the conditions of the lemma.

Since H 6j= (B ^ D ! E), E is never added to I and
hence I 6j= f . On the other hand, by the construction I j= H.
It only remains to observe that the number of iterations is
bounded by the maximum size of an interpretation with n

objects.

Entailment queries are also natural in this setting since
they are in some sense “ILP membership queries”. A ILP
entailment oracle forB and f when presented with a ground
clause c answers yes if and only if f^B j= c. The only prob-
lem one needs to get around in order to apply Corollary 7.6
is the fact thatB is part of the problem specification and thus
we need to make sure that B does not effect the answers to
our queries. This can be done by using distinct new object
names in the queries (that do not appear in B). Since, by
using an entailment oracle we can guarantee that f j= H, we
get:

Corollary 7.9 The classF
D

(P ) is learnable from ILP equi-
valence queries and ILP entailment queries.

It seems plausible that the above result can be extended to
deal with non-ground background knowledge B 2 F

D

(P )

by incorporatingB into the hypothesis of the algorithm.

8 Concluding Remarks

We have shown that universally quantified function free Horn
expressions are learnable in several models of exact learning
from queries. The most expressive class shown learnable al-
lows for an arbitrary number of equalities to appear in the
expressions thus going slightly beyond pure Horn expres-
sions. Our algorithms are superpolynomial in the number of
universally quantified variables though polynomial in other
parameters.

Various questions remain to be resolved, like, allowing
constants and function symbols in the learned expressions,
improving the complexity or proving lower bounds, and al-
lowing for alternation of quantifiers. Another question re-
gards the use of these ideas in a practical ILP system say for
learning domain knowledge (from an expert). One difficulty
no doubt will be the number of membership queries that need
to be answered. Some ideas on how to reduce the number of
queries in practice appear in [Sha83].

We next briefly mention two likely extensions of the res-
ults. In our proof for the theorem instead of arguing about
clauses in the representation of f we argued on Horn clauses
implied by f . It may be possible to utilise this to show
that least Horn upper bounds4 [SK96, KR96, KR97, FP93]
are learnable from random examples and entailment quer-
ies. This might also have some implications for learning to
reason [KR97] where these constructs are used.

Our framework raises the question of how to treat con-
stants in the learning protocol. In most ILP frameworks, ob-
ject names and constants are treated in the same way (e.g.
[RT97]), the constants are those that remain after the gen-
eralisation process. When using interpretations on the other
hand the standard logical definitions [CK90, Llo87] suggest
that constants’ names are fixed, and are “bound” to objects
in the interpretation. This makes its application somewhat
awkward and less natural. It seems that the algorithm Prop-
Horn-1 can be adapted to deal with this case, adding a poly-
nomial factor in the number of constants in the language.
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expression equivalent to the conjunction of all Horn clauses implied
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for any Horn expression �.



Appendix

A Proof of Theorem 4.1

We first show that if entailment queries are also allowed then
the algorithm can be used to learn the class F(P )

�. For this
we modify the algorithm as follows. The set clauses(I) is
the set of clauses fC 2 candidates(I) j such that f j= Cg.
Given a set S of interpretations, clauses(S) can be com-
puted by appealing to an entailment oracle. Notice that since
s

i

6j= f , s
i

falsifies at least one of the clauses of f and by vir-
tue of that and the construction, we get that clauses(s

i

) is
not empty. The hypothesis of the algorithm is now computed
by H = ^

s

i

2S

clauses(s

i

).

Lemma A.1 The class F(P )

� is learnable by the modified
FOL-Horn-1 using equivalence queries, membership quer-
ies, and entailment queries. For f 2 Fk

(P )

� withm clauses,
the algorithm is polynomial in m; jP j; k

a

; k

k

; n, where n is
the largest number of objects in the counter examples.

Proof: Note that by the use of the entailment oracle we are
guaranteed that at all times f j= H, and therefore a counter
example is such that I 6j= f and I j= H.

Lemma 3.3 identifies a target expression f
p

for the learn-
ing problem for Prop-Horn. The correctness and complex-
ity bound follow from those of Prop-Horn if we can show
that the simulation is correct. It suffices to show that (1) the
membership queries are answered correctly according to f

p

,
(2) if Prop-Horn asks an equivalence query and if H 6= f

then the algorithm will present a counter example x to Prop-
Horn, and (3) x is indeed a counter example for the internal
hypothesis of Prop-Horn and the target function f

p

. Part (1)
follows immediately by Lemma 3.3.

For (2) note that if H 6= f then a counter example for H
is returned, and some x is passed to Prop-Horn. Note also
that as argued above the reduced interpretation I is a counter
example for H and using Lemma 3.3 again we get that x is
a counter example for H.

For (3), we claim that h the internal hypothesis of Prop-
Horn is satisfied by x, and thus x is a counter example.5 As-
sume x falsifies h. Then one of the clauses c in h is falsified.
Let s

i

be the interpretation that generated c and let C be the
corresponding clause of H. Clearly, there is a substitution �,
the inverse of the one used for the generation of C, so that
C is falsified by x, contradicting the fact that x is a counter
example for H.

The generation of H can be done in time polynomial in
jSj (since the arity is bounded and interpretations are of poly-
nomial size). The minimisation of the counter examples re-
quires a number of queries linear in the number of objects in
the original counter example. For the rest the complexity is
governed by the complexity of Prop-Horn which is polyno-
mial in the number of propositional variables and the size of
f

p

. The latter isO(mk

k

) where f 2 Fk

(P )

� has m clauses.

5Here we only consider clauses c such that f
p

j= c, and there-
fore have f

p

j= h. Since the internal hypothesis is never created
we may assume a modified version of Prop-Horn that appeals to
an entailment oracle and includes only correct clauses in its hypo-
thesis. This modified version is obviously correct and suffices for
the current argument.

Lastly, consider the case where k is not known. We start
with k = 1 and run as before unless we find that a counter
example cannot be minimised to have k objects. We then
increase k to the next possible size. Correctness follows
since as long as we do not meet counter examples that are
too large, the propositional learning problem simulates the
learning of f when restricted to interpretations of size k. (Es-
sentially the construction of f

p

can be generalised to have

i

k substitutions when considering i objects.) We therefore
have at most k iterations (and can use doubling to reduce
the number of iterations to logk), where in each iteration the
complexity is bounded as before.

Finally, to prove the theorem we show that entailment
queries are not needed.

Proof: (Theorem 4.1) The modified FOL-Horn-1 algorithm
uses Prop-Horn as a black box. The role of Prop-Horn is
however reduced to manipulating the set S. Namely, the hy-
pothesis need not be generated. The manipulation of S con-
sists of computing the intersection of two interpretations and
in asking membership queries to decide on the update.

In the previous lemma entailment queries were used to
ensure that we always get negative counter examples. When
using the hypothesis H = ^

s

i

2S

candidates(s

i

), the al-
gorithm may get positive counter examples, that are used to
removed wrong clauses from H. This can be done in time
O(n

k

) for each clause in H. Since the number of wrong
clauses inH is bounded by the size of the sets candidates(s

i

)

the same bounds follow (essentially the entailment queries
are traded for positive counter examples).
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