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Abstrat. Reent work has introdued Boolean kernels with whih one

an learn over a feature spae ontaining all onjuntions of length up

to k (for any 1 � k � n) over the original n Boolean features in the

input spae. This motivates the question of whether maximum margin

algorithms suh as support vetor mahines an learn Disjuntive Normal

Form expressions in the PAC learning model using this kernel. We study

this question, as well as a variant in whih strutural risk minimization

(SRM) is performed where the lass hierarhy is taken over the length

of onjuntions.

We show that suh maximum margin algorithms do not PAC learn t(n)-

term DNF for any t(n) = !(1); even when used with suh a SRM sheme.

We also onsider PAC learning under the uniform distribution and show

that if the kernel uses onjuntions of length ~!(

p

n) then the maximum

margin hypothesis will fail on the uniform distribution as well. Our re-

sults onretely illustrate that margin based algorithms may over�t when

learning simple target funtions with natural kernels.

1 Introdution

1.1 Bakground

Maximum margin algorithms, notably Support Vetor Mahines (SVM) [3℄, have

reeived onsiderable attention in reent years (see e.g. [21℄ for an introdution).

In their basi form, SVM learn linear threshold hypotheses and ombine two

powerful ideas. The �rst idea is to learn using the linear separator whih ahieves

the maximum margin on the training data rather than an arbitrary onsistent

hypothesis. The seond idea is to use an impliit feature expansion by a kernel

funtion. The kernel K : X�X ! R, where X is the original spae of examples,

omputes the inner produt in the expanded feature spae. Given a kernel K
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whih orresponds to some expanded feature spae, the SVM hypothesis h is

(an impliit representation of) the maximum margin linear threshold hypothesis

over this expanded feature spae rather than the original feature spae. SVM

theory implies that if the kernel K is eÆiently omputable then it is possible

to eÆiently onstrut this maximum margin hypothesis h and that h itself is

eÆiently omputable. Several on-line algorithms have also been proposed whih

iteratively onstrut large margin hypotheses in the feature spae, see e.g. [6℄.

Another major fous of researh in learning theory is the question of whether

various lasses of Boolean funtions an be learned by omputationally eÆient

algorithms. The anonial open question in this area is whether there exist eÆ-

ient algorithms in Valiant's PAC learning model [23℄ for learning Boolean formu-

las in Disjuntive Normal Form, or DNF. This question has been open sine the

introdution of the PAC model nearly twenty years ago, and has been intensively

studied by many researhers (see e.g. [1, 2, 4, 7, 8, 10, 12, 14, 15, 18, 22, 24, 25℄).

1.2 Can SVMs learn DNF?

In this paper we analyze the performane of maximum margin algorithms when

used with Boolean kernels to learn DNF formulas. Several authors [11, 17, 26, 13℄

have reently proposed a family of kernel funtions K

k

: f0; 1g

n

� f0; 1g

n

! N,

where 1 � k � n, suh that K

k

(x; y) omputes the number of (monotone or

unrestrited) onjuntions of length (exatly or up to) k whih are true in both

x and y. This is equivalent to expanding the original feature spae of n Boolean

features to inlude all suh onjuntions.

1

Sine linear threshold elements an

represent disjuntions, one an naturally view any DNF formula as a linear

threshold funtion over this expanded feature spae. It is thus natural to ask

whether theK

k

kernel maximummargin learning algorithms are good algorithms

for learning DNF.

Additional motivation for studying DNF learnability with the K

k

kernels

omes from reent progress on the DNF learning problem. The fastest known

algorithm for PAC learning DNF is due to Klivans and Servedio [12℄; it works by

expliitly expanding eah example into a feature spae of monotone onjuntions

and expliitly learning a onsistent linear threshold funtion over this expanded

feature spae. Sine the K

k

kernel enables us to do suh expansions impliitly

in a omputationally eÆient way, it is natural to investigate whether the K

k

-

kernel maximum margin algorithm yields a omputationally eÆient algorithm

for PAC learning DNF.

We note that it is easily seen that standard onvergene bounds on large

margin lassi�ers do not imply that the K

k

kernel maximum margin algorithm

is an eÆient algorithm for PAC learning DNF. Indeed, the bound given by,

1

This Boolean kernel is similar to the well known polynomial kernel in that all mono-

mials of length up to k are represented. The main di�erene is that the polynomial

kernel assigns weights to monomials whih depend on ertain binomial oeÆients;

thus the weights of di�erent monomials an di�er by an exponential fator. In the

Boolean kernel all monomials have the same weight.



e.g., Theorem 4.18 of [21℄ only implies nontrivial generalization error for the K

k

kernel algorithm if a sample of size n


(k)

is used, and with suh a large sample

the omputational advantage of using the K

k

kernel is lost. However, suh upper

bounds do not imply that the K

k

kernel maximum margin algorithm must have

poor generalization error if run with a smaller sample. The situation is analogous

to that of [19℄ where the generalization error of the Pereptron and Winnow

algorithms were studied. For both Pereptron and Winnow the standard bounds

gave only an exponential upper bound on the number of examples required

to learn various lasses, but a detailed algorithm-spei� analysis gave positive

PAC learning results for Pereptron and negative PAC results for Winnow for the

problems onsidered. Analogously, in this paper we perform detailed algorithm-

spei� analyses for the K

k

kernel maximum margin algorithms.

1.3 Previous work

Khardon et al. onstruted a simple Boolean funtion and an example sequene

and showed that this sequene auses the K

n

kernel pereptron algorithm (i.e.

the Pereptron algorithm run over a feature spae of all 2

n

monotone onjun-

tions) to make exponentially many mistakes [11℄. The urrent paper di�ers in

several ways from this earlier work: we study the maximum margin algorithm

rather than Pereptron, we onsider PAC learning from a random sample rather

than online learning, and we analyze the K

k

kernels for all 1 � k � n:

1.4 Our results

Throughout this paper we study the kernels orresponding to all monotone

monomials of length up to k, whih we denote by K

k

: In addition to maxi-

mum margin algorithms we also onsider a natural sheme of strutural risk

minimization (SRM) that an be used with this family of Boolean kernels. In

SRM, given a hierarhy of lasses C

1

� C

2

� : : :, one learns with eah lass

separately and uses a ost funtion ombining the omplexity of the lass with

its observed auray to hoose the �nal hypothesis. The ost funtion typially

balanes various riteria suh as the observed error and the (bound on) gener-

alization error. A natural sheme here is to use SRM over the lasses formed by

K

k

with k = 1; : : : ; n.

2

We prove several negative results whih establish strong limitations on the

ability of maximum margin algorithms to PAC learn DNF formulas (or other

simple Boolean lasses) using the monomial kernels. Our �rst result says essen-

tially that for any t(n) = !(1); for all k = 1; : : : ; n the K

k

kernel maximum

margin algorithm annot PAC learn t(n)-term DNF. More preisely, we prove

Result 1: Let t(n) = !(1) and let � =

1

4�2

t(n)

: There is a O(t(n))-term monotone

DNF over t(n) relevant variables, and a distribution D over f0; 1g

n

suh that

2

This is standard pratie in experimental work with the polynomial kernel, where

typially small values of k are tried (e.g. 1 to 5) and the best is hosen.



for all k 2 f1; : : : ; ng the K

k

maximum margin hypothesis has error larger than

� (with overwhelmingly high probability over the hoie of a polynomial size

random sample from D).

Note that this result implies that the K

k

maximum margin algorithms fail

even when ombined with SRM regardless of the ost funtion. This is simply

beause the maximum margin hypothesis has error > � for all k; and hene the

�nal SRM hypothesis must also have error > �:

While our auray bound in the above result is small (it is o(1) sine t(n) =

!(1)), a simple variant of the onstrution used for Result 1 also proves:

Result 2: Let f(x) = x

1

be the target funtion. There is a distribution D over

f0; 1g

n

suh that for any k = !(1) the K

k

maximum margin hypothesis has

error at least

1

2

� 2

�n


(1)

(with overwhelmingly high probability over the hoie

of a polynomial size random sample from D).

Thus any attempt to learn using monomials of non-onstant size an provably

lead to over�tting. Note that for any k = �(1); standard bounds on maximum

margin algorithms show that the K

k

kernel algorithm an learn f(x) = x

1

from

a polynomial size sample.

Given these strong negative results for PAC learning under arbitrary distri-

butions, we next onsider the problem of PAC learning monotone DNF under

the uniform distribution. This is one of the few frameworks in whih some pos-

itive results have been obtained for learning DNF from random examples only

(see e.g. [5, 20℄). In this senario a simple variant of the onstrution for Result 1

shows that learning must fail if k is too small:

Result 3: Let t(n) = !(1) and � =

1

4�2

t(n)

: There is a O(t(n))-term monotone

DNF over t(n) relevant variables suh that for all k < t(n) the K

k

maximum

margin hypothesis has error at least � (with probability 1 over the hoie of a

random sample from the uniform distribution).

On the other hand, we also show that the K

k

algorithm fails under the uniform

distribution for large k:

Result 4: Let f(x) = x

1

be the target funtion. For any k = ~!(

p

n), the K

k

maximum margin hypothesis will have error

1

2

�2

�
(n)

with probability at least

0:028 over the hoie of a polynomial size random sample from the uniform

distribution.

Note that there is a substantial gap between the \low" values of k (for whih

learning is guaranteed to fail) and the \high" values of k (for whih we show that

learning fails with onstant probability). We feel that it is of signi�ant interest

to haraterize the performane of the K

k

maximum margin algorithm under

the uniform distribution for these intermediate values of k; a disussion of this

point is given in Setion 5.

Finally, we note here that some of our results an be adapted to give similar

negative results for the standard polynomial kernel.



2 Preliminaries

We onsider learning Boolean funtions over the Boolean ube f0; 1g

n

so that

f : f0; 1g

n

! f0; 1g. It is onvenient to onsider instead the range f�1; 1g with 0

mapped to �1 and 1 mapped to 1. This is easily ahieved by the transformation

f

0

(x) = 1�2f(x) and sine we deal with linear funtion representations this an

be done without a�eting the results. For the rest of the paper we assume this

representation.

Our arguments will refer to L

1

and L

2

norms of vetors. We use the notation

jxj =

P

jx

l

j and kxk =

p

P

x

2

l

.

De�nition 1. Let h : R

N

! f�1; 1g be a linear threshold funtion h(x) =

sign(W �x��) for some W 2 R

N

; � 2 R: The margin of h on hz; bi 2 R

N

�f�1; 1g

is

m

h

(z; b) =

b(W � z � �)

kWk

:

Note that jm

h

(z; b)j is the Eulidean distane from z to the hyperplaneW �x = �:

De�nition 2. Let S = fhx

i

; b

i

ig

i=1;:::;m

be a set of labeled examples where eah

x

i

2 R

N

and eah b

i

2 f�1; 1g: Let h(x) = sign(W � x� �) be a linear threshold

funtion. The margin of h on S is

m

h

(S) = min

hx;bi2S

m

h

(x; b):

The maximum margin lassi�er for S is the linear threshold funtion h(x) =

sign(W � x� �) suh that

m

h

(S) = max

W

0

2R

N

;�

0

2R

min

hx;bi2S

b(W

0

� x� �

0

)

kW

0

k

: (1)

The quantity (1) is alled the margin of S and is denoted m

S

:

Note that m

S

> 0 i� S is onsistent with some linear threshold funtion. If

m

S

> 0 then the maximum margin lassi�er for S is unique [21℄.

Let � be a transformation whih maps f0; 1g

n

to R

N

and let K : f0; 1g

n

�

f0; 1g

n

! R be the orresponding kernel funtion K(x; y) = �(x) � �(y): Given

a set of labeled examples S = fhx

i

; b

i

ig

i=1;:::;m

where eah x

i

belongs to f0; 1g

n

we write �(S) to denote the set of transformed examples fh�(x

i

); b

i

ig

i=1;:::;m

:

We refer to the following learning algorithm as the K-maximum margin

learner:

{ The algorithm �rst draws a sample S = fhx

i

; f(x

i

)ig

i=1;:::;m

of m = poly(n)

labeled examples from some �xed probability distribution D over f0; 1g

n

;

here f : f0; 1g

n

! f�1; 1g is the unknown funtion to be learned.

{ The algorithm's hypothesis is h : f0; 1g

n

! f�1; 1g; h(x) = sign(W ��(x)��)

where sign(W � x � �) is the maximum margin lassi�er for �(S): Without

loss of generality we assume that W is normalized, that is kWk = 1. We also

assume that S ontains both positive and negative examples sine otherwise

the maximum margin lassi�er is not de�ned.



SVM theory tells us that if K(x; y) an be omputed in poly(n) time then the

K-maximum margin learning algorithm runs in poly(n;m) time and the output

hypothesis h(x) an be evaluated in poly(n;m) time [21℄.

Our goal is to analyze the PAC learning ability of various kernel maximum

margin learning algorithms. Reall (see e.g. [9℄) that a PAC learning algorithm

for a lass C of funtions over f0; 1g

n

is an algorithm whih runs in time polyno-

mial in n and

1

Æ

,

1

�

where Æ is a on�dene parameter and � is an auray param-

eter. We assume here, as is the ase throughout the paper, that eah funtion

in C has a desription of size poly(n): Given aess to random labelled examples

hx; f(x)i for any f 2 C and any distribution D over f0; 1g

n

; with probability

at least 1� Æ a PAC learning algorithm must output an eÆiently omputable

hypothesis h suh that Pr

x2D

[h(x) 6= f(x)℄ � �. If an algorithm only satis�es

this riterion for a partiular distribution suh as the uniform distribution on

f0; 1g

n

; we say that it is a uniform distribution PAC learning algorithm.

Let �

k

(n) =

P

i=k

i=1

�

n

i

�

. Note that the number of nonempty monotone onjun-

tions (i.e. monomials) of size at most k on n variables is �

k

(n). For x 2 f0; 1g

n

we

write �

k

(x) to denote the �

k

(n)-dimensional vetor (x

T

)

T�f1;:::;ng;1�jT j�k

where

x

T

=

Q

i2T

x

i

, i.e. the omponents of �

k

(x) are all monotone onjuntions of

the desired size. We note that for an example x 2 f0; 1g

n

, the L

1

norm of the

expanded example �

k

(x) is j�

k

(x)j = �

k

(jxj).

For x; y 2 f0; 1g

n

we write x � y to denote

P

n

i=1

x

i

y

i

; i.e. the number of bits

whih are 1 in both x and y.

De�nition 3. We write K

k

(x; y) to denote �

k

(x) ��

k

(y). We refer to K

k

as the

k-monomials kernel.

The following theorem shows that the k-monomial kernels are easy to ompute:

Theorem 1 ([11℄). For all 1 � k � n we have K

k

(x; y) =

P

k

i=1

�

x�y

i

�

.

We will frequently use the following observation whih is a diret onsequene

of the Cauhy-Shwarz inequality:

Observation 1 If U 2 R

N

1

with kUk = L and I � f1; : : : ; N

1

g, jI j = N

2

; then

P

i2I

jU

i

j � L �

p

N

2

.

As a onsequene of Observation 1 we have that if �

k

(n) = N

1

is the number

of features in the expanded feature spae and j�

k

(x)j = �

k

(jxj) = N

2

; then

U � �

k

(x) � L �

p

N

2

.

3 Distribution-Free Non-Learnability

We give a DNF and a distribution whih are suh that the k-monomials kernel

fails to learn, for all 1 � k � n: The DNF we onsider is a read one monotone

DNF over t(n) variables where t(n) = !(1) and t(n) = O(log n). In fat our



results hold for any t(n) = !(1) but for onreteness we use t(n) = logn as a

running example. We have

f(x) = (x

1

� � �x

4`

2
) _ (x

4`

2

+1

� � �x

8`

2
) _ � � � _ (x

4`

3

�4`

2

+1

� � �x

4`

3
) (2)

where 4`

3

= t(n) = logn so that the number of terms ` = �(t(n)

1=3

) =

�((logn)

1=3

): For the rest of this setion f(x) will refer to the funtion de�ned

in Equation (2) and ` to its size parameter.

A polynomial threshold funtion is de�ned by a multivariate polynomial

p(x

1

; : : : ; x

n

) with real oeÆients. The output of the polynomial threshold fun-

tion is 1 if p(x

1

; : : : ; x

n

) � 0 and �1 otherwise. The degree of the funtion is

simply the degree of the polynomial p. Note that any hypothesis output by the

K

k

kernel maximum margin algorithm must be a polynomial threshold funtion

of degree at most k: Minsky and Papert [16℄ (see also [12℄) gave the following

lower bound on polynomial threshold funtion degree for DNF:

Theorem 2. Any polynomial threshold funtion for f(x) in Equation (2) must

have degree at least `:

The distribution D on f0; 1g

n

we onsider is the following:

{ With probability

1

2

the distribution outputs 0

n

.

{ With probability

1

2

the distribution outputs a string x 2 f0; 1g

n

drawn from

the following produt distribution D

0

: the �rst t(n) bits are drawn uniformly,

and the last n � t(n) bits are drawn from the produt distribution whih

assigns 1 to eah bit with probability

1

n

1=3

:

For small values of k the result is representation based and does not depend

on the sample drawn:

Lemma 1. If the maximum margin algorithm uses the kernel K

k

for k < ` when

learning f(x) under D then its hypothesis has error greater than � =

1

4�2

t(n)

=

1

4n

.

Proof. If hypothesis h has error at most � =

1

4�2

t(n)

under D then learly it

must have error at most

1

2�2

t(n)

under D

0

. Sine we are using the kernel K

k

; the

hypothesis h is some polynomial threshold funtion of degree at most k whih

has error � �

1

2�2

t(n)

under D

0

. So there must be some setting of the last n� t(n)

variables whih auses h to have error at most � under the uniform distribution

on the �rst t(n) bits. Under this setting of variables the hypothesis is a degree-k

polynomial threshold funtion on the �rst t(n) variables. By Minsky and Papert's

theorem, this polynomial threshold funtion annot ompute the target funtion

exatly, so it must be wrong on at least one setting of the �rst t(n) variables. But

under the uniform distribution, every setting of those variables has probability

at least

1

2

t(n)

: This ontradits � �

1

2�2

t(n)

. ut

For larger values of k (in fat for all k = !(1)) we show that the maximum

margin hypothesis will with high probability over�t the sample. The following

de�nition aptures typial properties of a sample from distribution D:



De�nition 4. A sample S is a D-typial sample if

{ The sample inludes the example 0

n

.

{ Any nonzero example x in the sample has 0:99n

2=3

� jxj � 1:01n

2=3

.

{ Every pair of positive and negative examples x

i

; x

j

in S satis�es x

i

� x

j

�

1:01n

1=3

:

We are interested in ases where a polynomial size sample is used by the algo-

rithm. The following two lemmas hold by standard Cherno� bound arguments:

Lemma 2. For m = poly(n); with probability 1�2

�n


(1)

a random i.i.d. sample

of m draws from D is a D-typial sample.

De�nition 5. Let S be a sample. The set Z(S) inludes all positive examples z

suh that every example x in S satis�es x � z � 1:01n

1=3

:

Lemma 3. Let S be a D-typial sample of size m = poly(n) examples. Then

Pr

D

[z 2 Z(S)jf(z) = 1℄ = 1� 2

�n


(1)

.

We now show that for aD-typial sample one an ahieve a very large margin:

Lemma 4. Let S be a D-typial sample. Then the maximum margin m

S

satis�es

m

S

�M

h

0

�

1

2

�

�

k

(:99n

2=3

)�m�

k

(1:01n

1=3

)

p

m�

k

(1:01n

2=3

)

Proof. We exhibit an expliit linear threshold funtion h

0

whih has margin at

least M

h

0

on the data set. Let h

0

(x) = sign(W

0

� �(x)� �

0

) be de�ned as follows:

{ W

0

T

= 1 if T is ative in some positive example;

{ W

0

T

= 0 if T is not ative in any positive example.

{ �

0

is the value that gives the maximum margin on �

k

(S) for this W

0

; i.e. �

0

is the average of the smallest value of W

0

� �

k

(x

i;+

) and the largest value of

W

0

� �

k

(x

j;�

):

Sine eah positive example x

+

in S has at least :99n

2=3

ones, we have W

0

�

�(x

+

) � �

k

(:99n

2=3

). Sine eah positive example has at most 1:01n

2=3

ones,

eah positive example in the sample ontributes at most �

k

(1:01n

2=3

) ones to

W

0

; so kW

0

k �

p

m�

k

(1:01n

2=3

): Finally, sine eah negative example x

�

in the

sample and eah positive example x

+

in the sample share at most 1:01n

1=3

ones,

for any x

�

in the sample W

0

� �(x

�

) � m�

k

(1:01n

1=3

): Putting these onditions

together, we get that the margin of h

0

on the sample is at least

1

2

�

�

k

(:99n

2=3

)�m�

k

(1:01n

1=3

)

p

m�

k

(1:01n

2=3

)

as desired. ut

Lemma 5. If S is a D-typial sample, then the threshold � in the maximum

margin lassi�er for S is at least M

h

0

:



Proof. Let h(x) = sign(W ��(x)� �) be the maximum margin hypothesis. Sine

kWk = 1 we have

� =

�

kWk

= m

h

(�

k

(0

n

);�1) � m

h

0

(S) �M

h

0

where the seond equality holds beause W � �(0

n

) = 0 and the last inequality

is by Lemma 4. ut

Lemma 6. If the maximum margin algorithm uses the kernel K

k

for k = !(1)

when learning f(x) under D then with probability 1� 2

�n


(1)

its hypothesis has

error greater than � =

1

4�2

t(n)

=

1

4n

.

Proof. Let S be the sample used for learning and let h(x) = sign(W � �

k

(x)� �)

be the maximum margin hypothesis. It is well known (see e.g. Proposition 6.5

of [21℄) that the maximum margin weight vetor W is a linear ombination of

the support vetors, i.e. of ertain examples �

k

(x) in the sample �

k

(S): Hene

the only oordinates W

T

of W that an be nonzero are those orresponding to

features (onjuntions) T suh that x

T

= 1 for some example x in S:

By Lemma 2 we have that with probability 1 � 2

�n


(1)

the sample S is D-

typial. Consider any z 2 Z(S). It follows from the above observations on W

thatW ��

k

(z) is a sum of at mostm�

k

(1:01n

1=3

) nonzero numbers, and moreover

the sum of the squares of these numbers is at most 1. Thus by Observation 1 we

have that W � �

k

(z) �

p

m�

k

(1:01n

1=3

): The positive example z is erroneously

lassi�ed as negative by h if � > W � �

k

(z); by Lemma 5 this inequality holds if

1

2

�

�

k

(:99n

2=3

)�m�

k

(1:01n

1=3

)

p

m�

k

(1:01n

2=3

)

>

q

m�

k

(1:01n

1=3

);

i.e. if

�

k

(:99n

2=3

) > 2m

q

�

k

(1:01n

1=3

)�

k

(1:01n

2=3

) +m�

k

(1:01n

1=3

): (3)

One an show that this equation holds for any k = !(1); the proof is omitted

for lak of spae and will be given in the full version of the paper.

Finally, observe that positive examples have probability at least

1

2

t(n)

=

1

n

.

The above argument shows that any z 2 Z(S) is mislassi�ed, and Lemma 3

guarantees that the relative weight of Z(S) in positive examples is 1� 2

�n


(1)

:

Thus the overall error rate of h under D is at least

1

4�2

t(n)

=

1

4n

as laimed. ut

Together, Lemma 1 and Lemma 6 imply Result 1:

Theorem 3. For any value of k, if the maximum margin algorithm uses the

kernel K

k

when learning f(x) under D then with probability 1 � 2

�n


(1)

its

hypothesis has error greater than � =

1

4�2

t(n)

=

1

4n

.

With a small modi�ation we an also obtain Result 2. In partiular, sine

we do not need to deal with small k we an use a simple funtion f = x

1

and

modify D slightly so that the probability that f(x) = 1 is 0.5. Now the argument

of Lemma 6 yields



Theorem 4. For k = !(1), if the maximum margin algorithm uses the ker-

nel K

k

when learning f(x) = x

1

under D then with probability 1 � 2

�n


(1)

its

hypothesis has error at least � =

1

2

� 2

�n


(1)

.

4 Uniform Distribution

While Theorem 3 tells us that the K

k

-maximum margin learner is not a PAC

learning algorithm for monotone DNF in the distribution-free PAC model, it

does not rule out the possibility that the K

k

-maximum margin learner might

sueed for partiular probability distributions suh as the uniform distribution

on f0; 1g

n

: In this setion we investigate the uniform distribution.

In Setion 3 we took advantage of the fat that 0

n

ourred with high weight

under the distribution D. This let us give a lower bound (of 0) on the value of

W � �

k

(x) for some negative example in the sample, and we then ould argue

that the value of � in the maximum margin lassi�er must be at least as large

as m

S

. For the uniform distribution, though, this lower bound no longer holds,

so we must use a more subtle analysis.

Before turning to the main result, it is easy to observe that the proof of

Lemma 1 goes through for the uniform distribution as well (we atually gain a

fator of 2). This therefore proves Result 3: if the algorithm uses too low a degree

k then its hypothesis annot possibly be a suÆiently aurate approximation of

the target. In ontrast, the next result will show that if a rather large k is used

then the algorithm is likely to over�t.

For the next result, we onsider the target funtion f(x) = x

1

. Let S = S

+

[

S

�

be a data set drawn from the uniform distribution U and labelled aording

to the funtion f(x) where S

+

= fhx

i;+

; 1ig

i=1;:::;m

+

are the positive examples

and S

�

= fhx

j;�

;�1ig

j=1;:::;m

�

are the negative examples. Let u

i

denote jx

i;+

j

the weight of the i-th positive example, and let the positive examples be ordered

so that u

1

� u

2

� � � � � u

m

+
: Similarly let v

j

denote jx

j;�

j the weight of the

j-th negative example with v

1

� v

2

� � � � � v

m

�
:

De�nition 6. A sample S is a U-typial sample if

{ Every example x 2 S satis�es 0:49n � jxj � 0:51n.

{ Every pair of positive and negative examples x

i;+

; x

j;�

in S satisfy x

i;+

�

x

j;�

� 0:26n:

A straightforward appliation of Cherno� bounds yields the next two lemmas:

Lemma 7. For m = poly(n); with probability 1�2

�
(n)

a random i.i.d. sample

of m draws from U is a U-typial sample.

De�nition 7. Let S be a sample. The set Z(S) inludes all positive examples z

suh that every example x in S satis�es x � z � 0:26n:

Lemma 8. Let S be a U-typial sample of size m = poly(n) examples. Then

Pr

U

[z 2 Z(S)jf(z) = 1℄ = 1� 2

�
(n)

.



The following lemma is analogous to Lemma 4:

Lemma 9. Let S be a U-typial sample of size m: Then the maximum margin

m

S

satis�es

m

S

�

1

2

�

1

p

m

p

�

k

(u

1

)�

p

m�

k

(:26n)

�

:

Proof. We exhibit an expliit linear threshold funtion h

0

whih has this margin.

Let h

0

(x) = sign(W

0

� �

k

(x)� �

0

) be de�ned as follows:

{ For eah positive example x

i;+

in S; pik a set of �

k

(u

1

) features (monomials)

whih take value 1 on x

i;+

: This an be done sine eah positive example

x

i;+

has at least u

1

bits whih are 1. For eah feature T in eah of these sets,

assign W

0

T

= 1:

{ For all remaining features T set W

0

T

= 0:

{ Set �

0

to be the value that gives the maximum margin on �

k

(S) for this W

0

;

i.e. �

0

is the average of the smallest value of W

0

� �

k

(x

i;+

) and the largest

value of W

0

� �

k

(x

j;�

):

Note that sine eah positive example ontributes at most �

k

(u

1

) nonzero oef-

�ients to W

0

, the number of 1's in W

0

is at most m�

k

(u

1

), and hene kW

0

k �

p

m�

k

(u

1

). By onstrution we also have that eah positive example x

i;+

satis-

�es W

0

� �

k

(x

i;+

) � �

k

(u

1

).

Sine S is a U-typial sample, eah negative example x

j;�

in S shares at most

:26n ones with any positive example in S: Hene the value of W

0

� �

k

(x

j;�

) is a

sum of at most m�

k

(:26n) numbers whose squares sum to at most m�

k

(u

1

). By

Observation 1 we have that W

0

� �

k

(x

j;�

) �

p

m�

k

(:26n)

p

m�

k

(u

1

).

The lemma follows by ombining the above bounds on kW

0

k; W

0

� �

k

(x

i;+

)

and W

0

� �

k

(x

j;�

): ut

It turns out that the relative sizes of u

1

and v

1

(the weights of the lightest

positive and negative examples in S) play an important role.

De�nition 8. A sample S of size m is positive-skewed if u

1

� v

1

+B; i.e. the

lightest positive example in S weighs at least B more than the lightest negative

example, where B =

1

66

q

n

logm

:

The following lemma shows that a random sample is positive skewed with

onstant probability (the proof is omitted for lak of spae and is given in the

full version of the paper):

Lemma 10. Let S be a sample of size m = poly(n) drawn from the uniform

distribution. Then S is positive-skewed with probability at least 0:029:

Now we an give a lower bound on the threshold � for the maximum margin

lassi�er.



Lemma 11. Let S be a labeled sample of size m whih is U-typial and positive

skewed, and let h(x) = sign(W � �

k

(x) � �) be the maximum margin hypothesis

for S: Then

� �

1

2

�

1

p

m

p

�

k

(u

1

)�

p

m�

k

(:26n)

�

�

p

�

k

(u

1

�B):

Proof. Sine S is positive-skewed we know that W � �

k

(x

1;�

) is a sum of at

most �

k

(u

1

�B) weights W

T

; and sine W is normalized the sum of the squares

of these weights is at most 1. By Observation 1 we thus have W � �

k

(x

1;�

) �

�

p

�

k

(u

1

�B): Sine � �W ��

k

(x

1;�

)+m

S

; together with Lemma 9 this proves

the lemma. ut

Putting all of the piees together, we have:

Theorem 5. If the maximum margin algorithm uses the kernel K

k

for k =

!(

p

n log

3

2

n) when learning f(x) = x

1

under the uniform distribution then with

probability at least 0:028 its hypothesis has error � =

1

2

� 2

�
(n)

.

Proof. By Lemmas 7 and 10, the sample S used for learning is both U-typial

and positive skewed with probability at least 0:029�1=2

�
(n)

> 0:028: Consider

any z 2 Z(S). Using the reasoning from Lemma 6, W � �(z) is a sum of at most

m�

k

(:26n) numbers whose squares sum to at most 1, soW ��(z) �

p

m�

k

(:26n).

The example z is erroneously lassi�ed as negative by h if

1

2

�

1

p

m

p

�

k

(u

1

)�

p

m�

k

(:26n)

�

�

p

�

k

(u

1

�B) >

p

m�

k

(:26n):

so it suÆes to show that

p

�

k

(u

1

) > 3m

�

p

�

k

(:26n) +

p

�

k

(u

1

�B)

�

: (4)

In Appendix A we show that this holds for all k = !(

p

n log

3

2

n

) as required.

The above argument shows that any z 2 Z(S) is mislassi�ed, and Lemma 8

guarantees that the relative weight of Z(S) in positive examples is 1� 2

�
(n)

:

Sine Pr

x2U

[f(x) = 1℄ is 1=2; we have that with probability at least 0:028 the

hypothesis h has error rate at least � =

1

2

� 2

�
(n)

, and we are done. ut

5 Conlusions and Future Work

Boolean kernels o�er an interesting new algorithmi approah to one of the ma-

jor open problems in omputational learning theory, namely learnability of DNF

expressions. We have studied the performane of a maximum margin algorithm

with the Boolean kernels, giving negative results for several settings of the prob-

lem. Our results indiate that the maximum margin algorithm an over�t even

when learning simple target funtions and using natural and expressive kernels

for suh funtions, and even when ombined with strutural risk minimization.



We hope that these negative results will be used as a tool to explore alternate

approahes whih may sueed; we now disuss these briey.

One diretion for future work is to modify the basi learning algorithm.

Many interesting variants of the basi maximum margin algorithm have been

used in reent years, suh as soft margin riteria, kernel regularization, et.. It

may be possible to prove positive results for some DNF learning problems using

these approahes. A starting point would be to test their performane on the

ounterexamples (funtions and distributions) whih we have onstruted.

A more immediate goal is to lose the gap between small and large k in our

results for the uniform distribution. It is well known [24℄ that when learning

polynomial size DNF under uniform, onjuntions of length !(logn) an be

ignored with little e�et. Hene the most interesting setting of k for the uniform

distribution learning problem is k = �(log n). Learning under uniform with a

k = �(log n) kernel is qualitatively quite di�erent from learning with the large

values of k whih we were able to analyze. For example, for k = �(log n) if a

suÆiently large polynomial size sample is taken, then with very high probability

all features (monomials of size at most k) are ative in the sample.

As a �rst onrete problem in this senario, one might onsider the question

of whether a k = �(log n) kernel maximum margin algorithm an eÆiently PAC

learn the target funtion f(x) = x

1

under uniform. For this problem it is easy

to show that that the naive hypothesis h

0

onstruted in our proofs ahieves

both a large margin and high auray. Moreover, it is possible to show that

with high probability the maximum margin hypothesis has a margin whih is

within a multipliative fator of (1+o(1)) of the margin ahieved by h

0

. Though

these preliminary results do not answer the above question they suggest that

the answer may be positive. A positive answer, in our view, would be strong

motivation to analyze the general ase.
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A Proof of Equation (4)

We must show that

p

�

k

(u

1

) > 3m

�

p

�

k

(:26n) +

p

�

k

(u

1

�B)

�

: Sine we are

assuming that the sample S is U-typial, we have u

1

� :49n so u

1

�B > 0:26n:

It thus suÆes to show that �

k

(u

1

) > 36m

2

�

k

(u

1

�B):

Case 1: k �

1

2

(u

1

� B): Sine �

k

(`) =

P

k

i=1

�

`

i

�

, for k � `=2 we have �

k

(`) �

k

�

`

k

�

. Also for all k, �

k

(`) �

�

`

k

�

so it suÆes to show that

�

u

1

k

�

> 36m

2

k

�

u

1

�B

k

�

:

This inequality is true if

�

u

1

u

1

�B

�

k

> 36m

2

k:

Reall that B =

1

66

q

n

logm

: Now using the fat that

u

1

u

1

�B

= 1 +

B

u

1

�B

> 1 +

B

n

= 1 +

1

66

p

n logm

it suÆes to show that

�

1 +

1

66

p

n logm

�

k

> 36m

2

k:

Using the fat that 1 + x � e

x=2

for 0 < x < 1; we an see that this inequality

holds if k > 132

p

n log(m) ln(36m

2

n): Sine m = poly(n), this is the ase for

k = !(

p

n log

3

2

n).

Case 2:

1

2

(u

1

�B) < k: Sine �

k

(u

1

�B) � 2

u

1

�B

; it suÆes to show that

u

1

2

�

B

2

X

i=1

�

u

1

i

�

> 36m

2

� 2

u

1

�B

:

Sine

p

u

1

> B=2 it suÆes to show that

u

1

2

�

p

u

1

X

i=1

�

u

1

i

�

> 36m

2

� 2

u

1

�B

:

Standard binomial oeÆient properties imply that the left side above is �(2

u

1

).

Sine m = poly(n) and B =

1

66

q

n

logm

this is greater than the right side.


