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2 � Dimitrios Gunopulos et al.Data mining 
an be viewed, in many instan
es, as the task of 
omputing a representation of atheory of a model or a database, in parti
ular by �nding a set of maximally spe
i�
 senten
essatisfying some property. We prove some hardness results that rule out simple approa
hes tosolving the problem.The apriori algorithm is an algorithm that has been su

essfully applied to many instan
es ofthe problem. We analyze this algorithm, and prove that is optimal when the maximally spe
i�
senten
es are \small". We also point out its limitations.We then present a new algorithm, the Dualize and Advan
e algorithm, and prove worst 
ase
omplexity bounds that are favorable in the general 
ase. Our results use the 
on
ept of hy-pergraph transversals. Our analysis shows that the apriori algorithm 
an solve the problem ofenumerating the transversals of a hypergraph, improving on previously known results in a spe
ial
ase. On the other hand, using results for the general 
ase of the hypergraph transversal enumer-ation problem, we 
an show that the Dualize and Advan
e algorithm has worst 
ase running timethat is sub-exponential to the output size (that is, the number of maximally spe
i�
 senten
es).We further show that the problem of �nding maximally spe
i�
 senten
es is 
losely related tothe problem of exa
t learning with membership queries studied in 
omputational learning theory.Categories and Subje
t Des
riptors: H.3.3 [Information Sear
h and Retrieval℄: Sear
h Pro-
essGeneral Terms: Algorithms, TheoryAdditional Key Words and Phrases: Data Mining, Asso
iation Rules, Maximal frequent sets,Learning with membership Queries, Minimal keys1. INTRODUCTIONData mining has re
ently emerged as an a
tive area of investigation and appli
ations[Fayyad et al. 1996℄. The goal of data mining 
an brie
y be stated as \developmentof eÆ
ient algorithms for �nding useful high-level knowledge from large amountsof data". The area 
ombines methods and tools from databases, ma
hine learning,and statisti
s.A large part of 
urrent resear
h in data mining 
an be viewed as addressing in-stan
es of the following problem: given a language, an interestingness 
riterion, anda database, �nd all senten
es from the language that are true in the database andsatisfy the interestingness 
riterion. Typi
ally, this 
riterion is a frequen
y 
riterionthat states that there are suÆ
iently many instan
es in the database satisfying thesenten
e. Examples of s
enarios where this formulation works in
lude the dis
overyof frequent sets, asso
iation rules, strong rules, episodes, and keys. In this paper weshow how the problems of �nding frequent sets in relations and of �nding minimalkeys in databases 
an be redu
ed to this formulation. Using this theory extra
tionformulation [Mannila 1995; Mannila 1996; Mannila and Toivonen 1997℄ one 
anformulate general results about the 
omplexity of algorithms for these data miningtasks.The spe
i�
 problem we are 
onsidering is the 
omplexity of 
omputing the mostspe
i�
 interesting senten
es. This problem has known lower bound results, howeverexisting algorithms have running times signi�
antly worse than the best knownlower-bounds. We analyze the running time of one of the most su

essful datamining algorithms, apriori, that has been applied to that problem. We then givea new algorithm, Dualize and Advan
e, that is designed to �nd the most spe
i�
senten
es only.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



Dis
overing All Most Spe
i�
 Senten
es � 3Several variations of the apriori algorithm have been su

essfully applied to prob-lems of data mining [Agrawal and Srikant 1994; Agrawal et al. 1996; Mannila andToivonen 1997; Mannila et al. 1994; Mannila et al. 1995℄. The apriori algorithm
omputes the interesting senten
es by walking up in the latti
e of senten
es, onelevel at a time. Thus, it operates in a bottom-up fashion: �rst the truth and fre-quen
y of the simplest, most general, senten
es from the language are evaluatedagainst the database, and then the pro
ess 
ontinues for more spe
i�
 senten
es,one level at a time. To 
on
entrate on it's operation, we refer to apriori algorithmas the level-wise algorithm. We show that as long as the number of levels in thesear
h is small this algorithm is indeed optimal thus explaining its empiri
al su
-
ess and shedding some light on when and why it is useful. Furthermore, we showthat this algorithm 
an be used to eÆ
iently solve a spe
ial 
ase of the hypergraphtransversal problem, improving on previous theoreti
al results.On the other hand the analysis indi
ates that when the number of levels inthe sear
h is large the number of senten
es of interest may be
ome too large tohandle. An alternative method is to try to sear
h for the most spe
i�
 senten
esfrom the language that satisfy the requirements: these senten
es determine thetheory uniquely. The number of interesting senten
es 
an be exponential to thenumber of most spe
i�
 interesting senten
es. It is therefore likely that an algorithmthat 
omputes the most spe
i�
 senten
es 
an o�er signi�
ant improvements in
omputation time.For this purpose we present the Dualize and Advan
e algorithm (�rst introdu
edin [Gunopulos et al. 1997b℄) for lo
ating the most spe
i�
 true senten
es satisfyingthe frequen
y 
riterion. We prove upper bounds on the 
omplexity of the algorithmfor the general 
ase showing that it 
omes 
lose to lower bounds for the problem.Our basi
 algorithm is deterministi
 and is suÆ
ient to provide the worst 
ase
omplexity bounds. We further apply a randomized heuristi
 in the algorithmthat 
an improve its running time in pra
ti
e 
onsiderably. While the algorithm israndomized, it is 
omplete, in the sense that it returns all most spe
i�
 senten
es,and the worst 
ase bounds hold for it as well.Brie
y the method works as follows. We apply a greedy sear
h to lo
ate somemaximal elements from the language. We then use the simple fa
t that if somemost spe
i�
 senten
es are known, then every unknown one must 
ontain a minimaltransversal of the 
omplements of the known senten
es. The algorithm alternatesbetween �nding most spe
i�
 true senten
es and �nding minimal transversals ofthe 
omplements of the already dis
overed most spe
i�
 true senten
es, until nonew most spe
i�
 true senten
es 
an be found.We show that the running time of the algorithm is sub-exponential to the size ofthe output. This result also shows that the 
omplexity of the problem of 
omputingthe most spe
i�
 interesting senten
es is lower than the 
omplexity of �nding allthe interesting senten
es, thus providing theoreti
al support for the experimentaleviden
e that re
ent heuristi
 algorithms [Bayardo 1998; Burdi
k et al. 2001; Agar-wal et al. 2000; Gouda and Zaki 2001℄, that have been designed to �nd maximalfrequent sets dire
tly, 
an signi�
antly outperform apriori.To demonstrate the utility of the algorithm we apply it to the problem of 
om-puting of all minimal keys, or fun
tional dependen
ies, in a relational databaseACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



4 � Dimitrios Gunopulos et al.in addition to the to the problem of 
omputing of all maximal frequent sets of af0; 1g matrix for a given threshold. The 
omputation of maximal frequent sets is afundamental data mining problem whi
h is required in dis
overing asso
iation rules[Agrawal et al. 1993; Agrawal and Srikant 1994; Agrawal et al. 1996℄. Computationof minimal keys is important for semanti
 query optimization, whi
h leads to fastquery pro
essing in database systems [Mannila and R�aih�a 1994; Knobbe and Adri-aans 1995; Bell and Bro
khausen 1995; S
hlimmer 1993℄. Here we refer to possiblekeys that exist in a spe
i�
 instan
e of a relational database and are not designedas su
h. In both 
ases we �rst prove some hardness results of related problemsruling out simple algorithmi
 approa
hes. We then show that the algorithm 
an beadapted to solve these problems.The rest of this paper is organized as follows. In Se
tion 2 we present a modelof data mining whi
h formally de�nes the theory extra
tion problem. We alsoshow how this model 
an be used to des
ribe the problems of 
omputing frequentsets and minimal keys. We also show the 
orresponden
e between this problemand problems studied in learning theory. In se
tion 3 we give hardness resultsthat show that these two spe
i�
 problems are diÆ
ult to solve. In se
tion 4 weformally de�ne our 
omputational model. Se
tion 5 presents and analyses the level-wise algorithm. Se
tion 6 presents the Dualize and Advan
e algorithm and analysesits 
omplexity. Se
tion 7 des
ribes how the Dualize and Advan
e algorithm 
an beadapted to 
ompute maximal frequent sets and minimal keys. We also apply thisalgorithm to the problem of learning Boolean monotone fun
tions using membershipqueries. Se
tion 8 presents an in
remental algorithm for 
omputing the transversalsof a hypergraph. Se
tion 9 presents related work. In Se
tion 10, we dis
uss thes
ope of our algorithms and point out some dire
tions of further work. Preliminaryversions of the work presented here appeared previously in [Gunopulos et al. 1997b℄,[Gunopulos et al. 1997a℄.2. DATA MINING AS THEORY EXTRACTIONThe model of knowledge dis
overy that we 
onsider is the following [Mannila 1995;Mannila and Toivonen 1997; Mannila 1996℄. Given a database r, a language L forexpressing properties or de�ning subgroups of the data, and a frequen
y 
riterionq for evaluating whether a senten
e ' 2 L de�nes a suÆ
iently large sub
lass of r.The 
omputational task is to �nd the theory of r with respe
t to L and q, i.e., theset Th(L; r; q) = f' 2 L j q(r; ') is trueg:We are not spe
ifying any satisfa
tion relation for the senten
es of L in r: thistask is taken 
are of by the frequen
y 
riterion q. For some appli
ations, q(r; ')
ould mean that ' is true or almost true in r, or that ' de�nes (in some way) asuÆ
iently large or otherwise interesting subgroup of r. We therefore abstra
t thisaway by saying that ' is interesting when q(r; ') = 1, and dis
uss the problem ofmining for interesting senten
es.Obviously, if L is in�nite and q(r; ') is satis�ed for in�nitely many senten
es, (anexpli
it representation of) all of Th(L; r; q) 
annot be 
omputed feasibly. Thereforefor the above formulation to make sense, the language L has to be de�ned 
arefully.In 
ase L is in�nite, there are alternative ways of meaningfully de�ning feasible
omputations in terms of dynami
 output size, but we do not 
on
ern ourselvesACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



Dis
overing All Most Spe
i�
 Senten
es � 5with these s
enarios. In this paper we assume that L is �nite.As already 
onsidered by [Mit
hell 1982℄, we use a spe
ialization/generalizationrelation between senten
es. (See, e.g., [Langley 1995℄ for an overview of approa
hesto related problems.) A spe
ialization relation is a partial order � on the senten
esin L. We say that ' is more general than �, if ' � �; we also say that � is morespe
i�
 than '. The relation � is a monotone spe
ialization relation with respe
tto q if the quality predi
ate q is monotone with respe
t to �, i.e., for all r and ' wehave the following: if q(r; ') and '0 � ', then q(r; '0). In other words, if a senten
e' is interesting a

ording to the quality predi
ate q, then also all less spe
ial (i.e.,more general) senten
es '0 � ' are interesting. We write � � � if � � � and not� � �.Denote by rank( ) the rank of a senten
e  2 L, de�ned as follows. If for no� 2 L we have � �  , then rank( ) = 0, otherwise rank( ) = 1 + maxfrank(�) j� �  g: For T � L, let Ti denote the set of the senten
es of L with rank i.Typi
ally, the relation � is (a restri
tion of) the semanti
 impli
ation relation:if � � � , then � j= �, i.e., for all databases r, if r j= � , then r j= �. Note that if theinterestingness predi
ate q is de�ned in terms of statisti
al signi�
an
e or somethingsimilar, then the semanti
 impli
ation relation is not a monotone spe
ializationrelation with respe
t to q: a more spe
i�
 statement 
an be interesting, even whena general statement is not.Given a spe
ialization relation �, the set Th(L; r; q) 
an be represented by enu-merating only its maximal elements, i.e., the setMTh(L; r; q) = f� 2 Th(L; r; q) j for no � 2 Th(L; r; q) � � �gHere again, one should be 
areful when working with in�nite latti
es. We assumethroughout the paper that the maximal elements exist and are well de�ned, andsimilarly for the minimal elements outside the theory Th(L; r; q). This de�nitelyholds in �nite latti
es, and 
an be useful in more general 
ases as well. The problem
onsidered in this paper is therefore the following:Problem 2.1 MaxTh. Given L, r, and q, �nd MTh(L; r; q).It is easy to show ([Mannila and Toivonen 1997℄) that �nding frequent sets,episodes, keys, or in
lusion dependen
ies are instan
es of the problem MaxTh. Es-pe
ially for the problem of �nding keys (or, more generally, fun
tional dependen
ies)from relation instan
es the 
urrent framework has lots of 
onne
tions to previouswork.2.1 Asso
iation Rules and Frequent SetsTo fa
ilitate the presentation we next dis
uss the problem of 
omputing frequentsets that will serve to illustrate ideas in the next se
tions.Given a 0/1 relation r with attributes R, an asso
iation rule is an expressionX ) A, where X � R and A 2 R. The intuitive meaning of su
h a rule is that if arow has 1 in all attributes of X then it tends also to have 1 in 
olumn A. Typi
ally,in data mining, asso
iation rules are sear
hed so that the set of rows having 1 inthe attributes in X [A is large enough; if we were to draw random rows from r, itis required that su
h rows will be drawn with frequen
y at least �, for some �xed �.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



6 � Dimitrios Gunopulos et al.The a
tual frequen
y is 
alled the support of the rule. The ratio of rows in
luding1 in X [ A to those in
luding 1 in the set X is 
alled the 
on�den
e of the rule.Given the above des
ription, a major sub-task that is usually solved �rst is that of
omputing frequent sets. Namely, given a 0/1 relation r, 
ompute all subsets Z su
hthat the frequen
y of rows having 1 in all attributes of Z is larger than �. Clearly,this is an instan
e of the problem dis
ussed above; L is the set of subsets of R, andq 
orresponds to having frequen
y higher than �. The set Th(L; r; q) 
orrespondsto the set of frequent sets, and similarly we 
an talk of maximal frequent sets. Thisleads to the de�nition of the �rst spe
i�
 instan
e of the problem we are 
onsidering:Problem 2.2. Finding maximal frequent sets: Given a 0/1 relation, anda threshold � 
ompute all maximal frequent sets.On
e the frequent sets are found the problem of 
omputing asso
iation rules fromthem is straightforward. For ea
h frequent set Z, and for ea
h A 2 Z one 
an testthe 
on�den
e of the rule Z nA) A.2.2 Finding Minimal Keys in DatabasesIn this se
tion we dis
uss the problem of �nding all minimal keys of a database.We begin by de�ning what we mean by keys and des
ribe an appli
ation in whi
hit is useful to �nd all minimal keys. We view a relational database r as a matrixwhose 
olumns 
orrespond to �elds and rows 
orrespond to re
ords. Let R denotethe set of all �elds (i.e. 
olumns of the matrix). Then a set X � R is a key of r, ifno two rows of r agree on every attribute in X . A minimal key is a key su
h thatno proper subset of it is a key. Note that every key must 
ontain some minimal keyand 
onversely every superset of a minimal key is a key. Therefore the 
olle
tionof all minimal keys of a database is a su

in
t representation of the set of all keysof the database. Note the distin
tion between our de�nition of key and the morestandard de�nition of (primary) key of a database [Ullman 1988℄. A (primary) keyis a key (w.r.t. our de�nition) of the database throughout the life of the databaseand is maintained so by the database manager. However an arbitrary key by ourde�nition, may be so at 
urrent state of the database and may not exist to be soafter an update of the database. The problem we 
onsider here is the following:Problem 2.3. Finding keys: Given a relational database, 
ompute all minimalkeys that exist 
urrently.As has been dis
ussed in [Bell℄, the knowledge of all minimal keys existing 
ur-rently in the database 
an help in semanti
 query optimization i.e. in the pro
essby whi
h a database manager substitutes a 
omputationally expensive query by asemanti
ally equivalent query whi
h 
an be pro
essed mu
h faster.2.3 Relation to Learning TheoryWe now show that the problem dis
ussed above is very 
losely related to problemsin learning theory. One of the s
enarios dis
ussed in learning theory is as follows:a Boolean fun
tion f : f0; 1gn ! f0; 1g is �xed by some adversary (modeling a
on
ept in the world). A learner is given a

ess to some ora
le giving it partialinformation on the fun
tion f . The task of the learner is to �nd a representationACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



Dis
overing All Most Spe
i�
 Senten
es � 7for a Boolean fun
tion that is identi
al (or approximates) f . In parti
ular we will
onsider the model of exa
t learning with membership queries [Angluin 1988℄.A membership query ora
le MQ(f) allows the learner to ask for the value off on a 
ertain point. That is, given x 2 f0; 1gn, MQ(f) returns the value f(x).The learning algorithm is given a

ess to MQ(f), and the algorithm is required toprodu
e an expression that 
omputes f exa
tly.Definition 2.4. An algorithm is an exa
t learning algorithm with time 
omplex-ity T (), query 
omplexity Q(), and representation 
lass H, for a 
lass of fun
tionsF , if for all f 2 F , when given a

ess to MQ(f), the algorithm runs in time T (),asks MQ on at most Q() points and then outputs a representation h 2 H for aBoolean fun
tion su
h that h is equivalent to f .In the above de�nition we omitted the parameters of the fun
tions T () and Q().Normally the algorithm is allowed time polynomial in the number of variables n,and the size of a representation for f in some representation language.In parti
ular we next 
onsider the problem of learning monotone fun
tions withmembership queries. A fun
tion f is monotone if f(x) = 1, and y � x impliesf(y) = 1, where � is the normal partial order on f0; 1gn. We also 
onsider thestandard CNF and DNF representations for su
h fun
tions. A term is a 
onjun
tionof literals, e.g. x1x2 is a term. A DNF expression is a disjun
tion of terms, e.g.x1x2 _ x2x3 is a DNF expression. Similarly a CNF expression is a 
onjun
tion ofdisjun
tions, e.g. (x1 _ x2)(x2 _ x3) is a CNF expression. It is well known thatmonotone fun
tions have unique minimum size representations in both DNF andCNF, that in
lude all minimal terms or 
lauses respe
tively of the fun
tion. (Aminimal term, 
alled a prime impli
ant, is a term that implies f and su
h thatevery subset of it does not imply f .)In the s
enario that follows the learning algorithm is allowed time relative to thenumber of attributes n, and the sum of sizes of its DNF and CNF representations.That is, we 
onsider T (m), and Q(m) where m = n+ jDNF (f)j+ jCNF (f)j.The 
orresponden
e between learning monotone fun
tions and 
omputing inter-esting sets is thus straightforward. The elements of f0; 1gn 
orrespond to subsetsof the variables so that a value 1 implies that the 
orresponding attribute is in theset. The value of the fun
tion on an assignment 
orresponds to the negation of theinterestingness relation q. Sin
e q is monotone, the fun
tion is monotone. Mem-bership queries now naturally 
orrespond to Is-interesting queries. We thereforeget:Theorem 2.5. The problem of 
omputing interesting senten
es for problems rep-resentable as sets is equivalent to the problem of learning monotone fun
tions withmembership queries, with representation 
lass CNF (or DNF).3. HARDNESS RESULTS ON THE COMPUTATION OF FREQUENT SETS ANDMINIMAL KEYSComputing frequent sets or maximal frequent sets is an enumeration problem. Thealgorithm must enumerate all sets and in the end provide proof that no more setsexist. The results in this se
tion indi
ate that it is diÆ
ult not only to �nd allmaximal frequent sets and minimal keys, but it is also diÆ
ult to verify that allACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



8 � Dimitrios Gunopulos et al.maximal sets or keys have already been found. The hardness results we present alsoshow that it is diÆ
ult to to �nd the number of frequent sets or keys. As a result,algorithms that �nd frequent sets or keys are likely to be worst 
ase exponential.Consequently, we will use an output-size sensitive 
omplexity model to evaluate theperforman
e of the algorithms.3.1 Hardness Results on the Computation of Frequent SetsWe �rst 
onsider the problem of 
ounting the number of �-frequent sets.Theorem 3.1. The problem of �nding the number of �-frequent sets of a given0-1 relation r and a threshold � 2 [0; 1℄ is #P-hard.Proof. We show a polynomial time redu
tion from the problem of 
omputingthe number of satisfying assignments of a monotone-2CNF formula to the problemof 
omputing the number of frequent sets, that has a simple mapping between thenumber of solutions. This suÆ
es, sin
e the problem of 
omputing the number ofsatisfying assignment of monotone-2CNF formulae is known to be #P-hard [Valiant1979℄.A monotone-2CNF formula is a boolean formula in 
onjun
tive normal form inwhi
h every 
lause has at most two literals and every literal is unnegated. Givena monotone-2CNF formula f with m 
lauses and n variables, 
onstru
t an m �n f0,1g matrix M as follows: Mj;i is 0 if the ith variable is present in the jth
lause and 1 otherwise. An assignment of variables falsi�es f i� the set of 
olumns
orresponding to variables with value 1 forms a frequent set of M with threshold 1m .Therefore, the number of frequent sets of M with threshold 1m is (2n - the numberof satisfying assignments of f). This 
ompletes the redu
tion.Note that the above result still does not rule out the possibility of an outputpolynomial algorithm for 
omputing all maximal frequent sets, sin
e in 
ontrastwith 
ounting, for enumeration one is given time polynomial in the size of theoutput. The next theorem rules out the possibility of an eÆ
ient algorithm whi
houtputs the maximal frequent sets in the de
reasing order of their size.Theorem 3.2. The problem of de
iding if there is a maximal �-frequent set withat least t attributes for a given 0-1 relation r, and a threshold � 2 [0; 1℄, is NP-
omplete.Proof. It is easily seen that the problem is in NP. To show the NP-hardness,we show a polynomial time redu
tion from the Balan
ed Bipartite Clique problemto the above problem. Sin
e the Balan
ed Bipartite Clique is known to be NP-hard,the result will follow ([Garey and Johnson 1979℄).Given a bipartite graph G = (V1; V2; E), a balan
ed 
lique of size k is a 
ompletebipartite graph with exa
tly k verti
es from ea
h of V1 and V2. The Balan
ed Bi-partite Clique problem is, given a bipartite graph G and a positive integer k, 
he
kif there exist a balan
ed bipartite 
lique of size k.Given a bipartite graph G and a positive integer k, let n1 and n2 be the numberof verti
es in V1 and V2 respe
tively. De�ne an n1� n2 f0,1g matrix M as follows.Mi;j is 1 i� ith vertex of V1 is 
onne
ted to the jth of V2. Then there is a bipartite
lique of size k in G i� there is a frequent set of M of size at least k with thresholdkn1 .ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



Dis
overing All Most Spe
i�
 Senten
es � 93.2 Hardness Results for Computing Minimal KeysTheorem 3.3. The problem of �nding the number of all keys of a given databaseis #P-hard.Proof. We prove the result in two steps. First we show a polynomial timeredu
tion from the problem of 
omputing the number of satisfying assignments of amonotone-2CNF formula to the problem of 
omputing the number of set-
overs ofa family of sets. Then we show a polynomial time redu
tion from the problem of
omputing the number of set 
overs of family of sets to the problem of 
omputingthe number of keys of a database. Sin
e the redu
tions maintain the same numberof solutions, and the problem of 
omputing the number of satisfying assignments ofa monotone-2CNF formula is #P-hard [Valiant 1979℄, this proves the result.Re
all that, given a family of sets ea
h of whi
h is subset of a �nite universe set,a set 
over is a 
olle
tion of sets from the family su
h that every element of theuniverse is in at least one of the sets in the 
olle
tion. Given a monotone-2CNFformula with m 
lauses and n variables, 
onstru
t a family of n sets S1; :::; Sn ea
hof whi
h is a subset of the set f1,2,...,mg, as follows. The set Si 
ontains j i� ithvariable is present in jth 
lause. It is easily seen that a satisfying assignment ofthe monotone-2CNF formula 
orresponds to a unique set 
over of the family of setsand vi
e versa, by pi
king Si in the set 
over i� the ith variable has value 1 in theassignment. Therefore the number of satisfying assignments of the monotone-2CNFformula is exa
tly the number of set 
overs of the family of sets. This 
ompletesthe �rst redu
tion.We now dis
uss the se
ond redu
tion. Given a family of sets S1; :::; Sn ea
h ofwhi
h is a subset of the universe set f1,2,...,mg, 
onstru
t a relational database asfollows. The database has n �elds f1; :::; fn and m+1 re
ords r0; :::; rm. The re
ordr0 will have value 0 in every �eld. For 1 � j � n and 1 � i � m, the �eld fj ofre
ord ri will have value i if element i is present in the set Sj otherwise it will havevalue 0. Note that a 
olle
tion Si1 ; Si2 ; :::; Si
 (for some 
) of sets from the familywill be a set 
over i� the 
olle
tion of �elds fi1 ; :::; fi
 is a key of the database.Therefore the number of set 
overs of the given family of sets is the same as thenumber of keys of the database. This 
ompletes the se
ond redu
tion and the proofof the theorem.The following theorem shows that 
ounting the number of minimal keys is noteasier than 
ounting the number of all keys.Theorem 3.4. The problem of �nding the number of minimal keys of a givendatabase is #P-hard.Proof. On
e again we show two polynomial time redu
tions that maintain thesame number of solutions. The �rst redu
tion is from the problem of 
omputingthe number of minimal vertex 
overs of a graph to the problem of 
omputing thenumber of minimal set 
overs of a family of sets. The se
ond redu
tion is fromthe problem of 
omputing the number of minimal set 
overs of a family of sets tothe problem of 
omputing the number of minimal keys of the database. Sin
e theproblem of 
omputing the number of minimal vertex 
overs of a graph is known tobe #P hard [Valiant 1979℄, this implies the result.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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all that a vertex 
over of a graph G is a set of verti
es of G su
h that everyedge of G is in
ident on at least one vertex in the set. Given a graph G with nverti
es and m edges, de�ne a family of sets S1; :::; Sn ea
h of whi
h is a subset ofthe set f1,2,...,mg, as follows. The set Si has element j i� the jth edge of the graphis in
ident on the ith vertex. Note that a 
olle
tion of sets Si1 ; :::; Si
 (for some 
)from the family is a minimal set 
over i� the set of verti
es fi1; :::; i
g is a minimalvertex 
over of G. Therefore the number of minimal vertex 
overs of G is same asthe number of minimal set 
overs of the family. This 
ompletes the �rst redu
tion.For the se
ond redu
tion, we use the same redu
tion whi
h was used as se
ondredu
tion in the proof of Theorem 3.3. With respe
t to the redu
tion, note thata 
olle
tion Si1 ; :::; Si
 is a minimal set 
over of the family i� the set of �eldsffi1 ; :::; fi
g is a minimal key of the database. Therefore the number of minimal set
overs of the family is same as the number of minimal keys of the database.4. COMPLEXITY OF FINDING ALL INTERESTING SENTENCESThe hardness results we presented in the previous se
tion show that algorithmsthat �nd maximal frequent sets or keys are likely to have exponential worst 
aserunning time. Consequently, we will use an output-size sensitive 
omplexity modelto evaluate the performan
e of the algorithms.To study the 
omplexity of the generation problem we introdu
e some notationand basi
 results that appeared previously in [Mannila and Toivonen 1997℄.Consider a set S of senten
es from L su
h that S is 
losed downwards under therelation �, i.e., if � 2 S and ' � �, then ' 2 S. The border Bd(S) of S 
onsistsof those senten
es � su
h that all generalizations of � are in S and none of thespe
ializations of � is in S. Those senten
es � in Bd(S) that are in S are 
alledthe positive border1 Bd+(S), and those senten
es � in Bd(S) that are not in S arethe negative border Bd�(S). In other words,Bd(S) = Bd+(S) [ Bd�(S);where Bd+(S) = f� 2 S j for all 
 s.t. � � 
; we have 
 62 Sgand Bd�(S) = f� 2 L n S j for all 
 � �; we have 
 2 Sg:The positive border of the theory is the set of its maximal elements, i.e.,MTh(L; r; q) =Bd+(Th(L; r; q)). Note that Bd(S) 
an be small even for large S.Above we assumed that the set S is 
losed downwards. We generalize the notationfor sets S that are not 
losed downwards by simply de�ning that Bd(S) = Bd(S0)where S0 is the downward 
losure of S. The generalization is similar for negativeand positive borders.Some straightforward lower bounds for the problem of �nding all frequent setsare given in [Agrawal et al. 1996; Mannila et al. 1994℄. Now we 
onsider theproblem of lower bounds in a more realisti
 model of 
omputation.1I.e., the positive border 
orresponds to the set \S" of [Mit
hell 1982℄.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



Dis
overing All Most Spe
i�
 Senten
es � 11The main e�ort in �nding interesting sets is in the step where the interestingnessof subgroups are evaluated against the database. Thus we 
onsider the follow-ing model of 
omputation. Assume the only way of getting information from thedatabase is by asking questions of the formIs-interesting. Is the senten
e ' interesting, i.e., does q(r; ') hold?Theorem 4.1. [Mannila and Toivonen 1997℄ Any algorithm for 
omputingTh(L; r; q) that a

esses the data using only Is-interesting queries must use at leastsizeBd(Th(L; r; q)) queries.This result, simple as it seems, gives as a 
orollary a result about �nding fun
-tional dependen
ies that in the more spe
i�
 setting is not easy to �nd; 
f. [Mannilaand R�aih�a 1992; Mannila and Toivonen 1997℄. Similarly, the 
orresponding veri�-
ation problem requires at least this number of queries.Problem 4.2 Veri�
ation. Given L, r, q, and a set S � L, verify that S =MTh(L; r; q).Corollary 4.3. [Mannila and Toivonen 1997℄ Given L, r, q, and a setS � L, determining whether S = MTh(L; r; q) requires in the worst 
ase at leastsizeBd(S) evaluations of the predi
ate q, and it 
an be solved using exa
tly thisnumber of evaluations of q.We now show that the veri�
ation problem is 
losely related to 
omputing hy-pergraph transversals. A 
olle
tion H of subsets of R is a (simple) hypergraph, ifno element of H is empty and if X;Y 2 H and X � Y imply X = Y . The elementsof H are 
alled the edges of the hypergraph, and the elements of R are the verti
esof the hypergraph. Given a simple hypergraph H on R, a transversal T of H is asubset of R interse
ting all the edges of H, that is, T \E 6= ; for all E 2 H.Transversals are also 
alled hitting sets. Here we 
onsider minimal transversals :a transversal T of H is minimal if no T 0 � T is a transversal (Figure 1). The
olle
tion of minimal transversals of H is denoted by Tr(H). It is a hypergraph onR.Problem 4.4 HTR. Given a hypergraph H, 
onstru
t Tr(H).For more information on hypergraphs see [Berge 1973℄. The problem of 
omput-ing transversals appears in various bran
hes of 
omputer s
ien
e; a 
omprehensivestudy of this problem is given by [Eiter and Gottlob 1995℄. The HTR problemalso appears in several forms in databases. In parti
ular, the problem of translat-ing between a set of fun
tional dependen
ies and their 
orresponding Armstrongrelation [Mannila and R�aih�a 1986; Mannila and R�aih�a 1992℄ is at least as hard asthis problem and equivalent to it in spe
ial 
ases [Eiter and Gottlob 1995℄. Furtherdis
ussion of these issues is given by [Khardon 1995; Mannila and R�aih�a 1994℄.Noti
e that in general the output for this problem may be exponentially largerthan its input, and thus the question is whether it 
an be solved in time polynomialin both its input size and output size. We say that an algorithm is output T () timealgorithm for the problem if it runs in time T (I; O) where I is the input size, and Ois the 
orresponding output size. A more stri
t 
ondition, that we use here, requiresthat the output transversals be enumerated, and that the time to 
ompute the i'thACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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B

A

C DFig. 1. The set fA;Bg is a transversal of the hypergraph with edges AB;AC;AD;BD.transversal will be measured against the input size and i. That is, an algorithmsolves the problem in in
remental T (I; i) time if the i'th transversal is 
omputedin time T (I; i). For further dis
ussion and other variations see [Eiter and Gottlob1995℄.The exa
t 
omplexity of the HTR problem is yet unknown. A sub-exponentialsolution for the problem has been re
ently dis
overed [Fredman and Kha
hiyan1996℄, and several spe
ial 
ases 
an be solved in polynomial time [Eiter and Gottlob1995; Mishra and Pitt 1997℄.Now we return to the veri�
ation problem. Given S � L, we have to determinewhether S = MTh(L; r; q) holds using as few evaluations of the interestingnesspredi
ate as possible.Definition 4.5 Representing as Sets. Let L be the language, � a spe
ial-ization relation, and R a set; denote by P(R) the powerset of R. A fun
tionf : L ! P(R) is a representation of L (and �) as sets, if f is one-to-one andsurje
tive, f and its inverse are 
omputable, and for all � and ' we have � � ' ifand only if f(�) � f(').Thus, representing as sets requires that the stru
ture imposed on L by � isisomorphi
 to a subset latti
e. In parti
ular, the latti
e must be �nite, and its sizemust be a power of 2. Note that frequent sets, fun
tional dependen
ies with �xedright-hand sides, and in
lusion dependen
ies are easily representable as sets; thesame holds for monotone Boolean fun
tions. However, the language of [Mannila etal. 1995℄ used for dis
overing episodes in sequen
es does not satisfy this 
ondition.Given S, we 
an 
ompute Bd+(S) without looking at the data r at all: simply �ndthe most spe
ial senten
es in S. The negative border Bd�(S) is also determined byS, but �nding the most general senten
es in LnS 
an be diÆ
ult. We now show howminimal transversals 
an be used in the task. Assume that (f;R) represents L assets, and 
onsider the hypergraph H(S) on R 
ontaining as edges the 
omplementsof sets f(') for ' 2 Bd+(S): H(S) = fR n f(') j ' 2 Bd+(S)g: Then Tr(H(S)) isa hypergraph on R, and hen
e we 
an apply f�1 to it: f�1(Tr(H(S))) = ff�1(H) jACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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A         B         C        D

AB      AC      AD     BC      BD      CD

ABCD

ABC      ABD      ACD      BCD

{}Fig. 2. The lower shaded area represents the downward 
losure of S = fABC;ABDg, S is exa
tlythe positive border and the negative border is the set CD.H 2 Tr(H(S))g. We have the following.Theorem 4.6. [Mannila and Toivonen 1997℄ f�1(Tr(H(S))) = Bd�(S).Example 4.7. Consider the problem of 
omputing frequent sets illustrated inFigure 2, with attributes R = fA;B;C;Dg. Let S = fABC;ABDg, where weuse a shorthand notation for sets, e.g., we represent fA;B;Cg by ABC. Then thedownward 
losure of S is equal to fABC;ABD;AB;AC;AD;BC;BD;A;B;C;Dg,and S in
ludes the maximal elements. The negative border (that 
an be found bydrawing the 
orresponding latti
e) is Bd�(S) = fCDg.For this problem we already have L represented as sets and thus use the identitymapping f(X) = X, thus H(S) = fD;Cg. It is easy to see that Tr(fD;Cg) =fCDg, and thus f�1 indeed yields the 
orre
t answer.The requirement for representing as sets is quite strong. It is however ne
essary.In parti
ular the mapping f must be surje
tive, that is, 
over all of P (R). Oth-erwise, after 
omputing the transversal, a set may not have an inverse mappingACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



14 � Dimitrios Gunopulos et al.to be applied in the last transformation in the theorem. This is indeed the 
asewhen we 
onsider the problem of �nding sequential patterns [Agrawal and Srikant1995℄ or episodes [Mannila et al. 1995℄. The apriori (level-wise) algorithm 
an beextended to handle sequen
es of attributes rather than sets of attributes be
ause we
an de�ne a monotone spe
ialization relation between sequen
es. However it is not
lear how to represent sequen
es of attributes as sets so the Dualize and Advan
ealgorithm 
annot be applied in this 
ase.5. THE LEVEL-WISE ALGORITHMThe apriori algorithm [Agrawal and Srikant 1994; Mannila and Toivonen 1997℄ for
omputing Th = Th(L; r; q) pro
eeds by �rst 
omputing the set Th0 
onsisting ofthe senten
es of rank 0 that are in Th. Then, assuming Thi is known, it 
omputesa set of 
andidates: senten
es  with rank i + 1 su
h that all � with � �  arein Th. For ea
h one of these 
andidates  , the algorithm 
alls the fun
tion q to
he
k whether  really belongs to Th. This iterative pro
edure is performed untilno more senten
es in Th are found.This level-wise algorithm has been used in various forms in �nding asso
iationrules, episodes, sequential rules, et
. [Agrawal and Srikant 1994; Agrawal et al.1996; Agrawal and Srikant 1995; Mannila et al. 1995; Mannila and Toivonen 1997℄.In [Gunopulos et al. 1997a℄ it is shown to be optimal for the 
omputation of theset Th(L; r; q). The algorithm solves the problem MaxTh by simply �nding allinteresting statements, i.e., the whole theory Th(L; r; q) going bottom up. Themethod is as follows:Algorithm 5.1. The apriori (level-wise) algorithm for �nding all interestingstatements.Input: A database r, a language L with spe
ialization relation �, and a qualitypredi
ate q.Output: The set Th(L; r; q).Method:1. C1 := f' 2 L j there is no '0 in L su
h that '0 � 'g;2. i := 1;3. While Ci 6= ; Do4. Li := f' 2 Ci j q(r; ')g;5. Ci+1 := f' 2 L j for all '0 � ' wehave '0 2 Sj�i Ljg n Sj�i Cj ;6. i := i+ 1;7. Od;8. output Sj<i Lj;The algorithm works iteratively, alternating between 
andidate generation andevaluation phases. First, in the generation phase of an iteration i, a 
olle
tionCi of new 
andidate senten
es is generated, using the information available frommore general senten
es. Then the quality predi
ate is 
omputed for these 
andidatesenten
es. The 
olle
tion Li will 
onsist of the interesting senten
es in Ci. In thenext iteration i+1, 
andidate senten
es in Ci+1 are generated using the informationabout the interesting senten
es in SLj (Figure 3). Note that using the notion ofACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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{}

AB      AC      AD     BC      BD      CD

ABCD

ABC      ABD      ACD      BCD

A         B         C        D

Fig. 3. The apriori algorithm operates at levels: After 
omputing the frequent sets of size 2(L2 = fAB;AC;BCg), the only set of 
ardinality 3 that must be 
onsidered is ABC, whi
h is asuperset of all the sets in L2.border, Step 5 of the algorithm 
an be written as Ci+1 := Bd�(Sj�i Lj)nSj�i Cj :The algorithm aims at minimizing the amount of database pro
essing, i.e., thenumber of evaluations of q (Step 4). Note that the 
omputation to determinethe 
andidate 
olle
tion does not involve the database (Step 5). For example, in[Agrawal et al. 1996℄, when 
omputing frequent sets Step 5 used only a negligibleamount of time.Clearly, by de�nition, the algorithm �nds the maximal interesting senten
es.Moreover, we show that under 
ertain 
onditions the algorithm does not take toomu
h time. The following theorem is immediate.Theorem 5.2. The level-wise algorithm 
omputes the set of interesting sen-ten
es 
orre
tly, and it evaluates the predi
ate qjTh(L; r; q) [ Bd�(Th(L; r; q))jtimes. ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



16 � Dimitrios Gunopulos et al.Example 5.3. Consider, again, the problem of 
omputing frequent sets whereR = fA;B;C;Dg and MaxTh = fABC;BDg, i.e., the situation of Figure 2. Thelevel-wise algorithm works its way up from the bottom. It starts by evaluating thesingletons A;B;C, and D; all of these are frequent. In the se
ond iteration C2
ontains pairs of attributes su
h that both attributes are frequent, in this 
ase allattribute pairs. Of them, AB;AC;BC, and BD are frequent. C3 then 
ontainssu
h sets of size three all of whose subsets are frequent, i.e., the set ABC, whi
his a
tually frequent. Noti
e that the negative border 
orresponds exa
tly to the setsthat have been found not interesting along the way, that is the sets AD and CD.In order to further analyze the 
omplexity we use the following notation. Firstre
all the de�nition of rank, given in Se
tion 2, 
apturing the \level" of a senten
e.Denote by d
(k) the maximal size of the downward 
losure of any senten
e � of rank� k. Also, by width(L;�) denote the maximal number of immediate su

essors onL and �. That is,width(L;�) = max� jf� j � � � and for no  ; � �  � �gj :Theorem 5.4. Let k be the maximal rank over all interesting senten
es in theproblem (L; r; q). The level-wise algorithm 
omputes the set of interesting senten
es
orre
tly, and the number of queries it makes is bounded byd
(k) width(L;�) jMTh(L; r; q)j:Proof. The number of senten
es below any maximal element is bounded byd
(k), and thus the number of elements not reje
ted from Ci at all stages togetheris bounded by d
(k)jMTh(L; r; q)j. Ea
h of these senten
es might 
reate at mostwidth(L;�) new senten
es for 
onsideration in Ci+1 that may be reje
ted (i.e. theyare in Bd�(Th(L; r; q))).This result holds for any (L; r; q). For problems representable as sets one 
anderive more expli
it bounds. In parti
ular, in the problem of frequent sets therank 
orresponds to the size of the set, the width is the number of attributes, andd
(k) = 2k. A standard assumption in pra
ti
al appli
ations is that the size offrequent sets is bounded. In these 
ases the level-wise algorithm is indeed eÆ
ient:Corollary 5.5. Let k be the size of the largest frequent set, and n the numberof attributes. The level-wise algorithm 
omputes the set of frequent sets 
orre
tly,and the number of queries it makes is bounded by 2knjMTh(L; r; q)j.As a further 
orollary of the above we get that if the size of frequent sets is nottoo large then the size of Bd�(Th(L; r; q)) is not prohibitive and thus the problemis feasible.Corollary 5.6. Let k be the size of the largest frequent set, and n the numberof attributes.(i) The size of sets in Bd�(Th(L; r; q)) is bounded by k + 1.(ii) If k = O(log n), the size of Bd�(Th(L; r; q)) is bounded by O(nO(1)jMTh(L; r; q)j).We thus get an appli
ation for hypergraph transversals:ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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i�
 Senten
es � 17Theorem 5.7. For k = O(log n), the problem of 
omputing hypergraph transver-sals, where the edges of the input graph are all of size at least n� k, is solvable ininput polynomial time by the level-wise algorithm.Proof. If the edge size is at least n � k, then the maximal sets that are nottransversals are of size at most k. Set non-transversals to be \interesting" and usethe algorithm. We get that the negative border is the required transversal hyper-graph.This improves on previous results by [Eiter and Gottlob 1995℄ (Theorem 5.4)that show that this is possible for 
onstant k (and uses a brute for
e enumerationalgorithm using property (i) above). Noti
e that the level-wise algorithm does notuse the stru
ture of original hypergraph dire
tly. All it does is to test whether
ertain subsets are transversals of it or not.6. THE DUALIZE AND ADVANCE ALGORITHMThe results of the previous 
hapter show that the apriori algorithm is optimal if wewant to 
ompute all frequent elements. It also performs very well when we wantto 
ompute the maximal elements, and the size of the maximal elements is small.Given this analysis, the disadvantage of the level-wise approa
h is 
lear. If thereis an element in MTh whose rank is large, then all the downward 
losure of thiselement will be tested and this would require too mu
h time.Example 6.1. For example, 
onsider the situation where there are n attributes,and k maximal sets of size nk . Then, the size of the border is O(n2) (the maximalfrequent sets are k, and the minimal non-frequent sets are all pairs of attributes thatbelong to di�erent maximal frequent sets), while the total number of frequent sets isO(nn=k). For 
onstant k, an algorithm that �nds the maximal frequent sets by wayof 
omputing all the frequent sets 
an take exponential amount of 
omputationaltime even if the size of the output is polynomial.Intuitively, one would want in su
h 
ase to have an algorithm that goes dire
tlyto the maximal element instead of exploring all of its downward 
losure �rst. Ouralgorithm 
aptures exa
tly this intuition with the subroutine AMSS (A Most Spe-
i�
 Senten
e). Given an interesting senten
e ', AMSS �nds a maximal interestingsenten
e �, su
h that ' � �. On
e a set of most spe
i�
 senten
es is found the al-gorithm fo
uses its sear
h by 
omputing the negative border of the senten
es foundso far (using a transversal 
omputation), and starting its upward sear
h from thisnegative border. Clearly, if progress 
an be made, it 
an be made from the nega-tive border and thus the approa
h is guaranteed to su

eed. These intuitions areformalized in the algorithm and its analysis that follows.While the algorithm 
an be phrased for any (L;�), our analysis only holds forproblems representable as sets, and we thus des
ribe it in the restri
ted setting.We �rst give the algorithm to 
ompute one most spe
i�
 senten
e from Th.Denote  �1 �, if  � � and for no ' we have  � ' � �; in this 
ase, we say that� is an immediate spe
ialization of  .Algorithm 6.2. Algorithm AMSSACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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AB      AC      AD     BC      BD      CD

ABCD

ABC      ABD      ACD      BCD

A         B         C        D

{}Fig. 4. The operation of the algorithm AMSS: The attributes are 
onsidered in the order C;A;D;Bin the example. Sets C and AC are found frequent, the set ACD is not frequent, and �nally ABCis found to be a maximal frequent set.Given a relation r with attributes fR1; : : : Rmg, a language L with spe
ializationrelation �, equivalent to the subset relation on R, and a quality predi
ate q, �nd amost spe
i�
 senten
e from MTh(L; r; q).(1 ) Find a permutation p of the numbers 1; 2; : : :m.(2 )  := fg.(3 ) For i = 1 to m do:If q(r;  [ fRp(i)g) holds, let  :=  [ fRp(i)g.(4 ) Output  .The algorithm assumes that fg 2 L, and pro
eeds to spe
ialize it su

essivelyuntil a most spe
i�
 senten
e is found (Figure 4). In Step 2, if  is initialized withan arbitrary senten
e � 2 Th instead of \true", then the algorithm will �nd a mostspe
i�
 senten
e s0 su
h that s � s0.Note that the 
orre
tness of the algorithm, and the subsequent analysis doesnot depend on the use of a spe
i�
 permutation p. In order to dis
over a maximalfrequent set, the algorithm has to 
onsider all attributes sequentially, but the a
tualorder does not matter. The use of random permutations is an interesting heuristi
that 
an allow more eÆ
ient dis
overy of new maximal frequent sets.On
e a 
olle
tion C of most spe
i�
 senten
es is found, any new most spe
i�
senten
e F 
annot be a subset or a superset of any of the ones found so far. ItACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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overing All Most Spe
i�
 Senten
es � 19follows that F interse
ts all the 
omplements of all sets in C and therefore is atransversal of the hypergraph whose edges are the 
omplements of all sets in C.To dis
over new most spe
i�
 senten
es, we start with a minimal transversal ofthe hypergraph whose edges are the 
omplements of sets in C, and extend it to amost spe
i�
 senten
e. If every minimal transversal is 
onsidered for this extension,then every new most spe
i�
 senten
e will be dis
overed.Denote by Algorithm AMSS( init) the parameterized version of the AlgorithmAMSS, whi
h starts by initializing  with the senten
e  init.We now give the general algorithm for �nding all most spe
i�
 senten
es.Algorithm 6.3. Algorithm All MSSGiven a relation r with attributes fR1; : : : Rmg, a language L with spe
ializationrelation �, equivalent to the subset relation on R, x a quality predi
ate q, andparameters k1; k2; k3; k4, 
ompute MTh(L; r; q).(1 ) i := 1(2 ) Ci = fg(3 ) Di := f
omplements of sets in Cig(4 ) Use a subroutine to enumerate the minimal transversals of Di(5 ) For ea
h transversal X enumerated:(a) if q(r; X) holds, mark X as a 
ounter example and quit loop(6 ) If, for every transversal, q(r; X) does not hold output Ci and exit.(7 ) For the 
ounter example X:Run Algorithm AMSS(X) to �nd a maximal superset Y of X su
h that q(r; Y )holds(8 ) Ci+1 = Ci [ fY g(9 ) i = i+ 1(10 ) Go To 3It is useful to noti
e that the transversal 
omputation does not look at the data,only at elements of L; if the input data is large, a 
ompli
ated 
omputation on L
an still be mu
h 
heaper than just reading the data on
e.Example 6.4. Consider the problem of 
omputing frequent sets des
ribed in Fig-ure 5.The algorithm All MSS starts with C1 = ;, and D1 = fABCDg. The transver-sals are Tr(D1) = fA;B;C;Dg. Assume that in Step 5 the transversal A is tested�rst. Then A is found interesting and the algorithm 
ontinues in Step 7 to �nda maximal element Y . This 
an be done by adding one attribute at a time, andtesting whether q holds, and yields Y = ABC. In the next iteration C2 = fABCg,D2 = fDg, and Tr(D2) = fDg. In Step 5 D is found to be interesting, and inStep 7 the algorithm �nds that Y = BD is maximal interesting. We therefore haveC3 = fABC;BDg, D3 = fD;ACg, and Tr(D3) = fAD;ACg. All the elements ofthe transversal are not interesting and therefore the algorithm stops. The set C3 isexa
tly MTh and Tr(D3) ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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{}

AB      AC      AD     BC      BD      CD

ABCD

ABC      ABD      ACD      BCD

A         B         C        D

Fig. 5. The operation of the Dualize and Advan
e algorithm: Assume that ABC and BD arethe maximal frequent sets found so far. Then any other frequent set must be a superset of eitherAC or CD. These are the transversals of the hypergraph with edges D = ABCD n ABC andAC = ABCD n BD.6.1 The Complexity of the AlgorithmWe now prove an upper bound for the 
omplexity of the algorithm. Similar boundswere previously obtained by [Bshouty et al. 1996; Bio
h and Ibaraki 1995℄ in the
ontext of identifying Boolean fun
tions with membership queries (see Se
tion 2.3),for somewhat di�erent algorithms. In order to establish 
orre
tness we start witha simple lemma:Lemma 6.5. For any iteration i of the algorithm, if Ci 6= MTh(L; r; q) then atleast one of the elements of Tr(Di) is interesting.Proof: First note that the elements of Ci are veri�ed by the algorithm to bemaximal interesting. We therefore have Ci � MTh(L; r; q). Now if there is a set
 2MTh(L; r; q)nCi, then (sin
e � is monotone) there is a minimal interesting setnot in Ci, that is there is an interesting set in Bd�(Ci). (Just walk down in thelatti
e to �nd su
h a set).ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



Dis
overing All Most Spe
i�
 Senten
es � 21As we saw earlier, sets of attributes are already represented as sets and theidentity mapping f(X) = X is used. We thus get from Theorem 4.6 that Tr(Di) =Bd�(S) and one of these elements is interesting. 2The question is how many sets X should be enumerated before �nding su
h a
ounterexample on the negative border. The following example shows that thereare 
ases where the size of MTh(L; r; q) and its negative border are small, but inan intermediate step the size of the negative border of Ci may be large.Example 6.6. [Mannila and R�aih�a 1986℄ Consider the 
ase where MTh =MTh(L; r; q) in
ludes all sets of size n� 2, and Bd�(MTh) thus in
ludes all setsof size n� 1. Further 
onsider the 
ase where Ci is su
h that Di = ffx2i�1; x2ig j1 � i � n=2g. Then the size of Tr(Di) is 2n=2 while Bd�(MTh) is small.Lemma 6.7. For any iteration i of the algorithm, if Ci 6=MTh(L; r; q) then thenumber of sets enumerated before a 
ounterexample set X is found is bounded byjBd�(MTh(L; r; q))j.Proof. Denote Bd� = Bd�(MTh(L; r; q)). We show that ea
h set X enumer-ated either mat
hes an element of Bd� exa
tly, or is interesting. In other words theset X 
annot be both not interesting, and a stri
t superset of an element in Bd�.It follows that at most jBd�j elements need to be enumerated.To prove the 
laim noti
e that every set that is deemed interesting by the Ci isindeed interesting. If X is both not interesting, and a stri
t superset of an elementZ in Bd�, then Z, whi
h is not interesting, is 
laimed interesting by Ci (sin
eX 2 Bd�(Ci) is minimal, and Z � X); a 
ontradi
tion.Theorem 6.8. If there is an in
remental T(I,i) time algorithm for 
omputinghypergraph transversals then MTh =MTh(L; r; q) 
an be 
omputed in time polyno-mial in jMThj and T (jMThj; jBd�(MTh)j), while using at most (jBd�(MTh)j+width(L;�)jMThj) queries.Proof. The bound follows by using algorithm All MSS. By Lemma 6.5, ea
hiteration �nds a new maximal set, and therefore the algorithm is 
orre
t, and thenumber of iterations is jMThj. By Lemma 6.7, in ea
h iteration the algorithmruns a transversals subroutine that enumerates sets on the negative boundary. Ea
hset is either a 
ounterexample, or is a set of Bd�(MTh). If we keep the sets inBd�(MTh) that we have already dis
overed, then, for ea
h set X that the transver-sal subroutine enumerates, �rst we determine whether it is one of the sets we knowalready are in Bd�(MTh) (in whi
h 
ase we 
an ignore it), and otherwise we 
he
kif it is frequent. If not, then X is part of Bd�(MTh), but if it is frequent we tryto extend it to a maximal set. The extension of the 
ounter example X into amaximal set Y requires at most rank(MTh) stages ea
h with one query. The totalnumber of queries is then jBd�(MTh)j to dis
over the negative boundary, and atmost width(L;�) to dis
over ea
h maximal set (sin
e we 
an use the order indu
edby R and avoid trying to add an attribute more than on
e when going up in thelatti
e).Thus we see that the 
onne
tion to hypergraph transversals holds not only forthe veri�
ation problem but also for the generation problem. It is also importantACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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e that the time 
omplexity and query 
omplexity of the algorithm are sepa-rated. Theorem 6.8 shows that, while the running time depends on the transversalenumeration and may not be polynomial, only a polynomial number of queries isrequired.Re
ently, [Fredman and Kha
hiyan 1996℄ presented an in
remental algorithmfor the HTR problem with time 
omplexity T (I; i) = (I + i)O(log(I+i)). We 
antherefore 
on
lude the following:Theorem 6.9. For any problem representable as sets, MTh(L; r; q) 
an be 
om-puted in time t(jMThj+ jBd�(MTh)j), where t(n) = nO(log n), while using at most(jBd�(MTh)j+ width(L;�)jMThj queries.The theorem shows that the Dualize and Advan
e algorithm always takes subex-ponential time to the size of the output (number of maximal elements), and 
an infa
t be exponentially faster than the apriori algorithm.7. APPLYING THE DUALIZE AND ADVANCE ALGORITHM FOR COMPUTINGMAXIMAL FREQUENT SETS, FOR FINDING MINIMAL KEYS, AND FOR LEARN-ING MONOTONE FUNCTIONSIn this se
tion, we dis
uss how to adapt the Dualize and Advan
e algorithm to �ndmaximal frequent sets of a f0,1g matrix and threshold value �, for �nding minimalkeys in a database, and for learning monotone fun
tions. The 
ase of frequent setsis straightforward, and we brie
y outline the approa
h here.As in the general 
ase the following lemma guarantees the su

ess of our method.Lemma 7.1. Let C be a 
olle
tion of maximal �-frequent sets of a relation, andF be a maximal �-frequent set not in C. Then there exists a minimal transversalT of the hypergraph de�ned by the 
omplements of the sets in C su
h that T � F .To apply the general algorithm (Algorithm AMSS), we use the latti
e stru
tureeÆ
iently: the pro
ess 
an be seen as a random walk in the latti
e. Given X , inorder to sele
t a set Y su
h that X �1 Y the only thing we have to do is to get anitem A 2 R nX and let Y = X [ fAg. We give the algorithm AMFS (A MaximalFrequent Set), whi
h �nds a single maximal �-frequent set 
ontaining a given setS of attributes. This algorithm 
orresponds to the parameterized version of thealgorithm AMSS.Algorithm 7.2. Algorithm AMFS(S) Given a f0,1g matrix M with attributesR = fA1; : : : ; AjRjg and n tuples (rows), a threshold � and the set S of attributesfAS1 ; :::; ASlg; �nd a maximal �-frequent set F 
ontaining all the attributes in S.(1 ) Find a permutation p of (1; : : : ; jRj) su
h that for i � jSj, p(i) = Si.(2 ) Set X = ;.(3 ) For i = 1 to jRj:(a) If X [ fAp(i)g is a �-frequent set, add Ap(i) to X.(4 ) Return XThe following theorem shows that the AMFS algorithm does not need to makewidth(L;�) passes over the data, but instead 
an be performed eÆ
iently by main-taining an index per item.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



Dis
overing All Most Spe
i�
 Senten
es � 23Theorem 7.3. Let S be a �-frequent set of a relation r. Then the algorithmAMFS(S) �nds the lexi
ographi
ally �rst (a

ording to the ordering given by p)maximal �-frequent set 
ontaining attributes in S. Further, its time 
omplexity isO(jrj).Proof. The basi
 operation of the algorithm is to add a new attribute in the�-frequent set X. We keep the set of rows �(X; r) that support X as a ve
tors = (s1; : : : ; sm). When attribute Ri is 
onsidered, we take the interse
tion of sand the i-th 
olumn of r. This is the support of the set X [Ri. This pro
ess takesO(m) time, so the total running time of the algorithm is O(mjRj) = O(jrj), linearto the size of the relation r.Note that with respe
t to a given permutation, a maximal frequent set F1 is lexi-
ographi
ally smaller than another maximal frequent set F2, if the smallest attribute(w.r.t. the order of attributes de�ned using permutation) in the symmetri
 di�er-en
e of F1 and F2 is in F1.It is 
lear that the output set X is a maximal �-frequent set. Assume that it is notthe lexi
ographi
ally �rst maximal �-frequent set with respe
t to the ordering p that
ontains S. S has to be a frequent set itself, and all the attributes of S are in the be-ginning of p, they will all be in
luded in X is Step 3. Thereafter, the algorithm willadd greedily into X attributes in the order given by p. Let LF = fRLF1 ; : : : ; RLFkgbe the lexi
ographi
ally �rst maximal �-frequent set with the attributes sorted a
-
ording to p, and let Pi be the �rst attribute that is in
luded to LF but not X. Butthe set fRLF1 ; : : : ; Rig is a frequent set, and therefore the algorithm would add Pito X when it was 
onsidered. It follows that at the end of the algorithm F willrepresent the lexi
ographi
ally smallest maximal �-frequent set 
ontaining S.The following is a 
orollary of Theorems 30 and 32:Corollary 7.4. The algorithm All MFS �nds all maximal �-frequent sets ofthe input matrix M in time subexponential to the number of the maximal �-frequentsets.7.1 Finding Minimal KeysWe now dis
uss our algorithm for dis
overing all minimal keys of a database. We�rst note that for the 
ase of fun
tional dependen
ies with �xed right hand side, andfor keys, even simpler algorithms 
an be used [Mannila and R�aih�a 1986; Khardon1995℄. In this 
ase one 
an a

ess the database and dire
tly 
ompute Bd�(MTh)(a

ording to the appropriate representation as sets, this 
orresponds to the so
alled agree sets of the relation). Then a single run of an HTR subroutine suÆ
es.The 
urrent approa
h 
an be applied even if the a

ess to the database is restri
tedto \Is-interesting" queries. Furthermore as we show it 
an be implemented eÆ-
iently, and depending on the database, it 
an be more eÆ
ient sin
e it avoidsthe 
omputation of the agree sets that is quadrati
 in the number of tuples in thedatabase.To keep an analogy with the problem of dis
overing maximal frequent sets, wewill use the notion of an anti-key. An anti-key in a database is a set of �elds whi
his 
omplement of some key of the database. A maximal anti-key is an anti-keyACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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h that no proper superset of it is an anti-key. Note that a set of �elds is amaximal anti-key i� its 
omplement is a minimal key. Therefore the problem of�nding all minimal keys of a database is equivalent to the problem of �nding allmaximal anti-keys of the database. To keep presentation analogous to maximalfrequent sets, we will hen
eforth in this se
tion talk only of the problem of �ndingall maximal anti-keys of a database.We �rst present algorithm AMAK (AMaximal Anti-Key) for �nding one maximalanti-key 
ontaining a given set of �elds.Algorithm 7.5. Algorithm AMAK(S) Given a database in the form of an n�mmatrix M and a set S = ffi1 ; :::; fisg of �elds of the database, �nd a maximal anti-key whi
h 
ontains all the �elds in the set, provided there exists one.(1 ) Find a permutation p of (1; 2; : : : ;m) su
h that for j � s, p(j) = ij.(2 ) Set A = ;.(3 ) For j = 1 to m:(a) If A [ ffp(j)g is an anti-key, add fp(j) to A.(4 ) If S � A, return A.As in the problem of frequent sets we show that this pro
edure 
an be imple-mented eÆ
iently. In prin
iple, in order to 
he
k that a set is an anti-key all pairs ofrows must be 
ompared. We show that this 
an be done eÆ
iently by maintainingsuitable data stru
tures. The details however, are more involved than in the 
aseof frequent sets, and we �rst present the expanded version of algorithm AMAK.Algorithm 7.6. Algorithm AMAK(S), expandedGiven a database in the form of an n�m matrix M and a set S = ffi1 ; :::; fisgof �elds of the database, �nd a maximal anti-key whi
h 
ontains all the �elds in theset, provided there exists one.(1 ) Find a permutation p of (1; 2; : : : ;m) su
h that for j � s, p(j) = ij.(2 ) Set m pointers to the 
olumns (i.e. �elds) of the matrix a

ording to the per-mutation so that we 
an assume without loss of generality that the 
olumns ofthe matrix are in the order de�ned by p.(3 ) Compute right to left pro�le matrix RLn�m as follows:(a) Consider the mth 
olumn of M . Relabel the values in this 
olumn with
onse
utive positive integers starting from 1 so that identi
al values arelabeled with the same integer and di�erent values are labeled with distin
tintegers. For all i, de�ne RLi;m to be the integer labeling the value inMi;m.(b) For j = m� 1 to 1:Consider the n pairs de�ned by the values in jth 
olumn of M and (j+1)th
olumn of RL. Relabel the pairs with 
onse
utive positive integers startingfrom 1 so that identi
al value pairs are labeled with the same integer anddi�erent value pairs are labeled with distin
t integers. For all i, de�ne RLi;jto be the integer labeling the pair in (Mi;j ; RLi;(j+1)).(4 ) Initialize the left to right pro�le array LRn�1 to be all 0's. Initialize A to beempty set.(5 ) For j = 2 to m:ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



Dis
overing All Most Spe
i�
 Senten
es � 25(a) Consider the n pairs de�ned by values in LR and the jth 
olumn of RL.Label all the pairs with 
onse
utive positive integers starting from 1 so thatidenti
al pairs are labeled with the same integer and di�erent pairs arelabeled with distin
t integers.(b) If the labeling uses all integers from f1; 2; :::; ng then A = A [ fj � 1g elsei. Consider the n pairs de�ned by the entries in LR and the (j � 1)th
olumn of M . Label the pairs with 
onse
utive positive integers so thatidenti
al pairs are labeled with the same integer and di�erent pairs arelabeled with distin
t integers. For all i update the value of LRi;1 to bethe integer labeling the ith pair.ii. If the labeling uses all integers from f1; :::; ng then A = A [ fj; j +1; :::;mg and go to Step 6.(6 ) For k = 1 to jSj: If fk 62 A then Stop.(7 ) Output A.Let j be an integer from f1,2,...,mg. Consider the n tuples formed by taking theproje
tion of the database with respe
t to the 
olumns fj,j+1,...,mg. Then the jth
olumn of RL represents the distin
tness of these n tuples i.e. RLi1;j and RLi2;j aredi�erent i� the ith1 and ith2 tuples are distin
t. This follows by a simple indu
tionon j.At the end of the i-th iteration of the for loop (just before Step 6), the array LRrepresents the distin
tness of the n tuples formed by 
olumns in the set ff1; : : : ; fignA. This follows by a simple indu
tion on the loop variable j. A �eld fj is insertedin A only if the �elds before j that are not in A together with the �elds fj+1; : : : ; fmform a key. Therefore A is always the 
omplement of a key.Theorem 7.7. For a given set S of �elds, suppose there is an anti-key whi
h
ontains all the �elds in S. Then the algorithm AMAK outputs the lexi
ographi
allysmallest maximal anti-key with respe
t to the permutation and whi
h 
ontains allthe �elds in S. Further, assuming that the time to a

ess any �eld of any re
ord is
onstant, the running time of the algorithm is O(nm).Proof. The algorithm greedily inserts �elds in A, under the invariant that Aremains an anti-key, and so outputs the lexi
ographi
ally �rst maximal anti-key,with respe
t to permutation p. Sin
e p has all �elds in S before any other key, Ain
ludes all �elds in S if S is an anti-key.Note that the Step 3 makes one pass of the whole database and hen
e need O(nm)time. Here we are assuming the domain is pre�xed and �nite so that the assignmentof names 
an be done in linear time using a bu
ket sort like method. Similarly Step5 makes one pass of the database. Other steps take O(m)or O(n) time. Thereforethe total time 
omplexity of the algorithm is O(nm).We now give the 
omplete algorithm for �nding all maximal antikeys, whi
h isanalogous to the algorithm for �nding all maximal frequent sets. First we point outthat an analogue of the Lemma 6.5 holds also for the 
ase of maximal anti-keys.Lemma 7.8. Given a 
olle
tion C of maximal anti-keys of a database, let K bea maximal anti-key not in C. Then there exists a minimal transversal T of thehypergraph de�ned by the 
omplements of the sets in C su
h that T � K.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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ription of the algorithm All MAK we ignore the details of how to �ndall minimal transversals of a hypergraph.Algorithm 7.9. Algorithm All MAKGiven a relational database in the form of n � m matrix M, �nd all maximalanti-keys.(1 ) C = fg(2 ) Run algorithm AMAK(�) and add to C the maximal anti-key dis
overed.(3 ) While new antikeys are being found:(a) Compute the set X of all minimal transversals of the hypergraph de�ned by
omplements of subsets in C.(b) For ea
h x 2 X: Run algorithm AMAK(X) and add any new maximalanti-key found to C.(4 ) Output C.We 
an now 
laim the following 
orollary.Corollary 7.10. The algorithm All MAK �nds all maximal anti-keys (andhen
e minimal keys) of the input database.7.2 Learning Monotone Fun
tionsIn this se
tion we apply the results of the previous se
tion to the problem of learningmonotone Boolean fun
tions using membership queries. Theorem 2.5 shows thatthis problem is equivalent to the problem of �nding maximal frequent sets.Example 7.11. The problem of 
omputing the maximal frequent sets des
ribedin Figure 4 is mapped to the problem of learning the fun
tion f whose DNF repre-sentation is f = AD_CD and whose CNF representation is f = (A_C)(D). Theterms of the DNF 
orrespond to the elements of Bd�, and the 
lauses of the CNFare the 
omplements of the sets in MTh.As an immediate 
orollary of the results in Se
tion 5 we get:Corollary 7.12. The level-wise algorithm 
an be used to learn the 
lass ofmonotone CNF expressions where ea
h 
lause has at least n � k attributes andk = O(log n), in polynomial time, and with a polynomial number of membershipqueries.As a 
orollary of Theorem 4.1 we get a lower bound:Corollary 7.13. Any algorithm that learns monotone fun
tions with member-ship queries must use at least jDNF (f)j+ jCNF (f)j queries.While the bound is not surprising, it hinges on the lower bound given by [Angluin1988℄. It is shown there that an algorithm may need to take time exponential inthe DNF size when not allowed CNF size as a parameter. Indeed the CNF size ofthe fun
tion used to show the lower bound is exponential. (The lower bound in[Angluin 1988℄ is, however, more 
omplex sin
e the learner has a

ess to severaladditional ora
les.) On the other hand, by using Theorem 6.8 we see that withmembership queries alone one 
an 
ome 
lose to this lower bound.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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overing All Most Spe
i�
 Senten
es � 27Corollary 7.14. If there is an in
remental T(I,i) time algorithm for 
omputinghypergraph transversals then there is a learning algorithm for monotone fun
tionswith membership queries, that produ
es both a DNF and a CNF representation forthe fun
tion. The number of MQ queries is bounded by (jDNF (f)j+njCNF (f)j).The running time of the algorithm is polynomial in n and T (jCNF (f)j; jDNF (f)j).As noted earlier, [Bio
h and Ibaraki 1995℄ have studied the same problem andhave previously derived a similar result, as well as other related results. The result
an also be derived from a more general 
onstru
tion in [Bshouty et al. 1996℄(Theorem 18), that studies the 
omplexity of learning in the 
ontext of NP-Ora
les.Here again using the result of [Fredman and Kha
hiyan 1996℄ we 
an derive as a
orollary a sub-exponential learning algorithm for this problem.8. COMPUTING THE TRANSVERSALS OF THE HYPERGRAPH INCREMENTALLYThe results of Se
tion 6 show that the eÆ
ient operation of the Dualize and Advan
ealgorithm depends on an in
remental algorithm for 
omputing the transversalsof a hypergraph. The general problem of �nding all minimal transversals of ahypergraph in output polynomial time is still an open problem. The algorithmby [Fredman and Kha
hiyan 1996℄ generates all transversals in provably outputsubexponential time, however it is diÆ
ult to implement.In this se
tion we present a heuristi
 te
hnique for �nding the transversals ofa hypergraph. Our te
hnique has the advantage of being easy to des
ribe andimplement, as well as being able to 
ontinue the transversal 
omputation at ea
hstep of the Dualize and Advan
e algorithm from the previous one. As a result, thetransversal 
omputation 
an be integrated to the algorithm instead of starting fromthe beginning at ea
h step.Consider two 
onse
utive steps of the algorithm All MSS, the i-th and the (i+1)-th. If some new maximal frequent sets were found during step i, then Di � Di+1.Let X be a transversal of Di. Then either X is a transversal of Di+1 as well, orit 
an be
ome a transversal of Di+1 if it is expanded by a set of items that 
overDi+1 nDi. In fa
t, ea
h su
h transversal 
an be expended to a set of transversalsof the set Di+1.Example 8.1. LetDi = ffA;Bg; fB;Cgg, and Di+1 = ffA;Bg; fB;Cg; fD;Egg.Then the set fBg is a transversal of Di, but Di+1 
ontains an additional edge thatis not 
overed by fBg. We 
an expand fBg by adding D or E (these 
over the newedge). In both 
ases we get a transversal for Di+1 (fB;Dg and fB;Eg respe
tively.It follows that if we have the transversals of Di, we 
an in
rementally 
reate thetransversals of Di+1 by expanding ea
h of the original transversals so that theyinterse
t ea
h of the new 
omplements of maximal elements.In addition, if a transversal X is found to be not frequent at step i, then we donot expand this transversal in the next step. All the transversals we 
an generatefrom it have to be non-frequent as well. This is an important improvement be
auseit allows us to redu
e the number of transversals we have to generate at ea
h step.The algorithm is given below:Algorithm 8.2. Algorithm for 
omputing transversals at step i+ 1ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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MF Set Comp.Fig. 6. To 
ompute the transversals in
rementally we use a tree stru
ture: Assume attributesA;B;C;D;E. Let BE be the �rst maximal frequent set found. It's 
omplement is ACD, and thetransversals of the 
omplement are A, C, and D. When a new maximal frequent set is found (ABin the se
ond row), the existing transversals are extended, if ne
essary, to interse
t the 
omplementof the new maximal frequent set (CDE). In this 
ase, the new transversals are AE;C;D. Whena transversal is found to be non-frequent, (as is ABE in the example), the bran
h of the tree ispruned.Let Ti be the set of transversals at step i.(1 ) Set Ti+1 = fg(2 ) For ea
h X 2 Ti(a) Expand X and obtain a set X 0 of transversals of Di+1.(b) For ea
h X 0 2 X 0:i. It X 0 is not interesting, remove X 0 from X 0(
) Ti+1 = Ti+1 [ X 0To 
omplete the algorithm we need a te
hnique to eÆ
iently extend ea
h transver-sal in Ti so that it interse
ts all the 
omplements of the new maximal frequent sets.We use the tree-stru
ture s
heme for traversing the set of transversals of hyper-ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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i�
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es � 29graph that was presented in [Kavvadias and Stavropoulos 1999℄. The operation ofthe algorithm is shown in Figure 6.9. RELATED WORKRe
ently a number of algorithms have been proposed to solve the MaxTh problemfor frequent sets [Bayardo 1998; Lin and Kedem 1998; Burdi
k et al. 2001; Agarwalet al. 2000; Han et al. 2000; Gouda and Zaki 2001℄. Below we brie
y des
ribe themost re
ent and important of these algorithms, and 
ompare their design approa
hwith Dualize and Advan
e. We note that none of these algorithms has provablyworst 
ase 
omplexity that is subexponential to the size of the output, as Dualizeand Advan
e does (Theorem 30). For some of these algorithms [Bayardo 1998;Lin and Kedem 1998; Han et al. 2000℄ we give examples that show that theirworst 
ase 
omplexity is exponential to the size of the output (that is, to thenumber of maximal frequent sets). Therefore, in the worst 
ase these algorithms areprovably asymptoti
ally slower than Dualize and Advan
e. The other algorithmsuse heuristi
s and their worst 
ase 
omplexity is not yet known.Pin
er-Sear
h [Lin and Kedem 1998℄ is similar to apriori and to Dualize-and-Advan
e in that it also uses the latti
e method to enumerate the item sets. Pin
er-Sear
h 
ombines a bottom-up and a top-down te
hnique to �nd the maximal fre-quent sets. The bottom-up te
hnique moves through the latti
e level by level. Thebottom up pro
ess �nds frequent sets, and non-frequent sets. The non-frequentsets are used by a top down pro
ess to re�ne a set of potential maximal frequentsets. For example, assume that at the beginning of the algorithm a set ABCD isa potential maximal frequent set. If a set BD is found to be non-frequent, thenABCD 
annot be frequent any more. It is re�ned to the sets ABD and ABC thatare potential frequent sets and their support is 
he
ked in the next iteration of thealgorithm.The 
ombination of a bottom-up and a top-down sear
h 
an result to signi�
antimprovements 
ompared to apriori. One su
h 
ase is if there exists only one max-imal frequent set of 
ardinality n � 1 (where n is the number of attributes). Inthis 
ase Pin
er-sear
h �nds this set in two database passes, and after �nding thesupport of its subsets of 
ardinality 1 and 2.The operation of Pin
er-Sear
h has similarities to the operation of the Dualizeand Advan
e algorithm. The main di�eren
e is that Pin
er-Sear
h tries to guessmaximal frequent sets, by 
onsidering large sets that may be frequent, while Dualizeand Advan
e starts from sets that have to be frequent and expands them to maximalfrequent sets. As a result, Dualize and Advan
e guarantees that new maximal setsare found in ea
h iteration (if a maximal set is not found, then a set in the negativeboundary is found) and thus is always making progress, while Pin
er-Sear
h doesnot always do that.The following example shows a 
ase where this happens. Assume that there are nattributes, all the sets of size at most k are frequent, and no sets of k+1 are frequent.For su
h a dataset the performan
e of Pin
er-Sear
h is identi
al to the performan
eof apriori. This is be
ause the bottom up sear
h does not �nd any non-frequent setsuntil the k-th step, and therefore the top down sear
h 
annot re�ne the 
andidatemaximal frequent sets until that point. Therefore the number of sets for whi
h theACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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A B C D E

AB

ABC

ABCD

ABCDE

ABCE

ABD ABE

AC AD AE BC BD BE CD CE DE

ACD ACE ADE BCD BCE BDE

ABDE ACDE BCDE

Fig. 7. Rymon's set enumeration tree.algorithm �nds their support 
an be exponential to the number of frequent sets. Iffor example k = n� 
, for some 
onstant 
, the number of frequent sets is O(2n),and the number of the maximal frequent sets is O(n
) (see also Example 24).This example shows that Pin
er-Sear
h 
an take time that is exponential to thesize of the output be
ause it has to �nd the support of a number of sets that isexponential to the number of maximal frequent sets. In this 
ase, the performan
eof Pin
er-Sear
h is exponentially worse that the performan
e of the Dualize andAdvan
e algorithm, in terms of the number of Is-interesting queries exe
uted.FP-Growth [Han et al. 2000℄ uses a new data stru
ture, the FP-tree, to representall the transa
tions of the database. It then uses this stru
ture with a re
ursivete
hnique to �nd large frequent sets. This is a very eÆ
ient te
hnique for �ndingall frequent sets. However, although the te
hnique does not need to 
ompute setsof 
andidate patterns, it still �nds the support of all frequent sets and therefore 
anbe less eÆ
ient than other te
hniques when used to �nd the maximal frequent setsonly.Max-Miner [Bayardo 1998℄ was one of the �rst su

essful pra
ti
al algorithms for�nding all maximal frequent sets. The algorithm uses Rymon's set enumeration[Rymon 1992℄ to enumerate all the itemsets (Figure 7). Max-Miner redu
es thesear
h spa
e by pruning the tree to eliminate both supersets of infrequent sets andsubsets of frequent sets. Essentially, when the algorithm 
omputes the support ofa set A, it also 
omputes the support of the largest set that appears in the subtreerooted at this set (by the design of Rymon's tree, this is a superset of A). If thisACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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A B C D E

AB

ABC

ABCD

ABCDE

ABCE

ABD ABE

AC AD AE BC BD BE CD CE DE

ACD ACE ADE BCD BCE BDE

ABDE ACDE BCDE

CDE

Fig. 8. A worst 
ase for Max-Miner: Set DE and its supersets are the only non-frequent sets. Weassume that the ordering of the attributes, A;B;C;D;E, is in as
ending support.superset is frequent, then all other sets in this subtree must be frequent too. Thusthe algorithm avoids having to 
ompute the support of all the frequent sets, andtherefore performs better than apriori when the size of the maximal frequent setsis large.Max-Miner uses a breadth-�rst-sear
h te
hnique to explore the set enumerationtree. It 
omputes the support of 
andidate sets that are on the same level of thetree in one database pass. An important fa
tor in the eÆ
ien
y of the algorithmis the use of heuristi
s that reorder the attributes, and therefore 
hange the orderthat the various sets appear in the tree [Burdi
k et al. 2001℄. Experimentally, ithas been shown that ordering the attributes in in
reasing support gives the bestresults [Bayardo 1998℄. In the best 
ase, Max-Miner 
an �nd all maximal frequentsets in a few database passes, and using a small number of Is-interesting queries(linear to the number of maximal frequent sets).In its operation, Max-Miner uses a similar approa
h to Dualize and Advan
e inlooking for large frequent sets as early as possible, and in trying to prune parts ofthe spa
e that are known to be frequent. The di�eren
e is that Dualize and Ad-van
e uses a slow pro
edure (the transversal 
omputation) that guarantees eÆ
ientpruning, while Max-Miner uses heuristi
s that are mu
h more eÆ
ient to apply butdo not o�er su
h a guarantee, as the following example demonstrates.An example of a dataset that results to running time that is exponential to thesize of the output in the exe
ution of Max-Miner is given in Figure 8. Assume thatall itemsets are frequent, ex
ept the supersets of a given set with two attributes.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



32 � Dimitrios Gunopulos et al.Also assume that the two items in this set always have individually the highestsupport. This 
an happen if we take a dataset where all sets are frequent for agiven small threshold, add two new items (D and E in Figure 8), and 
reate a newdataset as follows: For ea
h tuple in the original dataset, we 
reate two new tuplesand add these in the new dataset. The original attributes remain the same, butin the �rst new tuple attribute E is 1 and D is 0, and in the se
ond new tuple Eis 0 and D is 1. So the set DE is not frequent, but the attributes D and E havealways the highest individual support. In this 
ase, Max-Miner has to 
omputethe support of all frequent sets be
ause no subtree 
an be eliminated. The numberof Is-interesting queries evaluated is the same with apriori, and exponential to thenumber of the maximal frequent sets. Assuming n attributes, the algorithm hasto �nd the support of O(2n) sets, while the number of maximal frequent sets is
onstant. In the example of Figure 8, the attributes are A;B;C;D;E, ordered inas
ending support. If the set DE and its supersets are infrequent, the only maximalfrequent sets are ABCD and ABCE, yet Max-Miner has to �nd the support of allfrequent itemsets.Similar to Max-Miner, MAFIA [Burdi
k et al. 2001℄, DepthProje
t [Agarwal etal. 2000℄ and MaxGen [Gouda and Zaki 2001℄ use Rymon's set enumeration te
h-nique. The design of DepthProje
t has been in
uen
ed by the 
ontinuous in
reasein available main memory size. It assumes that the dataset �ts in main memoryand does not attempt to minimize the number of dataset passes. Both MAFIAand DepthProje
t use a depth-�rst-sear
h me
hanism to enumerate the itemsets.All three algorithms also use eÆ
ient pruning heuristi
s to avoid examining someitemsets that 
an be determined to be frequent or non-frequent. Compared to Max-Miner, MAFIA, DepthProje
t and MaxGen use the same te
hnique to enumeratethe sear
h spa
e (although MAFIA and DepthProje
t enumerate the spa
e in dif-ferent order sin
e they use depth-�rst-sear
h enumeration), and use a similar set ofheuristi
s to prune the set enumeration tree, in
luding: (i) attribute reordering, and(ii) 
he
king the support of the largest set in the subtree rooted at the 
urrent node.They also introdu
e new optimizations; one su
h optimization, used by MAFIA andMaxGen 
he
ks if 
andidate sets are subsets of known maximal frequent sets before
omputing their support. However they use di�erent te
hniques for 
omputing thesupport, resulting to di�erent performan
e 
hara
teristi
s. For example, MAFIAuses a very eÆ
ient verti
al bitmap representation with 
ompression, whi
h signif-i
antly improves the running time. This set of algorithms (in
luding Max-Miner)has proven to be very eÆ
ient in pra
ti
e, however their performan
e 
ru
ially de-pends on how e�e
tive the pruning heuristi
s that the algorithms employ are inredu
ing the sear
h spa
e. The worst 
ase 
omplexity of these algorithms is notknown, and so a theoreti
al 
omparison with the Dualize and Advan
e algorithm
annot be made.10. DISCUSSIONIn this paper we studied the data mining problem of sear
hing for a set of maximallyinteresting senten
es. This problem 
omes up in many data mining appli
ations,in
luding the well known problem of 
omputing asso
iation rules.ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.
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overing All Most Spe
i�
 Senten
es � 33We present a thorough analysis of two algorithms for the problem. These al-gorithms have 
omplementary properties. The apriori (level-wise) algorithm iseÆ
ient as long as the rank of interesting senten
es in the generalization latti
e ofthe language is small. The algorithm is in fa
t optimal if we want to �nd all theinteresting senten
es. This result is also supported by re
ent experimental 
ompar-isons between various te
hniques [Zheng 2001℄. The level-wise algorithm is too slowhowever if there are interesting senten
es of large rank.We introdu
e the Dualize and Advan
e algorithm that is useful in the general
ase. The algorithm alternates between phases of �nding maximal elements, and
omputing the negative boundary of these elements via a transversal 
omputation.The analysis of the algorithm shows that the 
omplexity of �nding the mostspe
i�
 interesting sequen
es is lower than the 
omplexity of �nding all interest-ing sequen
es. The number of queries the algorithm makes to the database isessentially optimal, while the time 
omplexity depends on the 
omplexity of enu-merating hypergraph transversals, for whi
h the best known algorithm is mildlysuper-polynomial.We have illustrated the appli
ation of the algorithm in two important data minings
enarios: 
omputing all maximal �-frequent sets of a f0,1g relation with threshold� and 
omputing all minimal keys of a database. To the best of our knowledge, thisis the only known sub-exponential algorithm for �nding all the maximal �-frequentsets of a relation.A number of issues 
an be explored in future work. These in
lude experiments onthe tradeo� between performing the transversal 
omputation for fo
using sear
h andemploying randomized sear
h to �nd more most spe
i�
 senten
es from ea
h seed.A parti
ularly important issue 
on
erns the number of passes over the database. Inthe des
ription of the algorithm we assume that the data �t in memory, but in many
ases this is not so in pra
ti
e. In this situation an important 
onsideration is tominimize the number of times we have to read the entire data from the �le systeminto the main memory. This issue 
an be ta
kled in several ways. We 
an use arandomized version of algorithm AMSS (taking a random permutation p in step1 of algorithm AMSS) and run this algorithm a number of times at ea
h startingpoint. All the randomized instantiations starting from a given point 
an be runat the same time during one pass over the database. Another aspe
t 
on
erns thebasi
 subroutine for going up in the latti
e. In prin
iple this pro
edure requiresone round for ea
h attribute in the database (though it 
an be done on a largebat
h in one round). Re
ently, [Bshouty 1996℄ introdu
ed an algorithm for learningmonotone fun
tions in parallel that may be useful in this respe
t. Intuitively, theidea is that we have a large bat
h of points with whi
h to go up; instead of goingup one attribute at a time, we will test in ea
h round the unions of the sets wealready have, and of these will 
hoose a subset that will give us the best leap ingoing up in the latti
e. In this way the number of rounds is redu
ed 
onsiderably.Another interesting possibility we plan to explore is to use the randomized heuris-ti
 in 
ombination with the level-wise algorithm. The randomized algorithm formaximal �-frequent sets 
an be used to sele
t the right range for �, as a prepro-
essing step to the apriori algorithm of Agrawal et. al. [Agrawal and Srikant 1994;Agrawal et al. 1996℄. ACM Transa
tions on Database Systems, Vol. V, No. N, April 2003.



34 � Dimitrios Gunopulos et al.Finally an extension of our theoreti
al framework will be useful. We assumedthroughout the paper that the algorithms 
an only a

ess the data via \is-interesting"queries. Clearly, more 
an be done with real databases. The question is whetherreal 
omputational advantages 
an be gained by using su
h servi
es. Another limi-tation of our results is that they only apply to problems representable as sets. One
an easily generalize the Dualize and Advan
e algorithm for arbitrary latti
es, andprove its 
orre
tness. The question is when 
an we take advantage of the stru
tureso as to derive eÆ
ient algorithms using this method.A
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