
Learning Closed Horn Expressions

1

Marta Arias and Roni Khardon

Ele
tri
al Engineering and Computer S
ien
e, Tufts University

161 College Avenue, Medford, MA 02155, USA

E-mail: fmarias,ronig�ee
s.tufts.edu

The paper studies the learnability of Horn expressions within the frame-

work of learning from entailment, where the goal is to exa
tly identify some

pre-�xed and unknown expression by making queries to membership and

equivalen
e ora
les. It is shown that a
lass that in
ludes both Range Re-

stri
ted Horn Expressions (where terms in the
on
lusion also appear in

the
ondition of a Horn
lause) and Constrained Horn Expressions (where

terms in the
ondition also appear in the
on
lusion of a Horn
lause) is

learnable. This extends previous results by showing that a larger
lass is

learnable with better
omplexity bounds. A further improvement in the

number of queries is obtained when
onsidering the
lass of Horn expres-

sions with inequalities on all synta
ti
ally distin
t terms.

Key Words: Computational learning theory, Indu
tive logi
 programming, Horn expres-

sions, algorithms, queries

1. INTRODUCTION

This paper
onsiders the problem of learning an unknown �rst order expression

T (often
alled target expression) from examples of
lauses that T entails or does

not entail. This type of learning framework is known as learning from entailment.

Frazier & Pitt [6℄ formalised learning from entailment using equivalen
e queries and

membership queries and showed the learnability of propositional Horn expressions.

Generalising this result to the �rst order setting is of
lear interest. Indeed, several

works have been done following this line [9, 3, 20, 19, 10, 11, 2℄ obtaining algorithms

that work for
ertain subsets of Horn expressions.

Learning �rst order Horn expressions has be
ome a fundamental problem in In-

du
tive Logi
 Programming [15℄. Theoreti
al results have shown that learning from

examples only is feasible for very restri
ted
lasses [4℄ and that, in fa
t, learnabil-

ity be
omes intra
table when slightly more general
lasses are
onsidered [5℄. To

1

This work has been done at the University of Edinburgh supported by EPSRC Grant

GR/M21409, and at Tufts University supported by NSF Grant IIS-0099446.

1

2 ARIAS AND KHARDON

ta
kle this problem, learners have been equipped with the ability to ask questions.

It is the
ase that with this ability larger
lasses
an be learned. In this paper, the

questions that the learner is allowed to ask are membership and equivalen
e queries.

While our work is purely theoreti
al, there are systems that are able to learn using

equivalen
e and membership queries (MIS [23℄, CLINT [18℄, for example). Some

of the te
hniques developed in this framework have been adapted for systems that

learn from examples only [21, 12℄.

We present an algorithm to learn
ertain subsets of Horn expressions. The al-

gorithm is related to the ones in [10, 11℄, whi
h learn Range Restri
ted Horn ex-

pressions. The algorithms in [10, 11℄ and here use two main pro
edures. The

�rst, given a
ounterexample
lause, minimises the
lause while maintaining it as

a
ounterexample. The minimisation pro
edure used here is stronger than those in

[10, 11℄, resulting in a
lause whi
h in
ludes a synta
ti
 variant of a target
lause

as a subset. The se
ond pro
edure
ombines two examples produ
ing a new
lause

that may be a better approximation for the target. While the algorithm in [10, 11℄

uses dire
t produ
ts of models we use an operation based on the lgg (least general

generalisation [17℄). The use of lgg seems a more natural and intuitive te
hnique to

use for learning from entailment, and it has been used before, both in theoreti
al

and applied work [3, 20, 19, 14℄. The
lass of Closed Horn Expressions shown to be

learnable here, in
ludes both the
lass of Range Restri
ted Horn Expressions, the

lass of Constrained Horn Expressions and their union

2

. In addition, the
omplex-

ity of the algorithm is better than that of the algorithm in [10, 11℄.

We extend our results to the
lass of Fully Inequated Closed Horn Expressions.

The main property of this
lass is that it does not allow uni�
ation of its terms.

To avoid uni�
ation, every
lause in this
lass in
ludes in its ante
edent a series

of inequalities between all its terms. With a minor modi�
ation to the learning

algorithm, we are able to show learnability of the
lass of fully inequated
losed

Horn expressions. The more restri
ted nature of this
lass allows for better bounds

to be derived.

The rest of the paper is organised as follows. Se
tion 2 gives some preliminary

de�nitions. The learning algorithm is presented in Se
tion 3 and proved
orre
t

in Se
tion 4. The results are extended to the fully inequated
ase in Se
tion 5.

Finally, Se
tion 6
ompares the results obtained in this paper with previous results

and in
ludes further dis
ussion of the result and related work.

2. PRELIMINARIES

We
onsider a subset of the
lass of universally quanti�ed expressions in �rst

order logi
. In the learning problem, a pre-�xed known and �nite signature of the

language is assumed. This signature S
onsists of a �nite set of predi
ates P and a

�nite set of fun
tions F , both predi
ates and fun
tions with their asso
iated arity.

Constants are fun
tions with arity 0. A set of variables x

1

; x

2

; x

3

; : : : is used to

onstru
t expressions.

2

This extends preliminary work in [2℄, whi
h showed learnability of Range Restri
ted Horn

Expressions only.

LEARNING CLOSED HORN EXPRESSIONS 3

De�nitions of �rst order languages
an be found in standard texts, e.g. [13℄. Here

we brie
y introdu
e the ne
essary
onstru
ts. A variable is a term of depth 0. If

t

1

; : : : ; t

n

are terms, ea
h of depth at most i and one with depth pre
isely i and

f 2 F is a fun
tion symbol of arity n, then f(t

1

; :::; t

n

) is a term of depth i+ 1.

An atom is an expression p(t

1

; :::; t

n

) where p 2 P is a predi
ate symbol of arity

n and t

1

; :::; t

n

are terms. An atom is
alled a positive literal. A negative literal is

an expression :l where l is a positive literal.

Let X be a term, or set of terms, or atom, or set of atoms. The set Terms(X)

is the set of terms and subterms appearing in X .

Let P be a set of predi
ates together with their arities, and X a term, or set of

terms, or atom, or set of atoms. The set Atoms

P

(X) is the set of atoms built from

predi
ate symbols in P (of the
orre
t arity) and terms in Terms(X).

Example 2.1. Suppose P = fp=2; q=1g and r is a predi
ate of arity 1.

� Terms(f(x; g(a))) = fx; a; g(a); f(x; g(a))g

� Atoms

P

(r(f(1))) = fp(1; 1); p(1; f(1)); p(f(1); 1); p(f(1); f(1)); q(1); q(f(1))g

A
lause is a disjun
tion of literals where all variables are universally quanti�ed.

A Horn
lause has at most one positive literal and an arbitrary number of negative

literals. A Horn
lause :p

1

_ :::_:p

n

_ p

n+1

is equivalent to its impli
ational form

p

1

^ ::: ^ p

n

! p

n+1

. We
all p

1

^ ::: ^ p

n

the ante
edent and p

n+1

the
onsequent

of the
lause. A Horn
lause is de�nite if it has exa
tly one positive literal.

A Range Restri
ted Horn
lause s ! b is a de�nite Horn
lause in whi
h every

term appearing in its
onsequent also appears in its ante
edent, possibly as a sub-

term of another term. That is, Terms(b) � Terms(s). A Range Restri
ted Horn

Expression is a
onjun
tion of Range Restri
ted Horn
lauses.

A Constrained Horn
lause s ! b is a de�nite Horn
lause in whi
h every term

appearing in its ante
edent also appears in its
onsequent, possibly as a subterm

of another term. That is, Terms(s) � Terms(b). A Constrained Horn Expression

is a
onjun
tion of Constrained Horn
lauses.

The truth value of �rst order expressions is de�ned relative to an interpretation I

of the predi
ates and fun
tion symbols in the signature S. An interpretation (also

alled stru
ture or model) I in
ludes a domain D whi
h is a set of elements. For

ea
h fun
tion f 2 F of arity n, I asso
iates a mapping from D

n

to D. For ea
h

predi
ate symbol p 2 P of arity n, I spe
i�es the truth value of p on n-tuples over

D. The extension of a predi
ate in I is the set of positive instantiations of the

predi
ate that are true in I .

Let p be an atom, I an interpretation and � a mapping of the variables in p to

obje
ts in I . The positive literal p � � is true in I if it appears in the extension of I .

A negative literal is true in I if its negation is not.

A Horn
lause C = p

1

^:::^p

n

! p

n+1

is true in a given interpretation I , denoted

I j= C if for any variable assignment � (a total fun
tion from the variables in C

into the domain elements of I), if all the literals in the ante
edent p

1

�; :::; p

n

� are

true in I , then the
onsequent p

n+1

� is also true in I . A Horn Expression T is true

in I , denoted I j= T , if all of its
lauses are true in I . The expressions T is true in

I , I satis�es T , I is a model of T , and I j= T are equivalent.

4 ARIAS AND KHARDON

Let T

1

; T

2

be two Horn expressions. We say that T

1

implies T

2

, denoted T

1

j= T

2

,

if every model of T

1

is also a model of T

2

.

A multi-
lause is a pair of the form [s;
℄, where both s and
 are sets of atoms

su
h that s \
 = ;; s is the ante
edent of the multi-
lause and
 is the
onsequent.

Both are interpreted as the
onjun
tion of the atoms they
ontain. Therefore, the

multi-
lause [s;
℄ is interpreted as the logi
al expression

V

b2

s! b. An ordinary

lause C = s

! b

orresponds to the multi-
lause [s

; fb

g℄.

Example 2.2. We represent multi-
lauses using set notation: e.g., the multi-

lause [fp(x; f(a)); q(y)g; fr(a); r(f(a)g℄ is interpreted as the logi
al expression

(p(x; f(a)) ^ q(y)! r(a)) ^ (p(x; f(a)) ^ q(y)! r(f(a))):

The de�nition of the sets Atoms

P

and Terms is extended to in
lude
lauses and

multi-
lauses as the input argument in the natural way. That is: Terms(s! b) =

Terms(s [fbg) and Terms([s;
℄) = Terms(s [
). Similarly, Atoms

P

(s ! b) =

Atoms

P

(s [fbg) and Atoms

P

([s;
℄) = Atoms

P

(s [
).

A multi-
lause [s;
℄ is range restri
ted if Terms(
) � Terms(s); it is
onstrained

if Terms(s) � Terms(
).

A logi
al expression T implies (or logi
ally entails) a multi-
lause [s;
℄ if it implies

all of its single
lause
omponents. That is, T j= [s;
℄ if T j=

V

b2

s! b.

The size of a term is the number of o

urren
es of variables plus twi
e the number

of o

urren
es of fun
tion symbols (in
luding
onstants). The size of an atom is

the sum of the sizes of the (top-level) terms it
ontains plus 1. The size of a set of

atoms is the sum of sizes of atoms in it.

Let s

1

; s

2

be two sets of atoms. We say that s

1

subsumes s

2

(denoted s

1

� s

2

) if

and only if there exists a substitution � su
h that s

1

� � � s

2

. We also say that s

1

is a generalisation of s

2

. Equivalently, s

2

is a instan
e of s

1

.

Let s be a set of atoms. Then ineq(s) is the set of all inequalities between

terms appearing in s. As an example, let s be the set fp(x; y); q(f(y))g with terms

fx; y; f(y)g. Then ineq(s) = fx 6= y; x 6= f(y); y 6= f(y)g also written as (x 6= y 6=

f(y)) for short.

Definition 2.1. A derivation of a
lause C = A! a from a Horn expression T

is a �nite dire
ted a
y
li
 graph G with the following properties. Nodes in G are

atoms possibly
ontaining variables. The node a is the unique node of out-degree

zero. For ea
h node b in G, let Pred(b) be the set of nodes b

0

in G with edges from

b

0

to b. Then, for every node b in G, either b 2 A or Pred(b)! b is an instan
e of

a
lause in T . A derivation G of C from T is minimal if no proper subgraph of G

is also a derivation of C from T . A minimal derivation G of a
lause C = A ! a

from a Horn expression T is said to be trivial if all nodes b of G are
ontained in

A [fag, otherwise it is nontrivial.

Theorem 2.1. Let T be any Horn expression and C be a Horn
lause whi
h is

not a tautology. If T j= C, then there is a minimal derivation of C from T .

LEARNING CLOSED HORN EXPRESSIONS 5

Proof. As proved by the Subsumption Theorem for SLD-resolution (Theo-

rem 7.10 in [16℄), there is a SLD-resolution of C from T . By indu
tion on the depth

of the SLD-resolution tree we
an show how to transform any SLD-resolution into

a derivation graph of C from T . Therefore, there is a derivation graph of C from T

whi
h guarantees that there is a minimal one.

Definition 2.2. A
lass C of Horn Expressions is
losed if for every pair of

atoms b and b

0

, every set of atoms s and every Horn expression T 2 C, if b

0

is used

in a minimal derivation of s! b from T , then b

0

2 Atoms

P

(s! b).

Lemma 2.1. The following
lasses are
losed: RRHE, the
lass of Range Re-

stri
ted Horn Expressions, COHE the
lass of Constrained Horn Expressions and

RRCOHE the
lass RRHE [COHE.

Proof. For RRHE: if b

0

appears in any derivation of T j= s ! b, where

T is a range restri
ted Horn expression and s is a set of atoms, then obviously,

T j= s ! b

0

. T is range restri
ted and therefore b

0

is made out of terms in s only.

Thus, b

0

2 Atoms

P

(s) � Atoms

P

(s! b).

For COHE:
onsider any minimal derivation of s! b from a
onstrained Horn

expression T . If b

0

appears in the derivation, then, sin
e T is
onstrained, b

0

must

be made out of terms in b only. Thus, b

0

2 Atoms

P

(b) � Atoms

P

(s! b).

For RRCOHE the property follows immediately sin
e RRCOHE is the disjoint

union of RRHE and COHE.

Noti
e that any expression in RRCOHE is either a range restri
ted Horn expres-

sion or a
onstrained Horn expression. This is not the
lass of expressions whose

lauses are either range restri
ted or
onstrained. In the
lass
onsidered here we

do not allow expressions with mixed types of
lauses.

Definition 2.3. A multi-
lause [s;
℄ is
orre
t w.r.t. a Horn expression T if

T j= [s;
℄. A multi-
lause [s;
℄ is
losed w.r.t. a Horn expression T if for all

b 2 Atoms

P

(s [
) n s su
h that T j= s ! b, b 2
. A multi-
lause [s;
℄ is full if it

is
orre
t and
losed.

2.1. Most General Uni�er

Let � be a �nite set of expressions (here by \expressions" we mean terms or

atoms). A substitution � is
alled a uni�er for � if � � � is a singleton. If there

exists a uni�er for �, we say that � is uni�able. The only expression in � � � will

also be
alled a uni�er.

The substitution � is a most general uni�er (abbreviated to mgu) for � if � is

a uni�er for � and if for any other uni�er � there is a substitution
 su
h that

� = �
. Also, the only element in � � � will be
alled a mgu of � if � is a mgu.

The disagreement set of a �nite set of expressions � is de�ned as follows. Lo
ate

the leftmost symbol position at whi
h not all members of � have the same symbol,

6 ARIAS AND KHARDON

and extra
t from ea
h expression in � the subexpression beginning at that symbol

position. The set of all these expressions is the disagreement set.

Example 2.3. � = fp(x; y; v); p(x; f(g(a)); x); p(x; f(z); f(a))g. Its disagree-

ment set is fy; f(g(a)); f(z)g.

Algorithm 1 (The Unifi
ation Algorithm).

1. Let � be the set of expressions to be uni�ed.

2. Set k to 0 and �

0

to ;, the empty substitution.

3. Repeat until � � �

k

is a singleton

4. Let D

k

be the disagreement set for � � �

k

.

5. If there exist x; t in D

k

s. t. x is a variable not o

urring in t

6. Then set �

k+1

= �

k

� fx 7! tg.

7. Else report that � is not uni�able and stop.

8. Return �

k

.

Theorem 2.2 (Uni�
ation Theorem). Let � be a �nite set of expressions. If

� is uni�able, then the Uni�
ation Algorithm terminates and gives a mgu for �. If

� is not uni�able, then the Uni�
ation Algorithm terminates and reports the fa
t

that � is not uni�able.

Proof. See [13℄.

2.2. Least General Generalisation

The algorithm proposed uses the least general generalisation or lgg operation

[17℄. This operation
omputes a generalisation of two sets of literals. It works as

follows.

The lgg of two terms f(s

1

; :::; s

n

) and g(t

1

; :::; t

m

) is de�ned as the term

f(lgg(s

1

; t

1

); :::; lgg(s

n

; t

n

))

if f = g and n = m. Otherwise, it is a new variable x, where x stands for the lgg

of that pair of terms throughout the
omputation of the lgg. This information is

kept in what we
all the lgg table.

The lgg of two
ompatible atoms p(s

1

; :::; s

n

) and p(t

1

; :::; t

n

) is the atom

p(lgg(s

1

; t

1

); :::; lgg(s

n

; t

n

)):

The lgg is only de�ned for
ompatible atoms, that is, atoms with the same predi
ate

symbol and arity.

The lgg of two
ompatible positive literals l

1

and l

2

is the lgg of the underlying

atoms. The lgg of two
ompatible negative literals l

1

and l

2

is the negation of the

lgg of the underlying atoms. Two literals are
ompatible if they share predi
ate

symbol, arity and sign.

LEARNING CLOSED HORN EXPRESSIONS 7

The lgg of two sets of literals s

1

and s

2

is the set

flgg(l

1

; l

2

) j (l

1

; l

2

) are two
ompatible literals of s

1

and s

2

g :

It is important to note that all lggs share the same table.

Example 2.4. Let s

1

= fp(a; f(b)); p(g(a; x);
); q(a)g.

Let s

2

= fp(z; f(2)); q(z)g.

Their lgg is lgg(s

1

; s

2

) = fp(X; f(Y)); p(Z; V); q(X)g.

The lgg table produ
ed during the
omputation of lgg(s

1

; s

2

) is

[a - z => X℄ (from p(a; f(b)) with p(z; f(2)))

[b - 2 => Y℄ (from p(a; f(b)) with p(z; f(2)))

[f(b) - f(2) => f(Y)℄ (from p(a; f(b)) with p(z; f(2)))

[g(a,x) - z => Z℄ (from p(g(a; x);
) with p(z; f(2)))

[
 - f(2) => V℄ (from p(g(a; x);
) with p(z; f(2)))

2.3. The Learning Model

We
onsider the model of exa
t learning from entailment [6℄. In this model

examples are
lauses. Let T be the target expression, H any hypothesis presented

by the learner and C any
lause. An example C is positive for a target theory T

if T j= C, otherwise it is negative. The learning algorithm
an make two types of

queries. An Entailment Equivalen
e Query (EntEQ) returns \Yes" if H = T and

otherwise it returns a
lause C that is a
ounter example, i.e., T j= C and H 6j= C or

vi
e versa. For an Entailment Membership Query (EntMQ), the learner presents

a
lause C and the ora
le returns \Yes" if T j= C, and \No" otherwise. The aim

of the learning algorithm is to exa
tly identify the target expression T by making

queries to the equivalen
e and membership ora
les.

3. THE ALGORITHM

Before presenting the algorithm, we de�ne some operations. Suppose that the

lass C is
losed. Suppose that H;T 2 C. Then we de�ne:

� TClosure

T

([s;
℄) = [s; fb 2 Atoms

P

(s [
) n s j T j= s! bg℄

� HClosure

H

([s;
℄) = [fb 2 Atoms

P

(s [
) j H j= s! bg ;
℄

� rhs

T

(s;
) = fb 2
 j T j= s! bg

The algorithm
omputes these operations for the
ase when T is the target expres-

sion and H is a hypothesis. In pra
ti
e, we do not know what the target expression

T is, but we
an use the EntMQ ora
le to
ompute TClosure

T

and rhs

T

. Sin
e

T always refers to the target expression, we omit the \

T

" subs
ript and write:

� TClosure([s;
℄) = [s; fb 2 Atoms

P

(s [
) n s j EntMQ(s! b) = Y esg℄

� rhs(s;
) = fb 2
 j EntMQ(s! b) = Y esg

Noti
e that, in general, the
omputation of HClosure might not be feasible.

However, in our
ase, we will show that this
an be done with a polynomial number

8 ARIAS AND KHARDON

of subsumption tests by forward
haining. This is due to the fa
t that we only
he
k

for atoms in the polynomially bounded set Atoms

P

(s[
) as potential
onsequents.

We will in
rementally
onstru
t the set of
onsequents (CONS in the algorithm),

starting with the ante
edent s. The algorithm is as follows:

Algorithm 2 (The HClosure(s;
) Pro
edure).

1. CONS = s.

2. Repeat until no more atoms are added to CONS

3. For every atom b in Atoms

P

(s [
) n CONS do

4. If
lause CONS ! b is subsumed by a
lause C 2 H

5. Then Set CONS = CONS [fbg.

6. Return [CONS;
℄

Lemma 3.1. Algorithm 2
omputes the set HClosure(s;
).

Proof. Take any atom b 2 HClosure(s;
). By Theorem 2.1, there is a deriva-

tion of s! b from H . The previous algorithm sear
hes through all possible
losed

derivations, therefore it will eventually rea
h the node b in the
orresponding deriva-

tion, and b will be in
luded in the set CONS. Soundness of forward
haining

guarantees that atoms not in HClosure(s;
) are never added to the set CONS.

We �nally present our learning algorithm.

Algorithm 3 (The Learning Algorithm).

1. Set S to be the empty sequen
e and H to be the empty hypothesis.

2. Repeat until EntEQ(H) returns \Yes":

3. Minimise the
ounterexample x - use
alls to EntMQ

Let [s

x

;

x

℄ be the minimised
ounterexample produ
ed.

4. Find the �rst [s

i

;

i

℄ 2 S su
h that there is a basi
 pairing [s;
℄ of

[s

i

;

i

℄ and [s

x

;

x

℄ satisfying:

(i) rhs(s;
) 6= ; and

(ii) size(s) � size(s

i

) or (size(s) = size(s

i

) and size(
) � size(

i

))

5. If su
h an [s

i

;

i

℄ is found

6. Then repla
e it by the multi-
lause [s; rhs(s;
)℄

7. Else append [s

x

;

x

℄ to S

8. Set H to

V

[s;
℄2S

fs! b j b 2
g

9. Return H

The algorithm follows pretty mu
h the stru
ture of the algorithm in [6℄ for the

propositional
ase. It keeps a sequen
e S of representative multi-
lauses. The

hypothesis H is generated from this sequen
e, and the main task of the algorithm

is to re�ne the
ounterexamples in S in order to get a more a

urate hypothesis

in ea
h iteration of the main loop (line 2) until hypothesis and target expression

oin
ide.

There are two basi
 operations on
ounterexamples that need to be explained in

detail. These are minimisation (line 3), that takes a
ounterexample as given by

LEARNING CLOSED HORN EXPRESSIONS 9

the equivalen
e ora
le and produ
es a positive, full
ounterexample; and pairing

(line 4), that takes two
ounterexamples and generates a series of
andidate
oun-

terexamples. The
ounterexamples obtained by
ombination of previous ones (by

pairing them) are the
andidates to re�ne the sequen
e S.

3.1. Minimising the
ounterexample

The minimisation pro
edure has to transform a
ounterexample
lause A ! a

as generated by the equivalen
e query ora
le into a multi-
lause
ounterexample

[s

x

;

x

℄ ready to be handled by the learning algorithm.

Algorithm 4 (The Minimisation Pro
edure).

1. Let A! a be the
ounterexample obtained by the EntEQ ora
le.

2. Set [s

x

;

x

℄ to TClosure(HClosure([A; fag℄)).

3. For every fun
tional term t in s

x

[

x

, in de
reasing order of size do

4. Let [s

0

x

;

0

x

℄ be the multi-
lause obtained from [s

x

;

x

℄

after substituting all o

urren
es of the term t

by a new variable x

t

5. If rhs(s

0

x

;

0

x

) 6= ; then set [s

x

;

x

℄ to [s

0

x

; rhs(s

0

x

;

0

x

)℄

6. For every term t in s

x

[

x

, in in
reasing order of size do

7. Let [s

0

x

;

0

x

℄ be the multi-
lause obtained after removing

from [s

x

;

x

℄ all those atoms
ontaining t

8. If rhs(s

0

x

;

0

x

) 6= ; then set [s

x

;

x

℄ to [s

0

x

; rhs(s

0

x

;

0

x

)℄

9. Return [s

x

;

x

℄

Example 3.1. This example illustrates the behaviour of the minimisation pro-

edure. Parentheses are omitted; fun
tion f is unary. T
onsists of the single
lause

p(a; fx) ! q(x). We start with the
ounterexample [p(a; f1); q(2); r(1) ! q(1)℄ as

obtained after step 2 of the minimisation pro
edure. In the third
olumn of the

table,
orre
t atoms in the
onsequent appear with a box around them. If no atom

is
orre
t, the multi-
lause is not positive and the
ounterexample is not updated.

[s

x

;

x

℄ After generalising term

[p(a; f1); q(2); r(1)! q(1)℄ f1 7! X [p(a;X); q(2); r(1)! q(1)℄

[p(a; f1); q(2); r(1)! q(1)℄ 1 7! X [p(a; fX); q(2); r(X)!

q(X)

℄

[p(a; fX); q(2); r(X)! q(X)℄ 2 7! Y [p(a; fX); q(Y); r(X)!

q(X)

℄

[p(a; fX); q(Y); r(X)! q(X)℄ a 7! Z [p(Z; fX); q(Y); r(X)! q(X)℄

[s

x

;

x

℄ After dropping term

[p(a; fX); q(Y); r(X)! q(X)℄ X [q(Y)!℄

[p(a; fX); q(Y); r(X)! q(X)℄ Y [p(a; fX); r(X)!

q(X)

℄

[p(a; fX); r(X)! q(X)℄ a [r(X)! q(X)℄

[p(a; fX); r(X)! q(X)℄ fX [r(X)! q(X)℄

[p(a; fX); r(X)! q(X)℄

10 ARIAS AND KHARDON

Noti
e that the minimised
ounterexample is very similar to the target
lause.

In fa
t, it is the
ase that every minimised
ounterexample
ontains a synta
ti

variant of one of the target
lauses (Lemma 4.10). However, it may still
ontain

extra atoms that the minimisation pro
edure is unable to get rid of { like r(X) in

Example 3.1 { these will have to disappear in some other way: pairing.

3.2. Pairings

A
ru
ial pro
ess in the algorithm is how two
ounterexamples are
ombined into

a new one, hopefully yielding a better approximation of some target
lause. The

operation proposed here uses pairings of
lauses, based on the lgg.

We have two multi-
lauses, [s

x

;

x

℄ and [s

i

;

i

℄ that need to be
ombined. To do

so, we generate a series of mat
hings between the terms of s

x

[

x

and s

i

[

i

, and

any of these mat
hings will produ
e the
andidate to re�ne the sequen
e S.

3.2.1. Mat
hings

A mat
hing is a set whose elements are pairs of terms t

x

� t

i

, where t

x

and t

i

are terms in s

x

[

x

and s

i

[

i

, respe
tively. Usually, we denote a mat
hing by

the Greek letter �. A mat
hing � should in
lude all the terms in one of s

x

[

x

or s

i

[

i

, more formally: j�j = min(jTerms(s

x

[

x

)j ; jTerms(s

i

[

i

)j). We only

use 1-1 mat
hings, i.e., on
e a term has been in
luded in the mat
hing it
annot

appear in any other entry of the mat
hing.

Example 3.2. Let [s

x

;

x

℄ be [fp(a; b)g; fq(a)g℄ with terms fa; bg. Let [s

i

;

i

℄ be

[fp(f(1); 2)g; fq(f(1))g℄ with terms f1; 2; f(1)g. The 6 possible 1-1 mat
hings are:

�

1

= fa� 1; b� 2g �

3

= fa� 2; b� 1g �

5

= fa� f(1); b� 1g

�

2

= fa� 1; b� f(1)g �

4

= fa� 2; b� f(1)g �

6

= fa� f(1); b� 2g

An extended mat
hing is an ordinary mat
hing with an extra
olumn added to

every entry of the mat
hing. This extra
olumn
ontains the lgg of every pair in

the mat
hing. The lggs are simultaneous, that is, they share the same table.

An extended mat
hing � is legal if every subterm of some term appearing as the

lgg of some entry, also appears as the lgg of some other entry of �. An ordinary

mat
hing is legal if its extension is.

Example 3.3. Parentheses are omitted as fun
tions f and g are unary. Let �

1

be fa�
; fa� b; ffa� fb; gffa� gff
g and �

2

= fa�
; fa� b; ffa� fbg. The

mat
hing �

1

is not legal, sin
e the term fX is not present in its extension
olumn

and it is a subterm of gffX , whi
h is present. The mat
hing �

2

is legal.

Extended �

1

Extended �

2

[a -
 => X℄ [a -
 => X℄

[fa - b => Y℄ [fa - b => Y℄

[ffa - fb => fY℄ [ffa - fb => fY℄

[gffa - gff
 => gffX℄

LEARNING CLOSED HORN EXPRESSIONS 11

Our algorithm
onsiders yet a more restri
ted type of mat
hing. A basi
 mat
h-

ing � is a 1-1, legal mat
hing between two multi-
lauses [s

x

;

x

℄ and [s

i

;

i

℄. This

operation is asymmetri
 and the order in whi
h the arguments is given is rele-

vant. It is only de�ned if the number of distin
t terms in [s

x

;

x

℄ (�rst argument)

is smaller or equal than the number of distin
t terms in [s

i

;

i

℄ (se
ond argument).

It restri
ts how the fun
tional stru
ture of the terms is mat
hed. More formally, if

entry f(t

1

; :::; t

n

) � t 2 �, then t = f(r

1

; :::; r

n

) and t

i

� r

i

2 � for all i = 1; :::; n.

As we show below, a basi
 mat
hing maps all variables in [s

x

;

x

℄ to terms in [s

i

;

i

℄

and then adds the remaining entries following the fun
tional stru
ture of the terms

in [s

x

;

x

℄. Therefore an entry [x - f(y)℄ might be in
luded in a basi
 pairing

but an entry [f(y) - x℄
annot (terms on the left belong to [s

x

;

x

℄, terms on the

right to [s

i

;

i

℄).

The following pro
edure shows how to
onstru
t basi
 mat
hings between multi-

lauses [s

x

;

x

℄ and [s

i

;

i

℄.

Algorithm 5 (How to Constru
t Basi
 Mat
hings).

1. Mat
h every variable in s

x

[

x

to a di�erent term in s

i

[

i

.

Every possibility will potentially yield to a basi
 mat
hing

between [s

x

;

x

℄ and [s

i

;

i

℄

2. Complete all potential basi
 mat
hings by adding the fun
tional

terms in s

x

[

x

to the basi
 mat
hings as follows:

3. For every potential basi
 mat
hing
reated in step 1 do

4. Consider all fun
tional terms in s

x

[

x

in an upwards fashion,

beginning with simpler terms:

5. For every term f(t

1

; :::; t

n

) in s

x

[

x

su
h that all

[t

i

� r

i

℄ (with i = 1; :::; n) appear in the basi

mat
hing already do

6. Add a new entry [f(t

1

; :::; t

n

)� f(r

1

; :::; r

n

)℄

7. If f(r

1

; :::; r

n

) does not appear in s

i

[

i

or the term

f(r

1

; :::; r

n

) has been used already

8. Then dis
ard the mat
hing

Example 3.4. Let s

x

[

x

ontain the terms fa; x; fxg and s

i

[

i

the terms

fa; 1; 2; f1g. No parentheses for fun
tions are written. The algorithm starts by

mat
hing variables in s

x

[

x

to terms in s

i

[

i

. Then, it mat
hes fun
tional terms

in s

x

[

x

using the
onstraints des
ribed in the pro
edure above. This
omputation

is des
ribed in the table below.

Terms Mat
hing 1 Mat
hing 2 Mat
hing 3 Mat
hing 4

x [x - a℄ [x - 1℄ [x - 2℄ [x - f1℄

a NO! [a - a℄ [a - a℄ [a - a℄ [a - a℄

fx DISCARDED [fx - f1℄ NO! [fx - f2℄ NO! [fx - ff1℄

DISCARDED OK DISCARDED DISCARDED

The table is interpreted as follows. In the �rst
olumn we have the terms in s

x

[

x

as how they would be
onsidered by our algorithm. In the
olumns thereafter, we

12 ARIAS AND KHARDON

have all potential mat
hings. The last row indi
ates whi
h of the mat
hings has

been dis
arded. The entries on top of the \OK" mat
hings
ontain the mat
hing's

pairs.

Noti
e that we have only 1 basi
 mat
hing between the set of terms fa; x; fxg

and fa; 1; 2; f1g. Compare this with the 24 di�erent 1-1 mat
hings that would be

onsidered by previous algorithms. This di�eren
e grows with the
omplexity of

the fun
tional stru
ture in the examples.

Lemma 3.2. The pro
edure des
ribed above �nds all basi
 mat
hings between the

two input multi-
lauses and only basi
 mat
hings are produ
ed.

Proof. First, we will show that every mat
hing
onstru
ted by the pro
edure is

basi
. It is 1-1 be
ause after step 1 the mat
hings are 1-1, and the new pairs added

in step 2 are
he
ked not to be in
luded in the mat
hings already. It is legal be
ause

only terms whi
h have all of its subterms in
luded in the mat
hing are added. It is

basi
 be
ause fun
tional stru
ture is respe
ted when adding a new pair.

Se
ondly, we will show that every basi
 mat
hing will be found by the pro
e-

dure. First noti
e that mat
hings in
luding the
ombination of a pair [fun
tional

term in s

x

[

x

- variable in s

i

[

i

℄ is not permitted, sin
e subterms of the fun
-

tional term in s

x

have to be in
luded in the mat
hing and they would not have any

possible legal term to be mat
hed to be
ause a variable has no subterms. There-

fore, the only possibility involving variables is [variable in s

x

- term in s

i

℄. All

these are found in step 1 of the pro
edure and appropriately
ompleted in step 2.

One of the key points of our algorithm lies in redu
ing the number of mat
hings

needed to be
he
ked by ruling out some of the
andidate mat
hings that do not

satisfy the restri
tions imposed. By doing so we avoid testing too many pairings

and hen
e avoid making unne
essary
alls to the ora
les. One of the restri
tions has

already been mentioned, it
onsists in
onsidering basi
 pairings only, as opposed to

onsidering every possible mat
hing. This redu
es the t

t

possible distin
t mat
hings

to only t

k

distin
t basi
 pairings. Noti
e that there are a maximum of t

k

basi

mat
hings between [s

x

;

x

℄ with k variables and [s

i

;

i

℄ with t terms, sin
e we only

ombine variables of s

x

with terms in s

i

. The other restri
tion on the
andidate

mat
hing
onsists in the fa
t that every one of its entries must appear in the original

lgg table, as we will see in the next se
tion.

3.2.2. Pairings

Pairing is an operation that takes two multi-
lauses and a mat
hing between its

terms and produ
es another multi-
lause. We say that the pairing is indu
ed by

the mat
hing it is fed as input. A legal pairing is a pairing for whi
h the indu
ing

mat
hing is legal; a basi
 pairing is one for whi
h the indu
ing mat
hing is basi
.

The ante
edent s of the pairing is
omputed as the lgg of s

x

and s

i

restri
ted to

the mat
hing � indu
ing it; we denote this by lgg

j

�

(s

x

; s

i

). An atom is in
luded

in the pairing only if all of its top-level terms appear as entries in the extended

mat
hing. This restri
tion is quite strong in the sense that, for example, if an atom

p(f(x)) appears in both s

x

and s

i

then their lgg p(f(x)) will not be in
luded unless

LEARNING CLOSED HORN EXPRESSIONS 13

the entry [f(x) - f(x) => f(x)℄ appears in the mat
hing. In
ase [x - x =>

x℄ appears but [f(x) - f(x) => f(x)℄ does not, the atom p(f(x)) is ignored.

We only
onsider mat
hings that are subsets of the lgg table.

The
onsequent
 of the pairing is
omputed as the union of the sets lgg

j

�

(s

x

;

i

),

lgg

j

�

(

x

; s

i

) and lgg

j

�

(

x

;

i

). Note that in the
onsequent all the possible lggs of

pairs among fs

x

;

x

g and fs

i

;

i

g are in
luded ex
ept lgg

j

�

(s

x

; s

i

), whi
h
onstitutes

the ante
edent.

When
omputing any of the lggs, the same table is used. That is, the same pair

of terms will be bound to the same expression in any of the four possible lggs that

are
omputed in a pairing. The paring between [s

x

;

x

℄ and [s

i

;

i

℄ indu
ed by � is

omputed as follows:

Algorithm 6 (The Pairing Pro
edure).

1. Set s to lgg

j

�

(s

x

; s

i

)

2. Set
 to lgg

j

�

(s

x

;

i

) [lgg

j

�

(

x

; s

i

) [lgg

j

�

(

x

;

i

)

3. Return [s;
℄

Example 3.5. The table below des
ribes two examples. Both examples have the

same terms as in Example 3.4, so there is only one basi
 mat
hing. Ex. 3.5.1 shows

how to
ompute a pairing. Ex. 3.5.2 shows that a basi
 mat
hing may be reje
ted if

it does not agree with the lgg table (entries [x - 1 => X℄ and [fx - f1 => fX℄

do not appear in the lgg table).

Example 3.5.1 Example 3.5.2

s

x

fp(a; fx)g fp(a; fx)g

s

i

fp(a; f1); p(a; 2)g fq(a; f1); p(a; 2)g

lgg(s

x

; s

i

) fp(a; fX); p(a; Y)g fp(a; Y)g

lgg table [a - a => a℄ [a - a => a℄

[x - 1 => X℄ [fx - 2 => Y℄

[fx - f1 => fX℄

[fx - 2 => Y℄

basi
 � [a-a=>a℄ [a-a=>a℄

[x-1=>X℄ [x-1=>X℄

[fx-f1=>fX℄ [fx-f1=>fX℄

lgg

j

�

(s

x

; s

i

) fp(a; fX)g PAIRING REJECTED

As the examples demonstrate, the requirement that the mat
hings are both ba-

si
 and
omply with the lgg table is quite strong. The more stru
ture examples

have, the greater the redu
tion in possible pairings (and hen
e queries) is, sin
e

that stru
ture needs to be mat
hed. While it is not possible to quantify this ef-

fe
t without introdu
ing further parameters, we expe
t this to be a
onsiderable

improvement in pra
ti
e.

A note for potential implementations. In pra
ti
e, when trying to
onstru
t

basi
 pairings between s

x

and s

i

it is better to
onsider as entries for the mat
hing

14 ARIAS AND KHARDON

those entries appearing in the lgg table only. That is, when
ombining multi-
lauses

[s

x

;

x

℄ and [s

i

;

i

℄, one would �rst
ompute the lgg(s

x

; s

i

) and re
ord the lgg table.

The next step would be to
onstru
t basi
 pairings using the entries in the lgg

table. Instead of
onsidering any pair between terms of s

x

and s

i

, the
hoi
e would

be restri
ted to those pairs of terms present in the lgg table. The advantage of

this method is that subsets of the lgg table that
onstitute a basi
 mat
hing are

systemati
ally
onstru
ted. This implies that there is no need to
he
k whether a

given basi
 mat
hing agrees with the lgg table and only subsets of the lgg table

are generated. This
onsideration is not re
e
ted in the bounds for the worst
ase

analysis. However, it should
onstitute an important speedup in pra
ti
e.

4. PROOF OF CORRECTNESS

Before going into the details of the proof of
orre
tness, we des
ribe the trans-

formation U(T) performed on a target expression T . It extends the transformation

des
ribed in [10℄ (where expressions were fun
tion-free) and it serves analogous

purposes.

4.1. Transforming the target expression

This transformation is never
omputed by the learning algorithm; it is only used

in the analysis of the proof of
orre
tness. The transformation introdu
es new

lauses and adds some inequalities to every
lause's ante
edent. This avoids uni�
a-

tion of terms in the transformed
lauses. Related work in [22℄ also uses inequalities

in
lauses, although the learning algorithm and approa
h are
ompletely di�erent.

The idea is to
reate from every
lause C in T the set of
lauses U(C). Every

lause in U(C)
orresponds to the original
lause C with its terms uni�ed in a

unique way, di�erent from every other
lause in U(C). Every possible uni�
ation

of terms of C are
overed by one of the
lauses in U(C). The
lauses in U(C) will

only be satis�ed if the terms are uni�ed in exa
tly that way.

Algorithm 7 (The Transformation Algorithm).

1. Set U(T) to be the empty expression

2. For every
lause C = s

! b

in T do

3. For every partition of Terms(C) � = f�

1

; �

2

; :::; �

l

g do

4. Let A

�

be the set of atoms fA(t

1

; :::; t

l

) j 8i : 1 � i � l : t

i

2 �

i

g

5. Let �

�

be an mgu of A

�

.

6. If no mgu exists or there are �

i

6= �

j

s.t. �

i

� �

�

= �

j

� �

�

7. Then dis
ard the partition

8. Else

9. Set U

�

(C) = ineq(C � �); s

� � ! b

� �

10. Set U(T) = U(T) ^ U

�

(C)

11. Return U(T).

We
onstru
t U(T) from T by
onsidering every
lause separately. For a
lause

C in T we generate a set of
lauses U(C). To do that, we
onsider all par-

titions of the set of terms in Terms(C); ea
h su
h partition, say �,
an gen-

erate a
lause of U(C), denoted U

�

(C). Therefore, U(T) =

V

C2T

U(C) and

LEARNING CLOSED HORN EXPRESSIONS 15

U(C) =

V

�2V alidPartitions(Terms(C))

U

�

(C). The set V alidPartitions(Terms(C))

aptures those partitions for whi
h a simultaneous uni�er of all of its
lasses exists

and partitions whose representatives are all di�erent. The use of A

�

provides the

simultaneous mgu; uniqueness of representatives is tested on line 6 in the transfor-

mation algorithm. We
all a representative of a
lass �

i

the only element in �

i

��

�

,

where �

�

is a mgu for the set A

�

as des
ribed in the algorithm above.

Example 4.1. Let C be p(f(x); f(y); g(z)) ! q(x; y; z): The terms appearing

in C are fx; y; z; f(x); f(y); g(z)g. We
onsider some possible partitions:

� When � = fx; yg; fzg; ff(x); f(y)g; fg(z)g, then

A

�

=

8

>

>

<

>

>

:

A(x; z; f(x); g(z))

A(x; z; f(y); g(z))

A(y; z; f(x); g(z))

A(y; z; f(y); g(z))

A mgu for A

�

is �

�

= fy 7! xg. Therefore,

U

�

(C) = (x 6= z 6= f(x) 6= g(z)); p(f(x); f(x); g(z))! q(x; x; z):

� When �

0

= fx; y; zg; ff(x); g(z)g; ff(y)g, then

A

�

0

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

A(x; f(x); f(y))

A(x; g(z); f(y))

A(y; f(x); f(y))

A(y; g(z); f(y))

A(z; f(x); f(y))

A(z; g(z); f(y))

There is no mgu for the set A

�

0

, therefore this partition does not
ontribute to the

transformation U(C).

� When �

00

= fx; yg; fzg; ff(x)g; ff(y)g; fg(z)g, then

A

�

00

=

�

A(x; z; f(x); f(y); g(z))

A(y; z; f(x); f(y); g(z))

A mgu for A

�

00

is �

�

00

= fy 7! xg. However, this partition is dis
arded be
ause the

representatives for
lasses �

3

and �

4

oin
ide: �

3

� �

�

= ff(x)g = �

4

� �

�

. Noti
e

that the partition �
overs the
ase when the terms f(x) and f(y) are uni�ed

into the same term, so adding this
lause would introdu
e repeated
lauses in the

transformation.

We write the fully inequated
lause \ineq(s

t

! b

t

); s

t

! b

t

" as \6= (s

t

! b

t

)".

The following fa
ts hold for T and its transformation U(T).

Lemma 4.1. If an expression T has m
lauses, then the number of
lauses in its

transformation U(T) is at most mt

k

, where t (k, resp.) is the maximum number of

di�erent terms (variables, resp.) in any
lause in T .

16 ARIAS AND KHARDON

Proof. It suÆ
es to see that any
lause C produ
es at most t

k

lauses in U(C).

We will show that if � and �

0

are two partitions that are not dis
arded by the

transformation algorithm and �

�

= �

�

0

, then � = �

0

. Suppose, then, that � and

�

0

are two su

essful partitions su
h that �

�

= �

�

0

. Let t and t

0

be two distin
t

terms of C in the same
lass in �. Noti
e that sin
e �

�

is a uni�er for A

�

, t and

t

0

have the same representative. Therefore, these two terms have to fall into the

same
lass in �

0

(otherwise �

0

would be reje
ted). Sin
e the same argument also

holds in the opposite dire
tion (i.e. from �

0

to �) we
on
lude that for all terms

t; t

0

of C, t and t

0

are pla
ed in the same
lass in � if and only they are pla
ed in

the same
lass in �

0

. Hen
e, � = �

0

. Finally, the bound follows sin
e there are at

most t

k

substitutions mapping the at most k variables into the at most t terms.

Lemma 4.2. T j= U(T).

Proof. To see this, noti
e that every
lause in U(T) is subsumed by the
lause in

T that originated it.

Corollary 4.1. If U(T) j= C, then T j= C. Also, if U(T) j= [s;
℄, then

T j= [s;
℄.

However, the inverse impli
ation U(T) j= T of Lemma 4.2 does not hold. To see

this,
onsider the following example.

Example 4.2. We present an expression T , its transformation U(T) and an

interpretation I su
h that I j= U(T) but I 6j= T . The expression T is fp(a; f(a))!

q(a)g and its transformation U(T) = f(a 6= f(a)); p(a; f(a))! q(a)g. The interpre-

tation I has domain D

I

= f1g; the only
onstant a = 1; the only fun
tion f(1) = 1

and the extension ext(I) = fp(1; 1)g.

I 6j= T be
ause p(a; f(a))

under I

= p(1; 1) 2 ext(I) but q(a)

under I

= q(1) 62

ext(I).

I j= U(T) be
ause inequality (a 6= f(a))

under I

= (1 6= 1) is false and therefore

the ante
edent of the
lause is falsi�ed. Hen
e, the
lause is satis�ed.

4.2. Some de�nitions

During the analysis, s will stand for the
ardinality of P , the set of predi
ate

symbols in the language; a for the maximal arity of the predi
ates in P ; k for the

maximum number of distin
t variables in a
lause of T ; t for the maximum number

of distin
t terms in a
lause of T ; e

t

for the maximum number of distin
t terms in

a
ounterexample; m for the number of
lauses of the target expression T ; m

0

for

the number of
lauses of the transformation of the target expression U(T).

Definition 4.1. A multi-
lause [s;
℄
overs a
lause 6= (s

t

! b

t

) if there is a

mapping � from variables in s

t

[fb

t

g into terms in Terms(s[
) su
h that s

t

�� � s,

ineq(s

t

[fb

t

g) � � � ineq(s [
) and b

t

� � 2 Atoms

P

(s [
). Equivalently, we say

that 6= (s

t

! b

t

) is
overed by [s;
℄.

LEARNING CLOSED HORN EXPRESSIONS 17

The
ondition ineq(s

t

[fb

t

g) � � � ineq(s[
) establishes that the substitution �

is non-unifying, i.e., it does not unify terms in s

t

! b

t

in the sense that two distin
t

terms in s

t

! b

t

will remain distin
t after applying the substitution �.

Definition 4.2. A multi-
lause [s;
℄
aptures a
lause 6= (s

t

! b

t

) if there is a

mapping � from variables in s

t

into terms in s su
h that 6= (s

t

! b

t

) is
overed by

[s;
℄ via � and b

t

� � 2
. Equivalently, we say that 6= (s

t

! b

t

) is
aptured by [s;
℄.

4.3. Brief des
ription of the proof of
orre
tness

It is
lear that if the algorithm stops, then the returned hypothesis is
orre
t.

Therefore the proof fo
uses on assuring that the algorithm �nishes. To do so, a

bound is established on the length of the sequen
e S. That is, only a �nite number

of
ounterexamples
an be added to S and every re�nement of an existing multi-

lause redu
es its size, and hen
e termination is guaranteed.

To bound the length of the sequen
e S the following
ondition is proved. Every

element in S
aptures some
lause of U(T) but no two distin
t elements of S
apture

the same
lause of U(T) (Lemma 4.17). The bound on the length of S is therefore

m

0

, the number of
lauses of the transformation U(T).

To see that every element in S
aptures some
lause in U(T), it is shown

that all
ounterexamples in S are full multi-
lauses w.r.t. the target expression

T (Lemma 4.7) and that any full multi-
lause must
apture some
lause in U(T)

(Corollary 4.2).

To see that no two distin
t elements of S
apture the same
lause of U(T), two

important properties are established in the proof. Lemma 4.16 shows that if a
oun-

terexample [s

x

;

x

℄
aptures some
lause of U(T) whi
h is
overed by some [s

i

;

i

℄

then the algorithm will repla
e [s

i

;

i

℄ with one of their basi
 pairings. Lemma 4.15

shows that a basi
 pairing
annot
apture a
lause not
aptured by either of the

original
lauses. These properties are used in Lemma 4.17 to prove uniqueness of

aptured
lauses.

On
e the bound on S is established, we derive our �nal theorem by
arefully

ounting the number of queries made to the ora
les in every pro
edure. We pro
eed

now with the analysis in detail.

4.4. Properties of substitutions

Our proof of
orre
tness relies partly on some basi
 properties of substitutions.

Here we list all of the properties used. However, they might not be expli
itly

referen
ed in the proof.

Let � (and subs
ripted variations of it) be substitutions, S and s two sets of

atoms and �

N

a non-unifying substitution (w.r.t. s ! b). With a non-unifying

substitution (w.r.t. some expression �) we mean that if t; t

0

are two distin
t terms

in �, then the terms t � �

N

and t

0

� �

N

are distin
t terms as well.

Lemma 4.3.

1. If b 2 s, then b � � 2 s � �.

2. If b 62 s, then b � �

N

62 s � �

N

.

18 ARIAS AND KHARDON

3. If b 2 S n s, then b � � 2 S � � n s � � unless b � � 2 s � �.

4. If b 2 S n s, then b � �

N

2 S � �

N

n s � �

N

.

5. If � = (�

1

� �

2

) and t � � 6= t

0

� �, then t � �

1

6= t

0

� �

1

.

6. If T j= s! b, then T j= s � � ! b � �.

Proof. We prove some of the properties. For Property 2., suppose that b 62 s.

The substitution �

N

is non-unifying for s and b, therefore, distin
t terms in b

remain distin
t after applying �

N

. Therefore we
an reverse �

N

, and we
on-

lude that if b � �

N

2 s � �

N

then b 2 s. Hen
e, b � �

N

62 s � �

N

. Property 3. is

straightforward, and with Property 2., it implies that Property 4. holds. For Prop-

erty 5., noti
e that if t ��

1

= t

0

��

1

, then �
annot distinguish the terms t and t

0

.

4.5. Properties of full multi-
lauses

The next two lemmas use properties of derivation graphs to improve over the

model
onstru
tion argument given in a preliminary version of the paper [2℄ whi
h

only holds for Range Restri
ted expressions.

Lemma 4.4. If [s;
℄ is subsumed by a
lause C, then [s;
℄
aptures some
lause

in U(C).

Proof. By assumption, C = s

! b

subsumes [s;
℄. That is, there is a substi-

tution � su
h that s

� � � s and b

� � 2
. To see whi
h
lause in U(C) is
aptured

by [s;
℄
onsider the partition � de�ned by the way terms in s

[fb

g are uni�ed

by the substitution �. More pre
isely, two distin
t terms t; t

0

appearing in s

[fb

g

fall into the same
lass of � if and only if t �� = t

0

��. The proof pro
eeds by arguing

that the
lause U

�

(C) appears in U(C) and that [s;
℄
aptures U

�

(C).

We observe that � is a uni�er for A

�

= fA(t

1

; :::; t

l

) j 8i : 1 � i � l : t

i

2 �

i

g.

Thus, a mgu �

�

exists. Therefore, � = �

�

�

^

� for some substitution

^

�. The trans-

formation pro
edure reje
ts a partition � when some of the following
onditions

hold. Either A

�

is not uni�able (however, we have seen it is) or the representa-

tives of two distin
t
lasses are equal. The se
ond
ondition does not hold be
ause

�

i

� �

�

= �

j

� �

�

(with i 6= j) implies �

i

� � = �

j

� �, whi
h is not true by the way �

was
onstru
ted.

Finally, we show that [s;
℄
aptures U

�

(C) = (6= (s

t

! b

t

)) via

^

�. Noti
e that

s

� �

�

= s

t

and b

� �

�

= b

t

. We need to
he
k (1) s

t

�

^

� � s, (2) ineq(s

t

[fb

t

g) �

^

� � ineq(s [
) and (3) b

t

�

^

� 2
. Condition (1) is easy: s

t

�

^

� = s

� �

�

�

^

� =

s

� � � s by hypothesis. For (2), let t; t

0

be two di�erent terms in s

t

[fb

t

g. It

is suÆ
ient to
he
k that t �

^

�; t

0

�

^

� are also di�erent terms (i.e.,

^

� does not unify

them). Let t

; t

0

be the two terms in C su
h that t

� �

�

= t and t

0

� �

�

= t

0

.

Sin
e t 6= t

0

, it follows that t

; t

0

belong to a di�erent
lass of � (otherwise �

�

would have uni�ed them). Therefore, by
onstru
tion, t

� � 6= t

0

� �. Equivalently,

t

��

�

�

^

� 6= t

0

��

�

�

^

� and hen
e t �

^

� 6= t

0

�

^

� as required. Condition (3) is like (1).

Lemma 4.5. If a multi-
lause [s;
℄ is
orre
t for some
losed target expression

T ,
 6= ; and it is
losed w.r.t. T , then some
lause of U(T) must be
aptured by

[s;
℄.

LEARNING CLOSED HORN EXPRESSIONS 19

Proof. Fix any b 2
. Clearly, T j= s ! b (sin
e we have assumed [s;
℄

orre
t). Consider a minimal derivation graph G of s ! b from T . By Theo-

rem 2.1 su
h a graph exists. We start with atom b in the graph and
onsider

Pred(b), the set of atoms that have an edge ending at b. If any of the atoms

b

0

in Pred(b) does not appear in s, then we take b

0

as our next b. Noti
e that

b

0

62 s implies b

0

2
, sin
e [s;
℄ is
losed. We iterate until we �nd an atom

b

0

2
 su
h that Pred(b

0

) � s. By
onstru
tion of derivation graphs, the
lause

Pred(b

0

) ! b

0

must be an instan
e of some
lause C in T . Equivalently, C sub-

sumes Pred(b

0

)! b

0

and therefore it also subsumes [s;
℄ be
ause Pred(b

0

) � s and

b

0

2
. Using Lemma 4.4 we
on
lude that some
lause in U(T) is
aptured by

[s;
℄.

Corollary 4.2. If a multi-
lause [s;
℄ is full w.r.t. some target expression T

and
 6= ;, then some
lause of U(T) must be
aptured by [s;
℄.

Lemma 4.6. If [s;
℄
aptures some
lause of U(T), then rhs(s;
) 6= ;.

Proof. The fa
t that [s;
℄
aptures some
lause of U(T) implies that there is a

lause s

! b

in T and a substitution � su
h that s

� � � s and b

� � 2
. Clearly,

T j= s

! b

j= s

� � ! b

� � and hen
e the atom b

� � 2
 survives the rhs

operation.

Corollary 4.3. If [s;
℄ is a full multi-
lause w.r.t. T and
 6= ;, then rhs(s;
) 6=

;.

4.6. Properties of minimised multi-
lauses

This se
tion in
ludes properties of minimised multi-
lauses as produ
ed by the

minimisation pro
edure. Throughout the proof, we will refer to the minimised

multi-
lause as [s

x

;

x

℄.

Lemma 4.10 shows that every minimised
ounterexample
ontains a synta
ti

variant of some
lause in U(T), ex
luding inequalities. This is an important prop-

erty and it is responsible for one of the main improvements in the bounds.

Definition 4.3. A multi-
lause [s;
℄ is a positive
ounterexample for some

target expression T and some hypothesis H if T j= [s;
℄,
 6= ; and for all atoms

b 2
, H 6j= s! b.

Lemma 4.7. Every minimised [s

x

;

x

℄ is full w.r.t. the target expression T .

Proof. We pro
eed by indu
tion on the updates of [s

x

;

x

℄ during
omputation of

the minimisation pro
edure. Our base
ase is the �rst version of the
ounterexample

[s

x

;

x

℄ as produ
ed by step 2 of the algorithm. This multi-
lause is full, sin
e it is

the output of fun
tion TClosure that produ
es full multi-
lauses by de�nition.

20 ARIAS AND KHARDON

To see that the �nal multi-
lause is
orre
t it suÆ
es to observe that every time

the
andidate multi-
lause has been updated, the
onsequent part is
omputed as

the output of the pro
edure rhs. Therefore, it must be
orre
t.

To see that the �nal multi-
lause is
losed, we prove �rst that after generalising

a term the resulting
ounterexample is
losed. Let [s

x

;

x

℄ be the multi-
lause

before generalising t and [s

0

x

;

0

x

℄ after. Let the substitution �

t

be fx

t

7! tg. Then,

s

0

x

� �

t

= s

x

and

x

=

0

x

� �

t

, be
ause x

t

is a new variable that does not appear in

[s

x

;

x

℄. By way of
ontradi
tion, suppose that some atom b 2 Atoms

P

(s

0

x

[

0

x

)ns

0

x

su
h that T j= s

0

x

! b is not in

0

x

. Noti
e that the substitution �

t

is non-unifying

w.r.t. s

0

x

[

0

x

, and therefore using properties 2. and 4. in Lemma 4.3 we
on
lude

that b � �

t

2 Atoms

p

(s

x

[

x

) n s

x

and b � �

t

62

x

. Sin
e T j= s

x

! b � �

t

, this

ontradi
ts our (impli
it) indu
tion hypothesis stating that [s

x

;

x

℄ is
losed, sin
e

the atom b � �

t

would be missing. Hen
e, any
ounterexample [s

x

;

x

℄ after step 3 is

losed.

We will show now that after dropping some term t the multi-
lause still remains

losed. Again, let [s

x

;

x

℄ be the multi-
lause before removing t and [s

0

x

;

0

x

℄ after re-

moving it. It is
lear that s

0

x

� s

x

and

0

x

�

x

sin
e both have been obtained by only

removing atoms. By the indu
tion hypothesis, the only atoms that
ould be missing

are atoms in

x

n

0

x

and s

x

ns

0

x

. Sin
e for the
losure of [s

0

x

;

0

x

℄ we only
onsider atoms

in Atoms

P

(s

0

x

[

0

x

) and these atoms do not
ontain t (all o

urren
es have been re-

moved), the removed atoms
annot be missing be
ause they all
ontain t. Therefore,

after step 6 and as returned by the minimisation pro
edure, the
ounterexample

[s

x

;

x

℄ is
losed.

Lemma 4.8. All
ounterexamples given by the equivalen
e query ora
le are pos-

itive w.r.t. the target T and the hypothesis H.

Proof. The algorithm makes sure that all
lauses in H are
orre
t (lines 3 and 6

of Algorithm 3 and lines 2, 5 and 8 of Algorithm 4). Therefore, T j= H .

Lemma 4.9. Every minimised [s

x

;

x

℄ is a positive
ounterexample w.r.t. target

T and hypothesis H.

Proof. To prove that [s

x

;

x

℄ is a positive
ounterexample we need to prove that

T j= [s

x

;

x

℄,

x

6= ; and for every b 2

x

it holds that H 6j= s

x

! b

x

. By Lemma 4.7,

we know that [s

x

;

x

℄ is full, and hen
e
orre
t. This implies that T j= [s

x

;

x

℄. It

remains to show that H does not imply any of the
lauses in [s

x

;

x

℄ and that

x

6= ;.

Let A! a be the original
ounterexample obtained from the equivalen
e ora
le.

This A! a is su
h that T j= A! a but H 6j= A! a (by Lemma 4.8), and therefore

a will not be in
luded in the ante
edent of the �rst [s

x

;

x

℄ by HClosure be
ause it

is not implied by H . However, a is in
luded in

x

be
ause a 2 Atoms

P

(A! a) and

T j= A ! a. Thus,

x

6= ; after step 2 of the minimisation pro
edure. Moreover,

the
all to the pro
edure HClosure guarantees that every atom implied by H will

be put into the ante
edent s

x

, leaving no spa
e for any atom implied by H to be put

into the
onsequent

x

by TClosure. Thus, after step 2, [s

x

;

x

℄ is a
ounterexample.

LEARNING CLOSED HORN EXPRESSIONS 21

Next, we will see that after generalising some fun
tional term t, the multi-
lause

still remains a positive
ounterexample. The multi-
lause [s

x

;

x

℄ is only updated

if the
onsequent part is nonempty, therefore, all the multi-
lauses obtained by

generalising will have a nonempty
onsequent. Let [s

x

;

x

℄ be the multi-
lause before

generalising t, and [s

0

x

;

0

x

℄ after. Assume [s

x

;

x

℄ is a positive
ounterexample. Let

�

t

be the substitution fx

t

7! tg. As in Lemma 4.7, s

0

x

� �

t

= s

x

and

0

x

� �

t

=

x

.

Suppose by way of
ontradi
tion that H j= s

0

x

! b

0

, for some b

0

2

0

x

. Then,

H j= s

0

x

� �

t

! b

0

� �

t

. And we get that H j= s

x

! b

0

� �

t

. Note that b

0

2

0

x

implies that b

0

� �

t

2

x

. This
ontradi
ts our assumption stating that [s

x

;

x

℄

was a
ounterexample. Thus, the multi-
lause [s

x

;

x

℄ after step 3 is a positive

ounterexample.

Finally, we will show that after dropping some term t the multi-
lause still re-

mains a positive
ounterexample. As before, the multi-
lause [s

x

;

x

℄ is only updated

if the
onsequent part is nonempty, therefore, all the multi-
lauses obtained by drop-

ping will have a nonempty
onsequent. Let [s

x

;

x

℄ be the multi-
lause before remov-

ing some of its atoms, and [s

0

x

;

0

x

℄ after. It is the
ase that s

0

x

� s

x

and

0

x

�

x

. As-

sume [s

x

;

x

℄ is a positive
ounterexample. Then, for all b 2

x

: H 6j= s

x

! b. Sin
e

0

x

�

x

, it holds that for all b 2

0

x

: H 6j= s

x

! b. Sin
e s

0

x

� s

x

, we obtain that

for all b 2

0

x

: H 6j= s

0

x

! b. Thus, the multi-
lause [s

x

;

x

℄ after step 6 is a positive

ounterexample.

Lemma 4.10. If a minimised [s

x

;

x

℄
aptures some
lause 6= (s

t

! b

t

) of U(T),

then it must be via some substitution � su
h that � is a variable renaming, i.e., �

maps distin
t variables of s

t

into distin
t variables of s

x

only.

Proof. [s

x

;

x

℄ is
apturing 6= (s

t

! b

t

), hen
e there must exist a substitution �

from variables in s

t

[fb

t

g into terms in s

x

[

x

su
h that s

t

�� � s

x

, ineq(s

t

[fb

t

g)�� �

ineq(s

x

[

x

) and b

t

� � 2

x

. We will show that � must be a variable renaming.

By way of
ontradi
tion, suppose that � maps some variable v of s

t

[fb

t

g into a

fun
tional term t of s

x

[

x

(i.e. v � � = t). Consider the generalisation of the term

t in step 3 of the minimisation pro
edure. We will see that the term t should have

been generalised and substituted by the new variable x

t

.

Suppose, then that [s

x

;

x

℄ is the multi-
lause previous to generalising t and

[s

0

x

;

0

x

℄ after. We generalise the term t to the fresh variable x

t

. Consider the

substitution �

0

de�ned as � n fv 7! tg [fv 7! x

t

g. The substitution �

0

behaves like

� on all terms ex
ept for variable v. We will see that [s

0

x

;

0

x

℄
aptures 6= (s

t

! b

t

)

via �

0

and hen
e rhs(s

0

x

;

0

x

) 6= ; (Lemma 4.6). Therefore t must be generalised to

the variable x

t

.

To see that [s

0

x

;

0

x

℄
aptures 6= (s

t

! b

t

) via �

0

we need to show (1) s

t

� �

0

� s

0

x

,

(2) b

t

��

0

2

0

x

and (3) ineq(s

t

[fb

t

g) ��

0

� ineq(s

0

x

[

0

x

). For (1),
onsider any atom

b of s

t

. We observe the following: after substitution �

0

: b(:::v:::)) b(:::x

t

:::), and

after substitution � and generalising t: b(:::v:::)) b(:::t:::)) b(:::x

t

:::). The part

of the \dots" in the previous expressions is identi
al for both lines, sin
e � and �

0

behave equally for terms di�erent than v. Moreover, the fa
t that � does not unify

terms in s

t

[fb

t

g assures that the rest of terms will di�er from t and x

t

after applying

� or �

0

. Therefore, we get that b � �

0

2 s

0

x

i� b � � 2 s

x

and sin
e s

t

� � � s

x

, Property

22 ARIAS AND KHARDON

(1) follows. Property (2) is identi
al to Property (1). For (3), let t; t

0

be two distin
t

terms of s

t

[fb

t

g. We have to show that t � �

0

and t

0

� �

0

are two di�erent terms of

s

0

x

[

0

x

and therefore their inequality appears in ineq(s

0

x

[

0

x

). It is easy to see that

they are terms of s

0

x

[

0

x

sin
e by previous properties (s

t

[fb

t

g) ��

0

� (s

0

x

[

0

x

). Now,

let �

t

be the substitution fx

t

! tg and noti
e that � = �

0

��

t

. Sin
e � does not unify

terms in s

t

[fb

t

g, then none of �

0

and �

t

do. Therefore, t ��

0

6= t

0

��

0

as required.

4.7. Properties of the number of terms in minimised examples

Lemma 4.11. Let [s

x

;

x

℄ be a multi-
lause as output by the minimisation pro
e-

dure. Let 6= (s

t

! b

t

) be a
lause of U(T)
aptured by [s

x

;

x

℄. Then, the number

of distin
t terms in [s

x

;

x

℄ is equal to the number of distin
t terms in 6= (s

t

! b

t

).

Proof. Let n

x

and n

t

be the number of distin
t terms appearing in [s

x

;

x

℄ and

s

t

! b

t

, respe
tively. Subterms should also be
ounted. The multi-
lause [s

x

;

x

℄

aptures 6= (s

t

! b

t

). Therefore there is a substitution � satisfying ineq(s

t

[fb

t

g) �

� � ineq(s

x

[

x

). Thus, di�erent variables in s

t

! b

t

are mapped into di�erent

terms of s

x

[

x

by �. By Lemma 4.10, we know also that every variable of s

t

; b

t

is mapped into a variable of s

x

;

x

. Therefore, � maps distin
t variables of s

t

; b

t

into distin
t variables of s

x

;

x

. Therefore, the number of terms in s

t

; b

t

equals

the number of terms in (s

t

[fb

t

g) � �, sin
e there has only been a non-unifying

renaming of variables. Also, s

t

� � � s

x

and b

t

� � 2

x

. We have to
he
k that the

remaining atoms in (s

x

n s

t

� �)[(

x

n b

t

� �) do not in
lude any term not appearing

in (s

t

[fb

t

g) � �.

Suppose there is an atom l 2 (s

x

ns

t

��)[(

x

nb

t

��)
ontaining some term, say t, not

appearing in (s

t

[fb

t

g) � �. Consider when in step 6 of the minimisation pro
edure

the term t was
he
ked as a
andidate to be removed. Let [s

0

x

;

0

x

℄ be the
lause

obtained after the removal of the atoms
ontaining t. Then, s

t

�� � s

0

x

and b

t

�� 2

0

x

be
ause all the atoms in (s

t

[fb

t

g)�� do not
ontain t. Moreover, ineq(s

t

[fb

t

g)�� �

ineq(s

0

x

[

0

x

). To see this, take any two terms t 6= t

0

from s

t

! b

t

. The terms t�� and

t

0

�� appear in s

0

x

[

0

x

be
ause they
ontain terms in (s

t

[b

t

) �� only (so they are not

removed). Further, sin
e t �� 6= t

0

�� in s

x

[

x

and ft ��; t

0

��g � (s

0

x

[

0

x

) � (s

x

[

x

)

we
on
lude that t �� 6= t

0

�� in s

0

x

[

0

x

. Thus, [s

0

x

;

0

x

℄ still
aptures 6= (s

t

! b

t

). And

therefore, rhs(s

0

x

;

0

x

) 6= ; and su
h a term t
annot exist. We
on
lude that n

t

=

n

x

.

Corollary 4.4. The number of terms of a
ounterexample as generated by the

minimisation pro
edure is bounded by t, the maximum of the number of distin
t

terms in the target
lauses.

Lemma 4.12. Let [s;
℄ be a multi-
lause
overing some 6= (s

t

! b

t

). Let n and

n

t

be the number of distin
t terms in s[
 and s

t

[fb

t

g, respe
tively. Then, n

t

� n.

LEARNING CLOSED HORN EXPRESSIONS 23

Proof. Sin
e [s;
℄
overs the
lause 6= (s

t

! b

t

), there is a � s.t. ineq(s

t

[

fb

t

g) � � � ineq(s [
). Therefore, any two distin
t terms of s

t

[fb

t

g appear as

distin
t terms in s[
. And therefore, [s;
℄ has at least as many terms as s

t

! b

t

.

Corollary 4.5. Let 6= (s

t

! b

t

) be a
lause of U(T) with n

t

distin
t terms.

Let [s

x

;

x

℄ be a multi-
lause with n

x

distin
t terms as output by the minimisation

pro
edure su
h that [s

x

;

x

℄
aptures the
lause 6= (s

t

! b

t

). Let [s

i

;

i

℄ be a multi-

lause with n

i

terms
overing the
lause 6= (s

t

! b

t

). Then n

x

� n

i

.

4.8. Properties of pairings

Lemma 4.13. Let [s

x

;

x

℄ and [s

i

;

i

℄ be two full multi-
lauses w.r.t. the target

expression T . Let � be a basi
 mat
hing between the terms in s

x

and s

i

that is not

reje
ted by the pairing pro
edure. Let [s;
℄ be the basi
 pairing of [s

x

;

x

℄ and [s

i

;

i

℄

indu
ed by �. Then the multi-
lause [s; rhs(s;
)℄ is also full w.r.t. T .

Proof. To see that [s; rhs(s;
)℄ is full w.r.t. T , it is suÆ
ient to show that [s;
℄

is
losed. That is, whenever T j= s ! b and b 2 Atoms

P

(s [
) n s, then b 2
.

Suppose, then, that T j= s! b with b 2 Atoms

P

(s[
)ns. Sin
e s = lgg

j

�

(s

x

; s

i

) �

lgg(s

x

; s

i

), we know that there exist �

x

and �

i

su
h that s � �

x

� s

x

and s � �

i

� s

i

.

T j= s! b implies both T j= s ��

x

! b ��

x

and T j= s ��

i

! b ��

i

. Let b

x

= b ��

x

and

b

i

= b � �

i

. Finally, we obtain that T j= s

x

! b

x

and T j= s

i

! b

i

. By assumption,

[s

x

;

x

℄ and [s

i

;

i

℄ are full, and therefore b

x

2 s

x

[

x

and b

i

2 s

i

[

i

be
ause

b

x

2 Atoms

P

(s

x

[

x

) and b

i

2 Atoms

P

(s

i

[

i

) (remember that b 2 Atoms

P

(s[
)).

Also, sin
e the same lgg table is used for all lgg(�; �) we know that b = lgg(b

x

; b

i

).

Therefore b must appear in one of lgg(s

x

; s

i

); lgg(s

x

;

i

); lgg(

x

; s

i

) or lgg(

x

;

i

).

But b 62 lgg(s

x

; s

i

) sin
e b 62 s by assumption.

Note that all terms and subterms in b appear in s[
, be
ause b 2 Atoms

P

(s[
).

We know that � is basi
 and hen
e legal, and therefore it
ontains all subterms

of terms appearing in s [
. Thus, by restri
ting any of the lgg(�; �) to lgg

j

�

(�; �),

we will not get rid of b, sin
e it is built up from terms that appear in s [
 and

hen
e in �. Therefore, b 2 lgg

j

�

(s

x

;

i

) [lgg

j

�

(

x

; s

i

) [lgg

j

�

(

x

;

i

) =
 as re-

quired.

Lemma 4.14. Let [s;
℄ be a pairing of two multi-
lauses [s

x

;

x

℄ and [s

i

;

i

℄. Then,

it is the
ase that jsj � js

i

j and js [
j � js

i

[

i

j.

Proof. It is suÆ
ient to observe that in s there is at most one
opy of ev-

ery atom in s

i

. This is true sin
e the mat
hing used to in
lude atoms in s is

1 to 1 and therefore a term
an only be
ombined with a unique term and no

dupli
ation of atoms o

urs. The same idea applies to the se
ond inequality.

Lemma 4.15. Let [s

1

;

1

℄ and [s

2

;

2

℄ be two full multi-
lauses w.r.t. some Horn

expression T . Let [s;
℄ be any legal pairing between them. The following holds:

1. If [s;
℄
overs a
lause 6= (s

t

! b

t

) in U(T), then both [s

1

;

1

℄ and [s

2

;

2

℄
over

6= (s

t

! b

t

).

24 ARIAS AND KHARDON

2. If [s;
℄
aptures a
lause 6= (s

t

! b

t

) in U(T), then at least one of [s

1

;

1

℄ or

[s

2

;

2

℄
aptures 6= (s

t

! b

t

).

Proof. Condition 1. By assumption, 6= (s

t

! b

t

) is
overed by [s;
℄, i.e., there is

a � su
h that s

t

� � � s, ineq(s

t

[fb

t

g) � � � ineq(s[
) and b

t

� � 2 Atoms

P

(s [
).

This implies that if t; t

0

are two distin
t terms of s

t

[fb

t

g, then t � � and t

0

� � are

distin
t terms appearing in s [
. Let � be the 1-1 legal mat
hing indu
ing the

pairing. The ante
edent s is de�ned to be lgg

j

�

(s

1

; s

2

), and therefore there exist

substitutions �

1

and �

2

su
h that s � �

1

� s

1

and s � �

2

� s

2

. We
laim that [s

1

;

1

℄

and [s

2

;

2

℄
over 6= (s

t

! b

t

) via � ��

1

and � ��

2

, respe
tively. We will prove this for

[s

1

;

1

℄ only, the proof for [s

2

;

2

℄ is identi
al. Noti
e that s

t

� � � s, and therefore

s

t

� � � �

1

� s � �

1

. Sin
e s � �

1

� s

1

, we obtain s

t

� � � �

1

� s

1

. We show now that

ineq(s

t

[fb

t

g) � � � �

1

� ineq(s

1

[

1

). Observe that all top-level terms appearing in

s[
 also appear as one entry of the mat
hing �, be
ause otherwise they
ould not

have survived the restri
tion imposed by �. Further, sin
e � is legal, all subterms of

terms of s[
 also appear as an entry in �. Let t; t

0

be two distin
t terms appearing

in s

t

[fb

t

g. Sin
e (s

t

[fb

t

g) � � � s[
 and � in
ludes all terms appearing in s[
,

the distin
t terms t � � and t

0

� � appear as the lgg of distin
t entries in �. These

entries have the form [t � � � �

1

- t � � � �

2

=> t � �℄, sin
e lgg(t � � � �

1

; t � � � �

2

) = t � �.

Sin
e � is 1-1, we know that t � � � �

1

6= t

0

� � � �

1

. Finally, we need to show that

b

t

� � � �

1

2 Atoms

P

(s

1

[

1

). Noti
e that s � �

1

� s

1

and
 � �

1

� (s

1

[

1

).

Therefore, s

t

[fb

t

g � � � s[
 implies s

t

[fb

t

g � � � �

1

� (s[
) � �

1

� s

1

[

1

. Thus,

b

t

� � � �

1

2 Atoms

P

(s

1

[

1

) as required.

Condition 2. By hypothesis, b

t

� � 2
 and
 is de�ned to be lgg

j

�

(s

1

;

2

) [

lgg

j

�

(

1

; s

2

) [lgg

j

�

(

1

;

2

). Observe that all these lggs share the same table, so

the same pairs of terms will be mapped into the same expressions. Observe also

that the substitutions �

1

and �

2

are de�ned a

ording to this table, so that if

any atom l 2 lgg

j

�

(

1

; �), then l � �

1

2

1

. Equivalently, if l 2 lgg

j

�

(�;

2

), then

l � �

2

2

2

. Therefore we get that if b

t

� � 2 lgg

j

�

(

1

; �), then b

t

� � � �

1

2

1

and if b

t

� � 2 lgg

j

�

(�;

2

), then b

t

� � � �

2

2

2

. Now, observe that in any of

the three possibilities for
, one of

1

or

2

is in
luded in the lgg

j

�

. Thus it

is the
ase that either b

t

� � � �

1

2

1

or b

t

� � � �

2

2

2

. Sin
e both [s

1

;

1

℄

and [s

2

;

2

℄
over 6= (s

t

! b

t

), one of [s

1

;

1

℄ or [s

2

;

2

℄
aptures 6= (s

t

! b

t

).

It is
ru
ial for Lemma 4.15 that the pairing involved is legal. It is indeed possible

for a non-legal pairing to
apture some
lause that is not even
overed by some of

its originating multi-
lauses, as the next example illustrates.

Example 4.3. In this example we present two multi-
lauses [s

1

;

1

℄ and [s

2

;

2

℄,

a non-legal mat
hing � and a
lause 6= (s

t

! b

t

) su
h that the non-legal pairing

indu
ed by �
aptures 6= (s

t

! b

t

) but none of [s

1

;

1

℄ and [s

2

;

2

℄ do.

� [s

1

;

1

℄ = [p(ffa; gffa)! q(fa)℄ with terms fa; fa; ffa; gffag

ineq(s

1

) = (a 6= fa 6= ffa 6= gffa).

� [s

2

;

2

℄ = [p(fb; gff
)! q(b)℄ with terms fb;
; fb; f
; ff
; gff
g.

� The mat
hing � is [a -
 => X℄

[fa - b => Y℄

LEARNING CLOSED HORN EXPRESSIONS 25

[ffa - fb => fY℄

[gffa - gff
 => gffX℄

� [s;
℄ = [p(fY; gffX)! q(Y)℄.

� (x 6= fx 6= ffx 6= gffx 6= y 6= fy)

| {z }

ineq(s

t

)

; p(fy; gffx)

| {z }

s

t

! q(y)

|{z}

b

t

.

� � = fx 7! X; y 7! Y g.

� �

1

= fX 7! a; Y 7! fag.

� � � �

1

= fx 7! a; y 7! fag.

The multi-
lause [s;
℄
aptures 6= (s

t

! b

t

) via � = fx 7! X; y 7! Y g. But [s

1

;

1

℄

does not
over 6= (s

t

! b

t

) be
ause the
ondition ineq(s

t

) � � � �

1

� ineq(s

1

) fails to

hold:

(a 6= fa 6= �a 6= gffa 6= fa 6= �a)

| {z }

(x 6=fx 6=ffx 6=gffx6=y 6=fy)����

1

6� (a 6= fa 6= ffa 6= gffa)

| {z }

ineq(s

1

)

Corollary 4.6. Let [s

1

;

1

℄; [s

2

;

2

℄; [s

3

;

3

℄; :::; [s

k

;

k

℄; ::: be a sequen
e of full

multi-
lauses su
h that every multi-
lause [s

i+1

;

i+1

℄ is a legal pairing between the

previous multi-
lause [s

i

;

i

℄ in the sequen
e and some other full multi-
lause [s

0

i

;

0

i

℄,

for i � 1. Suppose some [s

k

;

k

℄ in the sequen
e
overs a
lause 6= (s

t

! b

t

). Then,

all previous [s

i

;

i

℄ in the sequen
e (where i < k), must
over the
lause 6= (s

t

! b

t

),

too.

4.9. Properties of the sequen
e S

Corollary 4.7. Every element [s;
℄ appearing in the sequen
e S is full w.r.t.

the target expression T .

Proof. The sequen
e S is
onstru
ted by appending minimised
ounterexam-

ples or by re�ning existing elements with a pairing with another minimised
oun-

terexample. Lemma 4.7 guarantees that all minimised
ounterexamples are full

and, by Lemma 4.13, any basi
 pairing between full multi-
lauses is also full.

Lemma 4.16. Let S be the sequen
e [[s

1

;

1

℄; [s

2

;

2

℄; :::; [s

k

;

k

℄℄. If a minimised

ounterexample [s

x

;

x

℄ is produ
ed su
h that it
aptures some
lause 6= (s

t

! b

t

) in

U(T)
overed by some [s

i

;

i

℄ of S, then some multi-
lause [s

j

;

j

℄ will be repla
ed

by a basi
 pairing of [s

x

;

x

℄ and [s

j

;

j

℄, where j � i.

Proof. We will show that if no element [s

j

;

j

℄ where j < i is repla
ed, then

the element [s

i

;

i

℄ will be repla
ed. We have to prove that there is a basi
 pairing

[s;
℄ of [s

x

;

x

℄ and [s

i

;

i

℄ with the following two properties: (1)rhs(s;
) 6= ; and

(2)size(s) � size(s

i

) or (size(s) = size(s

i

) and size(
) � size(

i

)).

We have assumed that there is some
lause 6= (s

t

! b

t

) 2 U(T)
aptured by

[s

x

;

x

℄ and
overed by [s

i

;

i

℄. Let �

0

x

be the substitution showing that 6= (s

t

! b

t

)

26 ARIAS AND KHARDON

is
aptured by [s

x

;

x

℄ and �

0

i

the substitution showing that 6= (s

t

! b

t

) is
overed

by [s

i

;

i

℄. Thus the following properties hold:

� s

t

� �

0

x

� s

x

� ineq(s

t

[fb

t

g) � �

0

x

� ineq(s

x

[

x

)

� b

t

� �

0

x

2

x

� b

t

� �

0

x

2 Atoms

P

(s

x

[

x

)

� s

t

� �

0

i

� s

i

� ineq(s

t

[fb

t

g) � �

0

i

� ineq(s

i

[

i

)

� b

t

� �

0

i

2 Atoms

P

(s

i

[

i

)

We
onstru
t a mat
hing � that in
ludes all entries

[t � �

0

x

- t � �

0

i

=> lgg(t � �

0

x

; t � �

0

i

)℄

su
h that t is a term appearing in s

t

[fb

t

g (one entry for every distin
t term).

Example 4.4. Consider the following:

� s

t

= fp(g(
); x; f(y); z)g.

With terms
; g(
); x; y; f(y) and z.

� s

x

= fp(g(
); x

0

; f(y

0

); z); p(g(
); g(
); f(y

0

);
)g.

With terms
; g(
); x

0

; y

0

; f(y

0

) and z.

� s

i

= fp(g(
); f(1); f(f(2)); z)g.

With terms
; g(
); 1; f(1); 2; f(2); f(f(2)) and z.

� The substitution �

0

x

= fx 7! x

0

; y 7! y

0

; z 7! zg and it is a variable renaming.

� The substitution �

0

i

= fx 7! f(1); y 7! f(2); z 7! zg.

� The lgg(s

x

; s

i

) is fp(g(
); X; f(Y); z); p(g(
); Z; f(Y); V)g and it produ
es the

following lgg table.

[
 -
 =>
℄ [g(
) - g(
) => g(
)℄

[x' - f(1) => X℄ [y' - f(2) => Y℄

[f(y') - f(f(2)) => f(Y)℄ [z - z => z℄

[g(
) - f(1) => Z℄ [
 - z => V℄

� The extended mat
hing � is

) [
 -
 =>
℄

g(
)) [g(
) - g(
) => g(
)℄)

x) [x' - f(1) => X℄

y) [y' - f(2) => Y℄

f(y)) [f(y') - f(f(2)) => f(Y)℄

z) [z - z => z℄

� The pairing indu
ed by � is lgg

j

�

(s

x

; s

i

) = fp(g(
); X; f(Y); z)g.

LEARNING CLOSED HORN EXPRESSIONS 27

Claim. The mat
hing � as des
ribed above is 1-1 and the number of entries

equals the minimum of the number of distin
t terms in s

x

[

x

and s

i

[

i

.

Proof. All the entries of � have the form [t � �

0

x

- t � �

0

i

=> lgg(t � �

0

x

; t � �

0

i

)℄.

For � to be 1-1 it is suÆ
ient to see that there are no two terms t; t

0

of s

t

[fb

t

g

generating the following entries in �

[t � �

0

x

- t � �

0

i

=> lgg(t � �

0

x

; t � �

0

i

)℄

[t

0

� �

0

x

- t

0

� �

0

i

=> lgg(t

0

� �

0

x

; t � �

0

i

)℄

su
h that t � �

0

x

= t

0

� �

0

x

or t � �

0

i

= t

0

� �

0

i

. But this is
lear sin
e [s

x

;

x

℄ and [s

i

;

i

℄

are
overing 6= (s

t

! b

t

) via �

0

x

and �

0

i

, respe
tively. Therefore ineq(s

t

[fb

t

g) � �

0

x

�

ineq(s

x

[

x

) and ineq(s

t

[fb

t

g) � �

0

i

� ineq(s

i

[

i

). And therefore t � �

0

x

and t

0

� �

0

x

appear as di�erent terms in s

x

[

x

. Also, t � �

0

i

and t

0

� �

0

i

appear as di�erent terms

in s

i

[

i

. Thus � is 1-1.

By
onstru
tion, the number of entries equals the number of distin
t terms in

s

t

[fb

t

g, that by Lemma 4.11 is the number of distin
t terms in s

x

[

x

. And by

Lemma 4.12, [s

i

;

i

℄
ontains at least as many terms as s

t

[fb

t

g. Therefore, the num-

ber of entries in �
oin
ides with the minimum of the number of distin
t terms in s

x

[

x

and s

i

[

i

.

Claim. The mat
hing � is legal.

Proof. A mat
hing is legal if the subterms of any term appearing as the lgg of

the mat
hing, also appear in some other entries of the mat
hing. We will prove it

by indu
tion on the stru
ture of the terms. We prove that if t is a term in s

t

[fb

t

g,

then the term lgg(t��

0

x

; t��

0

i

) and all its subterms appear somewhere in the extension

of �.

Base
ase. When t = a, with a being some
onstant. The entry in � for it is [a -

a => a℄, sin
e a � � = a, for any substitution � if a is a
onstant and lgg(a; a) = a.

The term a has no subterms, and therefore all its subterms trivially appear as

entries in �.

Base
ase. When t = v, where v is any variable in s

t

[fb

t

g. The entry for it in �

is [v ��

0

x

- v ��

0

i

=> lgg(v ��

0

x

; v ��

0

i

)℄. [s

x

;

x

℄ is minimised and by Lemma 4.10 v ��

0

x

must be a variable. Therefore, its lgg with anything else must also be a variable.

Hen
e, all its subterms appear trivially sin
e there are no subterms.

Step
ase. When t = f(t

1

; :::; t

l

), where f is a fun
tion symbol of arity l and

t

1

; :::; t

l

its arguments. The entry for it in � is

[f(t

1

; :::; t

l

) � �

0

x

- f(t

1

; :::; t

l

) � �

0

i

=> lgg(f(t

1

; :::; t

l

) � �

0

x

; f(t

1

; :::; t

l

) � �

0

x

)

| {z }

f(lgg(t

1

��

0

x

;t

1

��

0

i

);:::;lgg(t

l

��

0

x

;t

l

��

0

i

))

℄

The entries [t

j

� �

0

x

- t

j

� �

0

i

=> lgg(t

j

� �

0

x

; t

j

� �

0

x

)℄, with 1 � j � l, are also

in
luded in �, sin
e all t

j

are terms of s

t

[fb

t

g. By the indu
tion hypothesis, all the

subterms of every lgg(t

j

��

0

x

; t

j

��

0

x

) are in
luded in �, and therefore, all the subterms

of lgg(f(t

1

; :::; t

l

) � �

0

x

; f(t

1

; :::; t

l

) � �

0

x

) are also in
luded in � and the step
ase

holds.

28 ARIAS AND KHARDON

Claim. The mat
hing � is basi
.

Proof. A basi
 mat
hing is de�ned only for two multi-
lauses [s

x

;

x

℄ and [s

i

;

i

℄

su
h that the number of terms in s

x

[

x

is less or equal than the number of terms

in s

i

[

i

. Corollary 4.5 shows that this is indeed the
ase. Following the de�nition,

it should be also 1-1 and legal. The
laims above show that it is 1-1 and that it is

also legal. It is only left to see that it is basi
: if entry f(t

1

; :::; t

n

)� t is in �, then

t = f(r

1

; :::; r

n

) and t

l

� r

l

2 � for all l = 1; :::; n.

Suppose, then, that f(t

1

; :::; t

n

) � t is in �. By
onstru
tion of � all entries

are of the form

^

t � �

0

x

�

^

t � �

0

i

, where

^

t is a term in s

t

[fb

t

g. Thus, assume

^

t �

�

0

x

= f(t

1

; :::; t

n

) and

^

t � �

0

i

= t. We also know that �

0

x

is a variable renaming,

therefore, the term

^

t � �

0

x

is a variant of

^

t. Therefore, the terms f(t

1

; :::; t

n

) and

^

t

are variants. That is,

^

t itself has the form f(t

0

1

; :::; t

0

n

), where every t

0

j

is a variant

of t

j

and t

0

j

� �

0

x

= t

j

, where j = 1; :::; n. Therefore, t =

^

t � �

0

i

= f(r

1

= t

0

1

�

�

0

i

; :::; r

n

= t

0

n

� �

0

i

) as required. We have seen that t

j

= t

0

j

� �

0

x

and r

j

= t

0

j

� �

0

i

. By

onstru
tion, � in
ludes the entries t

j

� r

j

, for any j = 1; :::; n and our
laim

holds.

The
laims above show that the mat
hing � is a good mat
hing in the sense that

it will be one of the mat
hings
onstru
ted by the algorithm. Now we
onsider the

pairing of [s

x

;

x

℄ and [s

i

;

i

℄ indu
ed by �. Noti
e that this pairing (
all it [s;
℄)

will not be dis
arded by our algorithm. The dis
arded pairings are those that do

not agree with the lgg of s

x

and s

i

, but this does not happen in this
ase, sin
e �

has been
onstru
ted pre
isely using the lgg of some terms in [s

x

;

x

℄ and [s

i

;

i

℄.

It is left to show that
onditions for repla
ement in the algorithm hold. The

following two
laims show that this is indeed the
ase.

Claim. rhs(s;
) 6= ;.

Proof. Let �

x

and �

i

be de�ned as follows. An entry in � [t � �

0

x

- t � �

0

i

=>

lgg(t � �

0

x

; t � �

0

i

)℄ su
h that lgg(t � �

0

x

; t � �

0

i

) is a variable will generate the mapping

lgg(t � �

0

x

; t � �

0

i

) 7! t � �

0

x

in �

x

and lgg(t � �

0

x

; t � �

0

i

) 7! t � �

0

i

in �

i

. That is, �

x

=

flgg(t ��

0

x

; t ��

0

i

) 7! t ��

0

x

g and �

i

= flgg(t ��

0

x

; t ��

0

i

) 7! t ��

0

i

g, whenever lgg(t ��

0

x

; t ��

0

i

)

is a variable and t is a term in s

t

[fb

t

g.

In our example, �

x

= fX 7! x

0

; Y 7! y

0

; z 7! zg and �

i

= fX 7! f(1); Y 7!

f(2); z 7! zg.

� s � �

x

� s

x

. Let l be an atom in s, l has been obtained by taking the lgg of

two atoms l

x

and l

i

in s

x

and s

i

, respe
tively. That is, l = lgg(l

x

; l

i

). Moreover,

l only
ontains terms in the extension of �, otherwise it would have been removed

when restri
ting the lgg. The substitution �

x

is su
h that l � �

x

= l

x

be
ause it

\undoes" what the lgg does for the atoms with terms in �. And l

x

2 s

x

, therefore,

the in
lusion s � �

x

� s

x

holds.

� s � �

i

� s

i

. Similar to previous.

Let � be the substitution that maps all variables in s

t

[fb

t

g to their
orresponding

expression assigned in the extension of �. That is, � maps any variable v of s

t

[fb

t

g

to the term lgg(v � �

0

x

; v � �

0

i

). In our example, � = fx 7! X; y 7! Y; z 7! zg.

LEARNING CLOSED HORN EXPRESSIONS 29

The proof that rhs(s;
) 6= ;
onsists in showing that 6= (s

t

! b

t

) is
aptured by

[s;
℄ via �. Then we apply Lemma 4.6 and
on
lude that rhs(s;
) 6= ;.

The following properties hold:

� � � �

x

= �

0

x

. Let v be a variable in s

t

[fb

t

g. The substitution � maps v into

lgg(v � �

0

x

; v � �

0

i

). This is a variable, say V , sin
e we know �

0

x

is a variable renaming.

The substitution �

x

ontains the mapping

lgg(v � �

0

x

; v � �

0

i

)

| {z }

V

7! v � �

0

x

:

And v is mapped into v � �

0

x

by � � �

x

.

In our example: �

0

x

= fx 7! x

0

; y 7! y

0

; z 7! zg, and

� � �

x

= fx 7! X; y 7! Y; z 7! zg � fX 7! x

0

; Y 7! y

0

; z 7! zg.

� � � �

i

= �

0

i

. As in previous property.

To see how 6= (s

t

! b

t

) is
aptured by [s;
℄ via �:

� s

t

� � � s = lgg

j

�

(s

x

; s

i

). Let l be an atom in s

t

. We show that l � � is in

lgg(s

x

; s

i

) and that it is not removed by the restri
tion to �. Let t be a term

appearing in l. The mat
hing �
ontains the entry

[t � �

0

x

- t � �

0

i

=> lgg(t � �

0

x

; t � �

0

i

)℄;

sin
e t appears in s

t

. The substitution �
ontains fv 7! lgg(v � �

0

x

; v � �

0

i

)g for

every variable v appearing in s

t

[fb

t

g (and thus for every variable in s

t

), therefore

t � � = lgg(t � �

0

x

; t � �

0

i

). Indeed, lgg(t � �

0

x

; t � �

0

i

) appears in �. The atom l � � appears

in lgg(s

t

� �

0

x

; s

t

� �

0

i

) and therefore in lgg(s

x

; s

i

) sin
e s

t

� �

0

x

� s

x

, s

t

� �

0

i

� s

i

and

� = fv 7! lgg(v � �

0

x

; v � �

0

i

) j v is a variable of s

t

g. Also, l � � appears in lgg

j

�

(s

x

; s

i

)

sin
e we have seen that any term in l � � appears in �.

In our example the only l we have in s

t

�� is p(g(
); x; f(y); z)�� = p(g(
); X; f(Y); z).

And lgg

j

�

(s

x

; s

y

) is pre
isely fp(g(
); X; f(Y); z)g.

� ineq(s

t

[fb

t

g) � � � ineq(s [
). We have to show that for any two distin
t

terms t; t

0

of s

t

[fb

t

g, the terms t � � and t

0

� � are also di�erent terms in s [
,

and therefore the inequality t � � 6= t

0

� � appears in ineq(s [
). By hypothesis,

ineq(s

t

[fb

t

g) � �

0

x

� ineq(s

x

[

x

). Sin
e �

0

x

= � � �

x

, we get ineq(s

t

[fb

t

g) � � � �

x

�

ineq(s

x

[

x

) and so t � � � �

x

and t

0

� � � �

x

are di�erent terms of s

x

[

x

. From

Property 5. in Lemma 4.3 it follows that t � � 6= t

0

� � 2 ineq(s [
).

� b

t

� � 2
. By hypothesis, b

t

� �

0

x

2

x

. Also, b

t

� �

0

i

2 Atoms

P

(s

i

[

i

) implies

(be
ause [s

i

;

i

℄ is full), that b

t

� �

0

i

2 s

i

[

i

. Noti
e that b

t

� � = lgg

j

�

(b

t

� �

0

x

; b

t

� �

0

i

)

by
onstru
tion. Therefore b

t

� � 2
 = lgg

j

�

(s

x

;

i

) [lgg

j

�

(

x

; s

i

) [lgg

j

�

(

x

;

i

) as

required.

Claim. size(s) � size(s

i

) or (size(s) = size(s

i

) and size(
) � size(

i

)).

Proof. By Lemma 4.14, we know that jsj � js

i

j, therefore size(s) � size(s

i

)

sin
e the lgg never substitutes a term by one of greater weight. Noti
e that the

30 ARIAS AND KHARDON

lgg substitutes variables for fun
tional terms. A

ording to our de�nition of size,

variables weigh less than fun
tional terms, therefore the size of a generalisation will

be at most the size of the instan
e that has been generalised. We
over all possible

ases: if size(s) � size(s

i

), then the
ondition is true. If size(s) = size(s

i

), then

we know by Lemma 4.14 that js [
j � js

i

[

i

j. Sin
e jsj = js

i

j, we
on
lude that

j
j � j

i

j, and hen
e size(
) � size(

i

) by the same argument as above. Thus,

s � �

i

= s

i

and s

i

� �

�1

i

= s. Again, we split the proof into two
ases. The
ase when

size(
) � size(

i

) satis�es the
ondition. For the
ase when size(
) = size(

i

), we

have that the multi-
lauses [s;
℄ and [s

i

;

i

℄ are equal up to variable renaming. We

will elaborate this
ase a little more and will arrive to a
ontradi
tion, �nishing our

proof. The following fa
ts hold:

� Sin
e [s;
℄ and [s

i

;

i

℄ are variable renamings,
 � �

i

=

i

and

i

� �

�1

i

=
.

� By the previous
laim, it holds that b

t

� � 2
 and therefore there exists a b

i

s.t.

b

i

= b

t

� � � �

i

2

i

.

� The substitutions �

i

and �

0

x

are variable renamings, and (by previous
laim)

�

0

x

= � � �

x

, therefore the substitution

^

� = �

�1

i

� �

x

is well de�ned and is a variable

renaming.

� It follows that s

i

�

^

� � s

x

and b

i

�

^

� = b

t

� � � �

i

| {z }

b

i

� �

�1

i

� �

x

| {z }

^

�

= b

t

� � � �

x

= b

t

� �

0

x

2

x

(by assumption).

Therefore,H j= s

i

! b

i

j= s

i

�

^

� ! b

i

�

^

� j= s

x

! b

x

(where b

x

= b

t

��

0

x

2

x

)
ontra-

di
ting the fa
t that [s

x

;

x

℄ is a
ounterexample.

This
ompletes the proof for the lemma.

Corollary 4.8. If a
ounterexample [s

x

;

x

℄ is appended to S, it is be
ause there

is no element in S
apturing a
lause in U(T) that is also
aptured by [s

x

;

x

℄.

Lemma 4.17. Every time the algorithm is about to make an equivalen
e query,

it is the
ase that every multi-
lause in S
aptures at least one of the
lauses of

U(T) and every
lause of U(T) is
aptured by at most one multi-
lause in S.

Proof. All multi-
lauses in
luded in S are full by Corollary 4.7. By
onstru
tion,

their
onsequents are non-empty so that we
an apply Corollary 4.2, and
on
lude

that all
ounterexamples in S
apture some
lause of U(T).

An indu
tion on the number of iterations of the main loop in line 2 of the learning

algorithm shows that no two di�erent multi-
lauses in S
apture the same
lause of

U(T). In the �rst loop the lemma holds trivially (there are no elements in S). By

the indu
tion hypothesis we assume that the lemma holds before a new iteration of

the loop. We will see that after
ompletion of that iteration of the loop the lemma

must also hold. Two
ases arise.

The minimised
ounterexample [s

x

;

x

℄ is appended to S. By Corollary 4.8, we

know that [s

x

;

x

℄ does not
apture any
lause in U(T) also
aptured by some

element [s

i

;

i

℄ in S. This, together with the indu
tion hypothesis, assures that the

lemma is satis�ed in this
ase.

LEARNING CLOSED HORN EXPRESSIONS 31

Some [s

i

;

i

℄ is repla
ed in S. We denote the updated sequen
e by S

0

and the

updated element in S

0

by [s

0

i

;

0

i

℄. The indu
tion hypothesis
laims that the lemma

holds for S. We have to prove that it also holds for S

0

as updated by the algorithm.

Assume it does not. The only possibility is that the new element [s

0

i

;

0

i

℄
aptures

some
lause of U(T), say 6= (s

t

! b

t

) also
aptured by some other element [s

j

;

j

℄

of S

0

, with j 6= i. The multi-
lause [s

0

i

;

0

i

℄ is a basi
 pairing of [s

x

;

x

℄ and [s

i

;

i

℄,

and hen
e it is also legal. Applying Lemma 4.15 we
on
lude that one of [s

x

;

x

℄ or

[s

i

;

i

℄
aptures 6= (s

t

! b

t

).

Suppose [s

i

;

i

℄
aptures 6= (s

t

! b

t

). This
ontradi
ts the indu
tion hypothesis,

sin
e both [s

i

;

i

℄ and [s

j

;

j

℄ appear in S and
apture 6= (s

t

! b

t

) in U(T).

Suppose [s

x

;

x

℄
aptures 6= (s

t

! b

t

). If j < i, then [s

x

;

x

℄ would have re-

�ned [s

j

;

j

℄ instead of [s

i

;

i

℄ (Lemma 4.16). Therefore, j > i. But then we

are in a situation where [s

j

;

j

℄
aptures a
lause also
overed by [s

i

;

i

℄. By

Corollary 4.6, all multi-
lauses in position i
over 6= (s

t

! b

t

) during the his-

tory of S. Consider the iteration in whi
h [s

j

;

j

℄ �rst
aptured 6= (s

t

! b

t

).

This
ould have happened by appending the
ounterexample [s

j

;

j

℄, whi
h
ontra-

di
ts Lemma 4.16 sin
e [s

i

;

i

℄ or an an
estor of it was
overing 6= (s

t

! b

t

) but

was not repla
ed. Or it
ould have happened by re�ning [s

j

;

j

℄ with a pairing

of a
ounterexample
apturing 6= (s

t

! b

t

). But then, by Lemma 4.16 again,

the element in position i should have been re�ned, instead of re�ning [s

j

;

j

℄.

4.10. Deriving the
omplexity bounds

Re
all that m

0

stands for the number of
lauses in the transformation U(T) and

that by Lemma 4.1, m

0

� mt

k

, where t (k, resp.) is the maximum number of terms

(variables, resp.) in any
lause in T . By Lemma 4.17 the number of
lauses in

U(T) bounds the number of elements in S, and therefore:

Corollary 4.9. The number of elements in S is bounded by m

0

.

What follows is a detailed a

ount of the number of queries made in every pro-

edure.

Lemma 4.18. If [s

x

;

x

℄ is a minimised
ounterexample, then, js

x

j+ j

x

j � st

a

.

Proof. By Corollary 4.4, there are a maximum of t terms in a minimised
oun-

terexample. There are a maximum of st

a

di�erent atoms built up from t terms.

Lemma 4.19. The algorithm makes O(m

0

st

a

) equivalen
e queries.

Proof. Noti
e that any set of atoms
ontaining t distin
t terms
an be generalised

at most t times. This is be
ause after generalising a term into a variable, it
annot

be further generalised. The sequen
e S has at most m

0

elements. The following

a
tions
an happen after re�ning a multi-
lause in S (possibly
ombined): either

(1) one atom is dropped from the ante
edent, or (2) an atom moves from ante
edent

to
onsequent, or (3) an atom is dropped from the
onsequent, or (4) some term

is generalised. This
an happen m

0

st

a

times for (1), m

0

st

a

times for (2), m

0

st

a

32 ARIAS AND KHARDON

times for (3), and m

0

t times for (4), that is m

0

(t+3st

a

) in total. We need m

0

extra

alls to add all the
ounterexamples. In total m

0

(1+ t+3st

a

), that is O(m

0

st

a

).

Lemma 4.20. The algorithm makes O(se

a+1

t

) membership queries during the

minimisation pro
edure.

Proof. To
ompute the �rst version of the full multi-
lause we need to test the

se

a

t

possible atoms built up from e

t

distin
t terms appearing in s

x

. Therefore, we

make se

a

t

initial
alls. Next, we note that the �rst version of

x

has at most se

a

t

atoms. The �rst loop (generalisation of terms) is exe
uted at most e

t

times, one for

every term appearing in the �rst version of s

x

. In every exe
ution, at most j

x

j � se

a

t

membership
alls are made. In this loop there are a total of se

a+1

t

alls. The se
ond

loop of the minimisation pro
edure is also exe
uted at most e

t

times, one for every

term in s

x

. Again, sin
e at most se

a

t

alls are made in the body on this se
ond loop,

the total number of
alls is bounded by se

a+1

t

. This makes a total of se

a

t

+2se

a+1

t

,

that is O(se

a+1

t

).

Lemma 4.21. Given a mat
hing, the algorithm makes at most st

a

membership

queries during the
omputation of a basi
 pairing.

Proof. The number of atoms in the
onsequent
 of a pairing of [s

x

;

x

℄ and

[s

i

;

i

℄ is bounded by the number of atoms in s

x

plus the number of atoms in

x

. By

Lemma 4.18, this is bounded by st

a

.

Lemma 4.22. The algorithm makes O(m

0

s

2

t

a

e

a+1

t

+ m

0

2

s

2

t

2a+k

) membership

queries.

Proof. The main loop is exe
uted as many times as equivalen
e queries are

made. In every loop, the minimisation pro
edure is exe
uted on
e and for every

element in S, a maximum of t

k

pairings are made.

This is:

sm

0

t

a

| {z }

#iterations

�f se

a+1

t

| {z }

minim:

+ m

0

|{z}

jSj

� t

k

|{z}

#pairings

� st

a

|{z}

pairing

g = O(m

0

s

2

t

a

e

a+1

t

+m

0

2

s

2

t

2a+k

):

We arrive to our main result.

Theorem 4.1. The algorithm exa
tly identi�es every
losed Horn expression

making O(m

0

st

a

) equivalen
e queries and O(m

0

s

2

t

a

e

a+1

t

+m

0

2

s

2

t

2a+k

) membership

queries. Furthermore, the running time is polynomial in m

0

2

+ s

2

+ t

k

+ t

a

+ e

a

t

.

We
on
lude that the
lasses RRHE, COHE and RRCOHE are learnable using

our algorithm. Sin
e by Lemma 4.1 we know that m

0

� mt

k

, we obtain:

Corollary 4.10. The algorithm exa
tly identi�es every
losed Horn expression

making O(mst

a+k

) equivalen
e queries and O(ms

2

t

a+k

e

a+1

t

+m

2

s

2

t

2a+3k

) member-

ship queries. Furthermore, the running time is polynomial in m

2

+s

2

+ t

k

+ t

a

+e

a

t

.

LEARNING CLOSED HORN EXPRESSIONS 33

5. FULLY INEQUATED CLOSED HORN EXPRESSIONS

Clauses in this
lass
an
ontain a new type of atom, that we
all inequation or

inequality and has the form t 6= t

0

, where both t and t

0

are terms. Inequated
lauses

may
ontain any number of inequalities in its ante
edent. Let s be a
onjun
tion

of atoms and inequations. Then, s

p

denotes the
onjun
tion of atoms in s and s

6=

the
onjun
tion of inequalities in s. That is s = s

p

^ s

6=

. We say s is
ompletely

inequated if s

6=

ontains all possible inequations between distin
t terms in s

p

, i.e.,

if s

6=

= ineq(s

p

). A
lause s! b is
ompletely inequated if s = ineq(s

p

[fbg)^ s

p

.

No inequalities are allowed in the
onsequent. Similarly, a multi-
lause [s;
℄ is

ompletely inequated if s = ineq(s

p

[
) ^ s

p

. A fully inequated Closed Horn

expression is a
onjun
tion of fully inequated
losed Horn
lauses.

Looking at the way the transformation U(T) des
ribed in Se
tion 4.1 is used

in the proof of
orre
tness, the natural question of what happens when the target

expression is already fully inequated (and T = U(T)) arises. As an example, take

the
lause human(father(x)) ^ human(mother(x)) ! human(x): The intended

meaning is
learly that x 6= faher(x) 6= mother(x), and hen
e this
lause is fully

inequated. We will see that the learning algorithm des
ribed in Se
tion 3 has to be

slightly modi�ed in order to a
hieve learnability of this
lass.

The �rst modi�
ation is in the minimisation pro
edure. It
an be the
ase that

after generalising or dropping some terms (as done in the two stages of the min-

imisation pro
edure), the result of the operation is not fully inequated. More pre-

isely, there may be super
uous inequalities that involve terms not appearing in

the atoms of the
ounterexample's ante
edent. These should be eliminated from

the
ounterexample, yielding a fully inequated minimised
ounterexample.

The se
ond (and last) modi�
ation is in the pairing pro
edure. Given a mat
hing

� and two multi-
lauses [s

x

;

x

℄ and [s

i

;

i

℄, its pairing [s;
℄ is
omputed in the new

algorithm as:

1. s

p

= lgg

j

�

(s

p

x

; s

p

i

)

2.
 = lgg

j

�

(s

p

x

;

i

) [lgg

j

�

(

x

; s

p

i

) [lgg

j

�

(

x

;

i

)

3. s = ineq(s

p

[
) [s

p

Noti
e that inequations in the original multi-
lauses [s

x

;

x

℄ and [s

i

;

i

℄ are ig-

nored. The pairing is
omputed only for the atomi
 information, and �nally the

fully inequated pairing is
onstru
ted by adding all the inequations needed. This

an be done safely be
ause the algorithm only deals with fully inequated
lauses.

The proof of
orre
tness is very similar to the one presented here. Complete details

and proof for the
ase of Range Restri
ted Horn Expressions
an be found in [1℄.

Theorem 5.1. The modi�ed algorithm identi�es fully inequated
losed Horn

expressions making O(mst

a

)
alls to the equivalen
e ora
le and O(ms

2

t

a

e

a+1

t

+

m

2

s

2

t

2a+k

) to the membership ora
le. Furthermore, the running time is polyno-

mial in m

2

+ s

2

+ t

k

+ t

a

+ e

a

t

.

Let the
lass FIRRHE be the
lass of fully inequated range restri
ted Horn

expressions, FICOHE the
lass of fully inequated
onstrained Horn expressions

34 ARIAS AND KHARDON

and FIRRCOHE their union. We
on
lude that the
lasses FIRRHE, FICOHE

and FIRRCOHE are learnable using the modi�ed algorithm.

6. CONCLUSIONS

The paper introdu
ed a new algorithm for learning
losed Horn expressions

(CHE) and established the learnability of fully inequated
losed Horn expressions

(FICHE). The stru
ture of the algorithm is similar to previous ones, but it uses

arefully
hosen operations that take advantage of the stru
ture of fun
tional terms

in examples. This in turn leads to an improvement of worst
ase bounds on the

number of queries required, whi
h is one of the main
ontributions of the paper.

The following table
ontains the results obtained in [11℄ for range restri
ted Horn

Expressions (RRHE) and in this paper for Closed Horn Expressions. This paper

extends [2℄ where similar bounds were obtained for RRHE.

Class EntEQ EntMQ

Result in [11℄ RRHE O(mst

t+a

) O(ms

2

t

t+a

e

a+1

t

+m

2

s

2

t

3t+2a

)

Our result CHE O(mst

k+a

) O(ms

2

t

k+a

e

a+1

t

+m

2

s

2

t

3k+2a

)

Our result FICHE O(mst

a

) O(ms

2

t

a

e

a+1

t

+m

2

s

2

t

k+2a

)

Noti
e that we signi�
antly improve previous results by removing the exponential

dependen
e of the number of queries on the number of terms. However, we still

remain exponential on the number of variables. The bounds are further improved for

the
ase of FICHE. This may be signi�
ant as in many
ases, while inequalities are

not expli
itly written, the intention is that di�erent terms denote di�erent obje
ts.

The redu
tion in the number of queries goes beyond worst
ase bounds. The

restri
tion that pairings are both basi
 and agree with the lgg table is quite strong

and redu
es the number of pairings and hen
e queries. This is not re
e
ted in

our analysis but we believe it will make a di�eren
e in pra
ti
e. Similarly, the

bound m

0

� mt

k

on jU(T)j is quite loose, as a large proportion of partitions will

be dis
arded if T in
ludes fun
tional stru
ture.

Another important di�eren
e is that the proof in [11℄ assumes that the number

of fun
tion symbols is �nite. Our proof holds even when the set of fun
tion symbols

is in�nite or unknown, as long as examples have �nite des
riptions.

It is interesting to
ompare this result to other similar e�orts in [9, 21, 3, 20, 19℄.

The results in [9, 21℄ rely on the fa
t that no
haining or self-resolution is possible

between rules. Thus subsumption and impli
ation are the same and it is easy

to know whi
h examples to
ombine in the generalisation pro
ess. The results

in [3, 20℄ allow re
ursion and
haining but assume the expressions are a
y
li
 in

terms of
haining order, and that an additional query is allowed whi
h indi
ates

this order; in addition [3℄ assumes
onstrained expressions and [20℄ assumes range

restri
ted expressions. So both results are
overed by our algorithm as spe
ial
ases.

On the other hand their
omplexity is lower than in our
ase. In parti
ular they

are polynomial in the number of variables whereas our algorithm is exponential.

It would be interesting to �nd out whether su
h redu
ed
omplexity is possible

without the use of additional query types. One way to explore this question is to

study the query
omplexity of the problem (ignoring
omputational
omplexity) by

LEARNING CLOSED HORN EXPRESSIONS 35

using the notion of
erti�
ates [8, 7℄. The result in [19℄ goes beyond
onstrained

lauses by allowing additional length bounded terms in
lause bodies, but uses

\subsumption-queries" to de
ide how to
ombine examples. If we allow su
h terms

in our setting we must in
lude them in the intermediate term set
urrently
aptured

by the set Atoms

P

([s;
℄). Unfortunately, several
ru
ial steps in our proof require

that this set does not use additional terms. It remains to be seen whether su
h a

generalisation is possible.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewer whose
omments helped improve our

omplexity results.

REFERENCES

1. M. Arias and R. Khardon. Learning Inequated Range Restri
ted Horn Expressions. Te
hni
al

Report EDI-INF-RR-0011, Division of Informati
s, University of Edinburgh, Mar
h 2000.

2. M. Arias and R. Khardon. A new algorithm for learning range restri
ted Horn expressions.

In Pro
eedings of the 10th International Conferen
e on Indu
tive Logi
 Programming, pages

21{39. Springer-Verlag, 2000. LNAI 1866.

3. Hiroki Arimura. Learning a
y
li
 �rst-order Horn senten
es from entailment. In Pro
eedings

of the International Conferen
e on ALT, Sendai, Japan, 1997. Springer-Verlag. LNAI 1316.

4. W. Cohen. PAC-learning re
ursive logi
 programs: EÆ
ient algorithms. Journal of Arti�
ial

Intelligen
e Resear
h, 2:501{539, 1995.

5. W. Cohen. PAC-learning re
ursive logi
 programs: Negative results. Journal of Arti�
ial

Intelligen
e Resear
h, 2:541{573, 1995.

6. M. Frazier and L. Pitt. Learning from entailment: An appli
ation to propositional Horn

senten
es. In Pro
eedings of the International Conferen
e on Ma
hine Learning, pages 120{

127, Amherst, MA, 1993. Morgan Kaufmann.

7. T. Hegedus. On generalized tea
hing dimensions and the query
omplexity of learning. In

Pro
eedings of the 8th Annual Conferen
e on Computational Learning Theory (COLT'95),

pages 108{117, New York, NY, USA, July 1995. ACM Press.

8. Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and Dawn Wilkins. How many

queries are needed to learn? Journal of the ACM, 43(5):840{862, September 1996.

9. Charles David Page Jr. Anti-uni�
ation in
onstraint logi
s: Foundations and appli
ations

to learnability in �rst-order logi
, to speed-up learning, and to dedu
tion. Te
hni
al Report

UIUCDCS-R-93-1820, University of Illinois at Urbana-Champaign, Department of Computer

S
ien
e, 1993.

10. R. Khardon. Learning fun
tion free Horn expressions. Ma
hine Learning, 37:241{275, 1999.

11. R. Khardon. Learning range restri
ted Horn expressions. In Pro
eedings of the Fourth Euro-

pean Conferen
e on Computational Learning Theory, pages 111{125, Nordkir
hen, Germany,

1999. Springer-verlag. LNAI 1572.

12. Roni Khardon. Learning Horn expressions with LogAn-H. In Pro
eedings of the International

Conferen
e on Ma
hine Learning, pages 471{478, 2000.

13. J.W. Lloyd. Foundations of Logi
 Programming. Springer Verlag, 1987.

14. S. Muggleton and C. Feng. EÆ
ient indu
tion of logi
 programs. In S. Muggleton, editor,

Indu
tive Logi
 Programming, pages 281{298. A
ademi
 Press, 1992.

15. S. Muggleton and L. De Raedt. Indu
tive logi
 programming: Theory and methods. The

Journal of Logi
 Programming, 19 & 20:629{680, May 1994.

16. S. Nienhuys-Cheng and R. De Wolf. Foundations of Indu
tive Logi
 Programming. Springer-

verlag, 1997. LNAI 1228.

17. G. D. Plotkin. A note on indu
tive generalization. Ma
hine Intelligen
e, 5:153{163, 1970.

18. L. De Raedt and M. Bruynooghe. An overview of the intera
tive
on
ept-learner and the-

ory revisor CLINT. In S. Muggleton, editor, Indu
tive Logi
 Programming, pages 163{192.

A
ademi
 Press, 1992.

36 ARIAS AND KHARDON

19. K. Rao and A. Sattar. Learning from entailment of logi
 programs with lo
al variables. In

Pro
eedings of the International Conferen
e on Algorithmi
 Learning Theory, Otzenhausen,

Germany, 1998. Springer-verlag. LNAI 1501.

20. C. Reddy and P. Tadepalli. Learning �rst order a
y
li
 Horn programs from entailment. In

International Conferen
e on Indu
tive Logi
 Programming, pages 23{37, Madison, WI, 1998.

Springer. LNAI 1446.

21. C. Reddy and P. Tadepalli. Learning Horn de�nitions: Theory and an appli
ation to planning.

New Generation Computing, 17:77{98, 1999.

22. G. Semeraro, F. Esposito, D. Malerba, and N. Fanizzi. A logi
 framework for the in
remental

indu
tive synthesis of datalog theories. In Pro
eedings of the International Conferen
e on

Logi
 Program Synthesis and Transformation (LOPSTR'97). Springer-Verlag, 1998. LNAI

1463.

23. E. Y. Shapiro. Algorithmi
 Program Debugging. MIT Press, Cambridge, MA, 1983.

