
Learning Closed Horn Expressions

1

Marta Arias and Roni Khardon

Eletrial Engineering and Computer Siene, Tufts University

161 College Avenue, Medford, MA 02155, USA

E-mail: fmarias,ronig�ees.tufts.edu

The paper studies the learnability of Horn expressions within the frame-

work of learning from entailment, where the goal is to exatly identify some

pre-�xed and unknown expression by making queries to membership and

equivalene orales. It is shown that a lass that inludes both Range Re-

strited Horn Expressions (where terms in the onlusion also appear in

the ondition of a Horn lause) and Constrained Horn Expressions (where

terms in the ondition also appear in the onlusion of a Horn lause) is

learnable. This extends previous results by showing that a larger lass is

learnable with better omplexity bounds. A further improvement in the

number of queries is obtained when onsidering the lass of Horn expres-

sions with inequalities on all syntatially distint terms.

Key Words: Computational learning theory, Indutive logi programming, Horn expres-

sions, algorithms, queries

1. INTRODUCTION

This paper onsiders the problem of learning an unknown �rst order expression

T (often alled target expression) from examples of lauses that T entails or does

not entail. This type of learning framework is known as learning from entailment.

Frazier & Pitt [6℄ formalised learning from entailment using equivalene queries and

membership queries and showed the learnability of propositional Horn expressions.

Generalising this result to the �rst order setting is of lear interest. Indeed, several

works have been done following this line [9, 3, 20, 19, 10, 11, 2℄ obtaining algorithms

that work for ertain subsets of Horn expressions.

Learning �rst order Horn expressions has beome a fundamental problem in In-

dutive Logi Programming [15℄. Theoretial results have shown that learning from

examples only is feasible for very restrited lasses [4℄ and that, in fat, learnabil-

ity beomes intratable when slightly more general lasses are onsidered [5℄. To

1

This work has been done at the University of Edinburgh supported by EPSRC Grant

GR/M21409, and at Tufts University supported by NSF Grant IIS-0099446.

1

2 ARIAS AND KHARDON

takle this problem, learners have been equipped with the ability to ask questions.

It is the ase that with this ability larger lasses an be learned. In this paper, the

questions that the learner is allowed to ask are membership and equivalene queries.

While our work is purely theoretial, there are systems that are able to learn using

equivalene and membership queries (MIS [23℄, CLINT [18℄, for example). Some

of the tehniques developed in this framework have been adapted for systems that

learn from examples only [21, 12℄.

We present an algorithm to learn ertain subsets of Horn expressions. The al-

gorithm is related to the ones in [10, 11℄, whih learn Range Restrited Horn ex-

pressions. The algorithms in [10, 11℄ and here use two main proedures. The

�rst, given a ounterexample lause, minimises the lause while maintaining it as

a ounterexample. The minimisation proedure used here is stronger than those in

[10, 11℄, resulting in a lause whih inludes a syntati variant of a target lause

as a subset. The seond proedure ombines two examples produing a new lause

that may be a better approximation for the target. While the algorithm in [10, 11℄

uses diret produts of models we use an operation based on the lgg (least general

generalisation [17℄). The use of lgg seems a more natural and intuitive tehnique to

use for learning from entailment, and it has been used before, both in theoretial

and applied work [3, 20, 19, 14℄. The lass of Closed Horn Expressions shown to be

learnable here, inludes both the lass of Range Restrited Horn Expressions, the

lass of Constrained Horn Expressions and their union

2

. In addition, the omplex-

ity of the algorithm is better than that of the algorithm in [10, 11℄.

We extend our results to the lass of Fully Inequated Closed Horn Expressions.

The main property of this lass is that it does not allow uni�ation of its terms.

To avoid uni�ation, every lause in this lass inludes in its anteedent a series

of inequalities between all its terms. With a minor modi�ation to the learning

algorithm, we are able to show learnability of the lass of fully inequated losed

Horn expressions. The more restrited nature of this lass allows for better bounds

to be derived.

The rest of the paper is organised as follows. Setion 2 gives some preliminary

de�nitions. The learning algorithm is presented in Setion 3 and proved orret

in Setion 4. The results are extended to the fully inequated ase in Setion 5.

Finally, Setion 6 ompares the results obtained in this paper with previous results

and inludes further disussion of the result and related work.

2. PRELIMINARIES

We onsider a subset of the lass of universally quanti�ed expressions in �rst

order logi. In the learning problem, a pre-�xed known and �nite signature of the

language is assumed. This signature S onsists of a �nite set of prediates P and a

�nite set of funtions F , both prediates and funtions with their assoiated arity.

Constants are funtions with arity 0. A set of variables x

1

; x

2

; x

3

; : : : is used to

onstrut expressions.

2

This extends preliminary work in [2℄, whih showed learnability of Range Restrited Horn

Expressions only.

LEARNING CLOSED HORN EXPRESSIONS 3

De�nitions of �rst order languages an be found in standard texts, e.g. [13℄. Here

we briey introdue the neessary onstruts. A variable is a term of depth 0. If

t

1

; : : : ; t

n

are terms, eah of depth at most i and one with depth preisely i and

f 2 F is a funtion symbol of arity n, then f(t

1

; :::; t

n

) is a term of depth i+ 1.

An atom is an expression p(t

1

; :::; t

n

) where p 2 P is a prediate symbol of arity

n and t

1

; :::; t

n

are terms. An atom is alled a positive literal. A negative literal is

an expression :l where l is a positive literal.

Let X be a term, or set of terms, or atom, or set of atoms. The set Terms(X)

is the set of terms and subterms appearing in X .

Let P be a set of prediates together with their arities, and X a term, or set of

terms, or atom, or set of atoms. The set Atoms

P

(X) is the set of atoms built from

prediate symbols in P (of the orret arity) and terms in Terms(X).

Example 2.1. Suppose P = fp=2; q=1g and r is a prediate of arity 1.

� Terms(f(x; g(a))) = fx; a; g(a); f(x; g(a))g

� Atoms

P

(r(f(1))) = fp(1; 1); p(1; f(1)); p(f(1); 1); p(f(1); f(1)); q(1); q(f(1))g

A lause is a disjuntion of literals where all variables are universally quanti�ed.

A Horn lause has at most one positive literal and an arbitrary number of negative

literals. A Horn lause :p

1

_ :::_:p

n

_ p

n+1

is equivalent to its impliational form

p

1

^ ::: ^ p

n

! p

n+1

. We all p

1

^ ::: ^ p

n

the anteedent and p

n+1

the onsequent

of the lause. A Horn lause is de�nite if it has exatly one positive literal.

A Range Restrited Horn lause s ! b is a de�nite Horn lause in whih every

term appearing in its onsequent also appears in its anteedent, possibly as a sub-

term of another term. That is, Terms(b) � Terms(s). A Range Restrited Horn

Expression is a onjuntion of Range Restrited Horn lauses.

A Constrained Horn lause s ! b is a de�nite Horn lause in whih every term

appearing in its anteedent also appears in its onsequent, possibly as a subterm

of another term. That is, Terms(s) � Terms(b). A Constrained Horn Expression

is a onjuntion of Constrained Horn lauses.

The truth value of �rst order expressions is de�ned relative to an interpretation I

of the prediates and funtion symbols in the signature S. An interpretation (also

alled struture or model) I inludes a domain D whih is a set of elements. For

eah funtion f 2 F of arity n, I assoiates a mapping from D

n

to D. For eah

prediate symbol p 2 P of arity n, I spei�es the truth value of p on n-tuples over

D. The extension of a prediate in I is the set of positive instantiations of the

prediate that are true in I .

Let p be an atom, I an interpretation and � a mapping of the variables in p to

objets in I . The positive literal p � � is true in I if it appears in the extension of I .

A negative literal is true in I if its negation is not.

A Horn lause C = p

1

^:::^p

n

! p

n+1

is true in a given interpretation I , denoted

I j= C if for any variable assignment � (a total funtion from the variables in C

into the domain elements of I), if all the literals in the anteedent p

1

�; :::; p

n

� are

true in I , then the onsequent p

n+1

� is also true in I . A Horn Expression T is true

in I , denoted I j= T , if all of its lauses are true in I . The expressions T is true in

I , I satis�es T , I is a model of T , and I j= T are equivalent.

4 ARIAS AND KHARDON

Let T

1

; T

2

be two Horn expressions. We say that T

1

implies T

2

, denoted T

1

j= T

2

,

if every model of T

1

is also a model of T

2

.

A multi-lause is a pair of the form [s; ℄, where both s and are sets of atoms

suh that s \ = ;; s is the anteedent of the multi-lause and is the onsequent.

Both are interpreted as the onjuntion of the atoms they ontain. Therefore, the

multi-lause [s; ℄ is interpreted as the logial expression

V

b2

s! b. An ordinary

lause C = s

! b

orresponds to the multi-lause [s

; fb

g℄.

Example 2.2. We represent multi-lauses using set notation: e.g., the multi-

lause [fp(x; f(a)); q(y)g; fr(a); r(f(a)g℄ is interpreted as the logial expression

(p(x; f(a)) ^ q(y)! r(a)) ^ (p(x; f(a)) ^ q(y)! r(f(a))):

The de�nition of the sets Atoms

P

and Terms is extended to inlude lauses and

multi-lauses as the input argument in the natural way. That is: Terms(s! b) =

Terms(s [fbg) and Terms([s; ℄) = Terms(s [). Similarly, Atoms

P

(s ! b) =

Atoms

P

(s [fbg) and Atoms

P

([s; ℄) = Atoms

P

(s [).

A multi-lause [s; ℄ is range restrited if Terms() � Terms(s); it is onstrained

if Terms(s) � Terms().

A logial expression T implies (or logially entails) a multi-lause [s; ℄ if it implies

all of its single lause omponents. That is, T j= [s; ℄ if T j=

V

b2

s! b.

The size of a term is the number of ourrenes of variables plus twie the number

of ourrenes of funtion symbols (inluding onstants). The size of an atom is

the sum of the sizes of the (top-level) terms it ontains plus 1. The size of a set of

atoms is the sum of sizes of atoms in it.

Let s

1

; s

2

be two sets of atoms. We say that s

1

subsumes s

2

(denoted s

1

� s

2

) if

and only if there exists a substitution � suh that s

1

� � � s

2

. We also say that s

1

is a generalisation of s

2

. Equivalently, s

2

is a instane of s

1

.

Let s be a set of atoms. Then ineq(s) is the set of all inequalities between

terms appearing in s. As an example, let s be the set fp(x; y); q(f(y))g with terms

fx; y; f(y)g. Then ineq(s) = fx 6= y; x 6= f(y); y 6= f(y)g also written as (x 6= y 6=

f(y)) for short.

Definition 2.1. A derivation of a lause C = A! a from a Horn expression T

is a �nite direted ayli graph G with the following properties. Nodes in G are

atoms possibly ontaining variables. The node a is the unique node of out-degree

zero. For eah node b in G, let Pred(b) be the set of nodes b

0

in G with edges from

b

0

to b. Then, for every node b in G, either b 2 A or Pred(b)! b is an instane of

a lause in T . A derivation G of C from T is minimal if no proper subgraph of G

is also a derivation of C from T . A minimal derivation G of a lause C = A ! a

from a Horn expression T is said to be trivial if all nodes b of G are ontained in

A [fag, otherwise it is nontrivial.

Theorem 2.1. Let T be any Horn expression and C be a Horn lause whih is

not a tautology. If T j= C, then there is a minimal derivation of C from T .

LEARNING CLOSED HORN EXPRESSIONS 5

Proof. As proved by the Subsumption Theorem for SLD-resolution (Theo-

rem 7.10 in [16℄), there is a SLD-resolution of C from T . By indution on the depth

of the SLD-resolution tree we an show how to transform any SLD-resolution into

a derivation graph of C from T . Therefore, there is a derivation graph of C from T

whih guarantees that there is a minimal one.

Definition 2.2. A lass C of Horn Expressions is losed if for every pair of

atoms b and b

0

, every set of atoms s and every Horn expression T 2 C, if b

0

is used

in a minimal derivation of s! b from T , then b

0

2 Atoms

P

(s! b).

Lemma 2.1. The following lasses are losed: RRHE, the lass of Range Re-

strited Horn Expressions, COHE the lass of Constrained Horn Expressions and

RRCOHE the lass RRHE [COHE.

Proof. For RRHE: if b

0

appears in any derivation of T j= s ! b, where

T is a range restrited Horn expression and s is a set of atoms, then obviously,

T j= s ! b

0

. T is range restrited and therefore b

0

is made out of terms in s only.

Thus, b

0

2 Atoms

P

(s) � Atoms

P

(s! b).

For COHE: onsider any minimal derivation of s! b from a onstrained Horn

expression T . If b

0

appears in the derivation, then, sine T is onstrained, b

0

must

be made out of terms in b only. Thus, b

0

2 Atoms

P

(b) � Atoms

P

(s! b).

For RRCOHE the property follows immediately sine RRCOHE is the disjoint

union of RRHE and COHE.

Notie that any expression in RRCOHE is either a range restrited Horn expres-

sion or a onstrained Horn expression. This is not the lass of expressions whose

lauses are either range restrited or onstrained. In the lass onsidered here we

do not allow expressions with mixed types of lauses.

Definition 2.3. A multi-lause [s; ℄ is orret w.r.t. a Horn expression T if

T j= [s; ℄. A multi-lause [s; ℄ is losed w.r.t. a Horn expression T if for all

b 2 Atoms

P

(s [) n s suh that T j= s ! b, b 2 . A multi-lause [s; ℄ is full if it

is orret and losed.

2.1. Most General Uni�er

Let � be a �nite set of expressions (here by \expressions" we mean terms or

atoms). A substitution � is alled a uni�er for � if � � � is a singleton. If there

exists a uni�er for �, we say that � is uni�able. The only expression in � � � will

also be alled a uni�er.

The substitution � is a most general uni�er (abbreviated to mgu) for � if � is

a uni�er for � and if for any other uni�er � there is a substitution suh that

� = �. Also, the only element in � � � will be alled a mgu of � if � is a mgu.

The disagreement set of a �nite set of expressions � is de�ned as follows. Loate

the leftmost symbol position at whih not all members of � have the same symbol,

6 ARIAS AND KHARDON

and extrat from eah expression in � the subexpression beginning at that symbol

position. The set of all these expressions is the disagreement set.

Example 2.3. � = fp(x; y; v); p(x; f(g(a)); x); p(x; f(z); f(a))g. Its disagree-

ment set is fy; f(g(a)); f(z)g.

Algorithm 1 (The Unifiation Algorithm).

1. Let � be the set of expressions to be uni�ed.

2. Set k to 0 and �

0

to ;, the empty substitution.

3. Repeat until � � �

k

is a singleton

4. Let D

k

be the disagreement set for � � �

k

.

5. If there exist x; t in D

k

s. t. x is a variable not ourring in t

6. Then set �

k+1

= �

k

� fx 7! tg.

7. Else report that � is not uni�able and stop.

8. Return �

k

.

Theorem 2.2 (Uni�ation Theorem). Let � be a �nite set of expressions. If

� is uni�able, then the Uni�ation Algorithm terminates and gives a mgu for �. If

� is not uni�able, then the Uni�ation Algorithm terminates and reports the fat

that � is not uni�able.

Proof. See [13℄.

2.2. Least General Generalisation

The algorithm proposed uses the least general generalisation or lgg operation

[17℄. This operation omputes a generalisation of two sets of literals. It works as

follows.

The lgg of two terms f(s

1

; :::; s

n

) and g(t

1

; :::; t

m

) is de�ned as the term

f(lgg(s

1

; t

1

); :::; lgg(s

n

; t

n

))

if f = g and n = m. Otherwise, it is a new variable x, where x stands for the lgg

of that pair of terms throughout the omputation of the lgg. This information is

kept in what we all the lgg table.

The lgg of two ompatible atoms p(s

1

; :::; s

n

) and p(t

1

; :::; t

n

) is the atom

p(lgg(s

1

; t

1

); :::; lgg(s

n

; t

n

)):

The lgg is only de�ned for ompatible atoms, that is, atoms with the same prediate

symbol and arity.

The lgg of two ompatible positive literals l

1

and l

2

is the lgg of the underlying

atoms. The lgg of two ompatible negative literals l

1

and l

2

is the negation of the

lgg of the underlying atoms. Two literals are ompatible if they share prediate

symbol, arity and sign.

LEARNING CLOSED HORN EXPRESSIONS 7

The lgg of two sets of literals s

1

and s

2

is the set

flgg(l

1

; l

2

) j (l

1

; l

2

) are two ompatible literals of s

1

and s

2

g :

It is important to note that all lggs share the same table.

Example 2.4. Let s

1

= fp(a; f(b)); p(g(a; x);); q(a)g.

Let s

2

= fp(z; f(2)); q(z)g.

Their lgg is lgg(s

1

; s

2

) = fp(X; f(Y)); p(Z; V); q(X)g.

The lgg table produed during the omputation of lgg(s

1

; s

2

) is

[a - z => X℄ (from p(a; f(b)) with p(z; f(2)))

[b - 2 => Y℄ (from p(a; f(b)) with p(z; f(2)))

[f(b) - f(2) => f(Y)℄ (from p(a; f(b)) with p(z; f(2)))

[g(a,x) - z => Z℄ (from p(g(a; x);) with p(z; f(2)))

[- f(2) => V℄ (from p(g(a; x);) with p(z; f(2)))

2.3. The Learning Model

We onsider the model of exat learning from entailment [6℄. In this model

examples are lauses. Let T be the target expression, H any hypothesis presented

by the learner and C any lause. An example C is positive for a target theory T

if T j= C, otherwise it is negative. The learning algorithm an make two types of

queries. An Entailment Equivalene Query (EntEQ) returns \Yes" if H = T and

otherwise it returns a lause C that is a ounter example, i.e., T j= C and H 6j= C or

vie versa. For an Entailment Membership Query (EntMQ), the learner presents

a lause C and the orale returns \Yes" if T j= C, and \No" otherwise. The aim

of the learning algorithm is to exatly identify the target expression T by making

queries to the equivalene and membership orales.

3. THE ALGORITHM

Before presenting the algorithm, we de�ne some operations. Suppose that the

lass C is losed. Suppose that H;T 2 C. Then we de�ne:

� TClosure

T

([s; ℄) = [s; fb 2 Atoms

P

(s [) n s j T j= s! bg℄

� HClosure

H

([s; ℄) = [fb 2 Atoms

P

(s [) j H j= s! bg ; ℄

� rhs

T

(s;) = fb 2 j T j= s! bg

The algorithm omputes these operations for the ase when T is the target expres-

sion and H is a hypothesis. In pratie, we do not know what the target expression

T is, but we an use the EntMQ orale to ompute TClosure

T

and rhs

T

. Sine

T always refers to the target expression, we omit the \

T

" subsript and write:

� TClosure([s; ℄) = [s; fb 2 Atoms

P

(s [) n s j EntMQ(s! b) = Y esg℄

� rhs(s;) = fb 2 j EntMQ(s! b) = Y esg

Notie that, in general, the omputation of HClosure might not be feasible.

However, in our ase, we will show that this an be done with a polynomial number

8 ARIAS AND KHARDON

of subsumption tests by forward haining. This is due to the fat that we only hek

for atoms in the polynomially bounded set Atoms

P

(s[) as potential onsequents.

We will inrementally onstrut the set of onsequents (CONS in the algorithm),

starting with the anteedent s. The algorithm is as follows:

Algorithm 2 (The HClosure(s;) Proedure).

1. CONS = s.

2. Repeat until no more atoms are added to CONS

3. For every atom b in Atoms

P

(s [) n CONS do

4. If lause CONS ! b is subsumed by a lause C 2 H

5. Then Set CONS = CONS [fbg.

6. Return [CONS; ℄

Lemma 3.1. Algorithm 2 omputes the set HClosure(s;).

Proof. Take any atom b 2 HClosure(s;). By Theorem 2.1, there is a deriva-

tion of s! b from H . The previous algorithm searhes through all possible losed

derivations, therefore it will eventually reah the node b in the orresponding deriva-

tion, and b will be inluded in the set CONS. Soundness of forward haining

guarantees that atoms not in HClosure(s;) are never added to the set CONS.

We �nally present our learning algorithm.

Algorithm 3 (The Learning Algorithm).

1. Set S to be the empty sequene and H to be the empty hypothesis.

2. Repeat until EntEQ(H) returns \Yes":

3. Minimise the ounterexample x - use alls to EntMQ

Let [s

x

;

x

℄ be the minimised ounterexample produed.

4. Find the �rst [s

i

;

i

℄ 2 S suh that there is a basi pairing [s; ℄ of

[s

i

;

i

℄ and [s

x

;

x

℄ satisfying:

(i) rhs(s;) 6= ; and

(ii) size(s) � size(s

i

) or (size(s) = size(s

i

) and size() � size(

i

))

5. If suh an [s

i

;

i

℄ is found

6. Then replae it by the multi-lause [s; rhs(s;)℄

7. Else append [s

x

;

x

℄ to S

8. Set H to

V

[s;℄2S

fs! b j b 2 g

9. Return H

The algorithm follows pretty muh the struture of the algorithm in [6℄ for the

propositional ase. It keeps a sequene S of representative multi-lauses. The

hypothesis H is generated from this sequene, and the main task of the algorithm

is to re�ne the ounterexamples in S in order to get a more aurate hypothesis

in eah iteration of the main loop (line 2) until hypothesis and target expression

oinide.

There are two basi operations on ounterexamples that need to be explained in

detail. These are minimisation (line 3), that takes a ounterexample as given by

LEARNING CLOSED HORN EXPRESSIONS 9

the equivalene orale and produes a positive, full ounterexample; and pairing

(line 4), that takes two ounterexamples and generates a series of andidate oun-

terexamples. The ounterexamples obtained by ombination of previous ones (by

pairing them) are the andidates to re�ne the sequene S.

3.1. Minimising the ounterexample

The minimisation proedure has to transform a ounterexample lause A ! a

as generated by the equivalene query orale into a multi-lause ounterexample

[s

x

;

x

℄ ready to be handled by the learning algorithm.

Algorithm 4 (The Minimisation Proedure).

1. Let A! a be the ounterexample obtained by the EntEQ orale.

2. Set [s

x

;

x

℄ to TClosure(HClosure([A; fag℄)).

3. For every funtional term t in s

x

[

x

, in dereasing order of size do

4. Let [s

0

x

;

0

x

℄ be the multi-lause obtained from [s

x

;

x

℄

after substituting all ourrenes of the term t

by a new variable x

t

5. If rhs(s

0

x

;

0

x

) 6= ; then set [s

x

;

x

℄ to [s

0

x

; rhs(s

0

x

;

0

x

)℄

6. For every term t in s

x

[

x

, in inreasing order of size do

7. Let [s

0

x

;

0

x

℄ be the multi-lause obtained after removing

from [s

x

;

x

℄ all those atoms ontaining t

8. If rhs(s

0

x

;

0

x

) 6= ; then set [s

x

;

x

℄ to [s

0

x

; rhs(s

0

x

;

0

x

)℄

9. Return [s

x

;

x

℄

Example 3.1. This example illustrates the behaviour of the minimisation pro-

edure. Parentheses are omitted; funtion f is unary. T onsists of the single lause

p(a; fx) ! q(x). We start with the ounterexample [p(a; f1); q(2); r(1) ! q(1)℄ as

obtained after step 2 of the minimisation proedure. In the third olumn of the

table, orret atoms in the onsequent appear with a box around them. If no atom

is orret, the multi-lause is not positive and the ounterexample is not updated.

[s

x

;

x

℄ After generalising term

[p(a; f1); q(2); r(1)! q(1)℄ f1 7! X [p(a;X); q(2); r(1)! q(1)℄

[p(a; f1); q(2); r(1)! q(1)℄ 1 7! X [p(a; fX); q(2); r(X)!

q(X)

℄

[p(a; fX); q(2); r(X)! q(X)℄ 2 7! Y [p(a; fX); q(Y); r(X)!

q(X)

℄

[p(a; fX); q(Y); r(X)! q(X)℄ a 7! Z [p(Z; fX); q(Y); r(X)! q(X)℄

[s

x

;

x

℄ After dropping term

[p(a; fX); q(Y); r(X)! q(X)℄ X [q(Y)!℄

[p(a; fX); q(Y); r(X)! q(X)℄ Y [p(a; fX); r(X)!

q(X)

℄

[p(a; fX); r(X)! q(X)℄ a [r(X)! q(X)℄

[p(a; fX); r(X)! q(X)℄ fX [r(X)! q(X)℄

[p(a; fX); r(X)! q(X)℄

10 ARIAS AND KHARDON

Notie that the minimised ounterexample is very similar to the target lause.

In fat, it is the ase that every minimised ounterexample ontains a syntati

variant of one of the target lauses (Lemma 4.10). However, it may still ontain

extra atoms that the minimisation proedure is unable to get rid of { like r(X) in

Example 3.1 { these will have to disappear in some other way: pairing.

3.2. Pairings

A ruial proess in the algorithm is how two ounterexamples are ombined into

a new one, hopefully yielding a better approximation of some target lause. The

operation proposed here uses pairings of lauses, based on the lgg.

We have two multi-lauses, [s

x

;

x

℄ and [s

i

;

i

℄ that need to be ombined. To do

so, we generate a series of mathings between the terms of s

x

[

x

and s

i

[

i

, and

any of these mathings will produe the andidate to re�ne the sequene S.

3.2.1. Mathings

A mathing is a set whose elements are pairs of terms t

x

� t

i

, where t

x

and t

i

are terms in s

x

[

x

and s

i

[

i

, respetively. Usually, we denote a mathing by

the Greek letter �. A mathing � should inlude all the terms in one of s

x

[

x

or s

i

[

i

, more formally: j�j = min(jTerms(s

x

[

x

)j ; jTerms(s

i

[

i

)j). We only

use 1-1 mathings, i.e., one a term has been inluded in the mathing it annot

appear in any other entry of the mathing.

Example 3.2. Let [s

x

;

x

℄ be [fp(a; b)g; fq(a)g℄ with terms fa; bg. Let [s

i

;

i

℄ be

[fp(f(1); 2)g; fq(f(1))g℄ with terms f1; 2; f(1)g. The 6 possible 1-1 mathings are:

�

1

= fa� 1; b� 2g �

3

= fa� 2; b� 1g �

5

= fa� f(1); b� 1g

�

2

= fa� 1; b� f(1)g �

4

= fa� 2; b� f(1)g �

6

= fa� f(1); b� 2g

An extended mathing is an ordinary mathing with an extra olumn added to

every entry of the mathing. This extra olumn ontains the lgg of every pair in

the mathing. The lggs are simultaneous, that is, they share the same table.

An extended mathing � is legal if every subterm of some term appearing as the

lgg of some entry, also appears as the lgg of some other entry of �. An ordinary

mathing is legal if its extension is.

Example 3.3. Parentheses are omitted as funtions f and g are unary. Let �

1

be fa� ; fa� b; ffa� fb; gffa� gffg and �

2

= fa� ; fa� b; ffa� fbg. The

mathing �

1

is not legal, sine the term fX is not present in its extension olumn

and it is a subterm of gffX , whih is present. The mathing �

2

is legal.

Extended �

1

Extended �

2

[a - => X℄ [a - => X℄

[fa - b => Y℄ [fa - b => Y℄

[ffa - fb => fY℄ [ffa - fb => fY℄

[gffa - gff => gffX℄

LEARNING CLOSED HORN EXPRESSIONS 11

Our algorithm onsiders yet a more restrited type of mathing. A basi math-

ing � is a 1-1, legal mathing between two multi-lauses [s

x

;

x

℄ and [s

i

;

i

℄. This

operation is asymmetri and the order in whih the arguments is given is rele-

vant. It is only de�ned if the number of distint terms in [s

x

;

x

℄ (�rst argument)

is smaller or equal than the number of distint terms in [s

i

;

i

℄ (seond argument).

It restrits how the funtional struture of the terms is mathed. More formally, if

entry f(t

1

; :::; t

n

) � t 2 �, then t = f(r

1

; :::; r

n

) and t

i

� r

i

2 � for all i = 1; :::; n.

As we show below, a basi mathing maps all variables in [s

x

;

x

℄ to terms in [s

i

;

i

℄

and then adds the remaining entries following the funtional struture of the terms

in [s

x

;

x

℄. Therefore an entry [x - f(y)℄ might be inluded in a basi pairing

but an entry [f(y) - x℄ annot (terms on the left belong to [s

x

;

x

℄, terms on the

right to [s

i

;

i

℄).

The following proedure shows how to onstrut basi mathings between multi-

lauses [s

x

;

x

℄ and [s

i

;

i

℄.

Algorithm 5 (How to Construt Basi Mathings).

1. Math every variable in s

x

[

x

to a di�erent term in s

i

[

i

.

Every possibility will potentially yield to a basi mathing

between [s

x

;

x

℄ and [s

i

;

i

℄

2. Complete all potential basi mathings by adding the funtional

terms in s

x

[

x

to the basi mathings as follows:

3. For every potential basi mathing reated in step 1 do

4. Consider all funtional terms in s

x

[

x

in an upwards fashion,

beginning with simpler terms:

5. For every term f(t

1

; :::; t

n

) in s

x

[

x

suh that all

[t

i

� r

i

℄ (with i = 1; :::; n) appear in the basi

mathing already do

6. Add a new entry [f(t

1

; :::; t

n

)� f(r

1

; :::; r

n

)℄

7. If f(r

1

; :::; r

n

) does not appear in s

i

[

i

or the term

f(r

1

; :::; r

n

) has been used already

8. Then disard the mathing

Example 3.4. Let s

x

[

x

ontain the terms fa; x; fxg and s

i

[

i

the terms

fa; 1; 2; f1g. No parentheses for funtions are written. The algorithm starts by

mathing variables in s

x

[

x

to terms in s

i

[

i

. Then, it mathes funtional terms

in s

x

[

x

using the onstraints desribed in the proedure above. This omputation

is desribed in the table below.

Terms Mathing 1 Mathing 2 Mathing 3 Mathing 4

x [x - a℄ [x - 1℄ [x - 2℄ [x - f1℄

a NO! [a - a℄ [a - a℄ [a - a℄ [a - a℄

fx DISCARDED [fx - f1℄ NO! [fx - f2℄ NO! [fx - ff1℄

DISCARDED OK DISCARDED DISCARDED

The table is interpreted as follows. In the �rst olumn we have the terms in s

x

[

x

as how they would be onsidered by our algorithm. In the olumns thereafter, we

12 ARIAS AND KHARDON

have all potential mathings. The last row indiates whih of the mathings has

been disarded. The entries on top of the \OK" mathings ontain the mathing's

pairs.

Notie that we have only 1 basi mathing between the set of terms fa; x; fxg

and fa; 1; 2; f1g. Compare this with the 24 di�erent 1-1 mathings that would be

onsidered by previous algorithms. This di�erene grows with the omplexity of

the funtional struture in the examples.

Lemma 3.2. The proedure desribed above �nds all basi mathings between the

two input multi-lauses and only basi mathings are produed.

Proof. First, we will show that every mathing onstruted by the proedure is

basi. It is 1-1 beause after step 1 the mathings are 1-1, and the new pairs added

in step 2 are heked not to be inluded in the mathings already. It is legal beause

only terms whih have all of its subterms inluded in the mathing are added. It is

basi beause funtional struture is respeted when adding a new pair.

Seondly, we will show that every basi mathing will be found by the proe-

dure. First notie that mathings inluding the ombination of a pair [funtional

term in s

x

[

x

- variable in s

i

[

i

℄ is not permitted, sine subterms of the fun-

tional term in s

x

have to be inluded in the mathing and they would not have any

possible legal term to be mathed to beause a variable has no subterms. There-

fore, the only possibility involving variables is [variable in s

x

- term in s

i

℄. All

these are found in step 1 of the proedure and appropriately ompleted in step 2.

One of the key points of our algorithm lies in reduing the number of mathings

needed to be heked by ruling out some of the andidate mathings that do not

satisfy the restritions imposed. By doing so we avoid testing too many pairings

and hene avoid making unneessary alls to the orales. One of the restritions has

already been mentioned, it onsists in onsidering basi pairings only, as opposed to

onsidering every possible mathing. This redues the t

t

possible distint mathings

to only t

k

distint basi pairings. Notie that there are a maximum of t

k

basi

mathings between [s

x

;

x

℄ with k variables and [s

i

;

i

℄ with t terms, sine we only

ombine variables of s

x

with terms in s

i

. The other restrition on the andidate

mathing onsists in the fat that every one of its entries must appear in the original

lgg table, as we will see in the next setion.

3.2.2. Pairings

Pairing is an operation that takes two multi-lauses and a mathing between its

terms and produes another multi-lause. We say that the pairing is indued by

the mathing it is fed as input. A legal pairing is a pairing for whih the induing

mathing is legal; a basi pairing is one for whih the induing mathing is basi.

The anteedent s of the pairing is omputed as the lgg of s

x

and s

i

restrited to

the mathing � induing it; we denote this by lgg

j

�

(s

x

; s

i

). An atom is inluded

in the pairing only if all of its top-level terms appear as entries in the extended

mathing. This restrition is quite strong in the sense that, for example, if an atom

p(f(x)) appears in both s

x

and s

i

then their lgg p(f(x)) will not be inluded unless

LEARNING CLOSED HORN EXPRESSIONS 13

the entry [f(x) - f(x) => f(x)℄ appears in the mathing. In ase [x - x =>

x℄ appears but [f(x) - f(x) => f(x)℄ does not, the atom p(f(x)) is ignored.

We only onsider mathings that are subsets of the lgg table.

The onsequent of the pairing is omputed as the union of the sets lgg

j

�

(s

x

;

i

),

lgg

j

�

(

x

; s

i

) and lgg

j

�

(

x

;

i

). Note that in the onsequent all the possible lggs of

pairs among fs

x

;

x

g and fs

i

;

i

g are inluded exept lgg

j

�

(s

x

; s

i

), whih onstitutes

the anteedent.

When omputing any of the lggs, the same table is used. That is, the same pair

of terms will be bound to the same expression in any of the four possible lggs that

are omputed in a pairing. The paring between [s

x

;

x

℄ and [s

i

;

i

℄ indued by � is

omputed as follows:

Algorithm 6 (The Pairing Proedure).

1. Set s to lgg

j

�

(s

x

; s

i

)

2. Set to lgg

j

�

(s

x

;

i

) [lgg

j

�

(

x

; s

i

) [lgg

j

�

(

x

;

i

)

3. Return [s; ℄

Example 3.5. The table below desribes two examples. Both examples have the

same terms as in Example 3.4, so there is only one basi mathing. Ex. 3.5.1 shows

how to ompute a pairing. Ex. 3.5.2 shows that a basi mathing may be rejeted if

it does not agree with the lgg table (entries [x - 1 => X℄ and [fx - f1 => fX℄

do not appear in the lgg table).

Example 3.5.1 Example 3.5.2

s

x

fp(a; fx)g fp(a; fx)g

s

i

fp(a; f1); p(a; 2)g fq(a; f1); p(a; 2)g

lgg(s

x

; s

i

) fp(a; fX); p(a; Y)g fp(a; Y)g

lgg table [a - a => a℄ [a - a => a℄

[x - 1 => X℄ [fx - 2 => Y℄

[fx - f1 => fX℄

[fx - 2 => Y℄

basi � [a-a=>a℄ [a-a=>a℄

[x-1=>X℄ [x-1=>X℄

[fx-f1=>fX℄ [fx-f1=>fX℄

lgg

j

�

(s

x

; s

i

) fp(a; fX)g PAIRING REJECTED

As the examples demonstrate, the requirement that the mathings are both ba-

si and omply with the lgg table is quite strong. The more struture examples

have, the greater the redution in possible pairings (and hene queries) is, sine

that struture needs to be mathed. While it is not possible to quantify this ef-

fet without introduing further parameters, we expet this to be a onsiderable

improvement in pratie.

A note for potential implementations. In pratie, when trying to onstrut

basi pairings between s

x

and s

i

it is better to onsider as entries for the mathing

14 ARIAS AND KHARDON

those entries appearing in the lgg table only. That is, when ombining multi-lauses

[s

x

;

x

℄ and [s

i

;

i

℄, one would �rst ompute the lgg(s

x

; s

i

) and reord the lgg table.

The next step would be to onstrut basi pairings using the entries in the lgg

table. Instead of onsidering any pair between terms of s

x

and s

i

, the hoie would

be restrited to those pairs of terms present in the lgg table. The advantage of

this method is that subsets of the lgg table that onstitute a basi mathing are

systematially onstruted. This implies that there is no need to hek whether a

given basi mathing agrees with the lgg table and only subsets of the lgg table

are generated. This onsideration is not reeted in the bounds for the worst ase

analysis. However, it should onstitute an important speedup in pratie.

4. PROOF OF CORRECTNESS

Before going into the details of the proof of orretness, we desribe the trans-

formation U(T) performed on a target expression T . It extends the transformation

desribed in [10℄ (where expressions were funtion-free) and it serves analogous

purposes.

4.1. Transforming the target expression

This transformation is never omputed by the learning algorithm; it is only used

in the analysis of the proof of orretness. The transformation introdues new

lauses and adds some inequalities to every lause's anteedent. This avoids uni�a-

tion of terms in the transformed lauses. Related work in [22℄ also uses inequalities

in lauses, although the learning algorithm and approah are ompletely di�erent.

The idea is to reate from every lause C in T the set of lauses U(C). Every

lause in U(C) orresponds to the original lause C with its terms uni�ed in a

unique way, di�erent from every other lause in U(C). Every possible uni�ation

of terms of C are overed by one of the lauses in U(C). The lauses in U(C) will

only be satis�ed if the terms are uni�ed in exatly that way.

Algorithm 7 (The Transformation Algorithm).

1. Set U(T) to be the empty expression

2. For every lause C = s

! b

in T do

3. For every partition of Terms(C) � = f�

1

; �

2

; :::; �

l

g do

4. Let A

�

be the set of atoms fA(t

1

; :::; t

l

) j 8i : 1 � i � l : t

i

2 �

i

g

5. Let �

�

be an mgu of A

�

.

6. If no mgu exists or there are �

i

6= �

j

s.t. �

i

� �

�

= �

j

� �

�

7. Then disard the partition

8. Else

9. Set U

�

(C) = ineq(C � �); s

� � ! b

� �

10. Set U(T) = U(T) ^ U

�

(C)

11. Return U(T).

We onstrut U(T) from T by onsidering every lause separately. For a lause

C in T we generate a set of lauses U(C). To do that, we onsider all par-

titions of the set of terms in Terms(C); eah suh partition, say �, an gen-

erate a lause of U(C), denoted U

�

(C). Therefore, U(T) =

V

C2T

U(C) and

LEARNING CLOSED HORN EXPRESSIONS 15

U(C) =

V

�2V alidPartitions(Terms(C))

U

�

(C). The set V alidPartitions(Terms(C))

aptures those partitions for whih a simultaneous uni�er of all of its lasses exists

and partitions whose representatives are all di�erent. The use of A

�

provides the

simultaneous mgu; uniqueness of representatives is tested on line 6 in the transfor-

mation algorithm. We all a representative of a lass �

i

the only element in �

i

��

�

,

where �

�

is a mgu for the set A

�

as desribed in the algorithm above.

Example 4.1. Let C be p(f(x); f(y); g(z)) ! q(x; y; z): The terms appearing

in C are fx; y; z; f(x); f(y); g(z)g. We onsider some possible partitions:

� When � = fx; yg; fzg; ff(x); f(y)g; fg(z)g, then

A

�

=

8

>

>

<

>

>

:

A(x; z; f(x); g(z))

A(x; z; f(y); g(z))

A(y; z; f(x); g(z))

A(y; z; f(y); g(z))

A mgu for A

�

is �

�

= fy 7! xg. Therefore,

U

�

(C) = (x 6= z 6= f(x) 6= g(z)); p(f(x); f(x); g(z))! q(x; x; z):

� When �

0

= fx; y; zg; ff(x); g(z)g; ff(y)g, then

A

�

0

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

A(x; f(x); f(y))

A(x; g(z); f(y))

A(y; f(x); f(y))

A(y; g(z); f(y))

A(z; f(x); f(y))

A(z; g(z); f(y))

There is no mgu for the set A

�

0

, therefore this partition does not ontribute to the

transformation U(C).

� When �

00

= fx; yg; fzg; ff(x)g; ff(y)g; fg(z)g, then

A

�

00

=

�

A(x; z; f(x); f(y); g(z))

A(y; z; f(x); f(y); g(z))

A mgu for A

�

00

is �

�

00

= fy 7! xg. However, this partition is disarded beause the

representatives for lasses �

3

and �

4

oinide: �

3

� �

�

= ff(x)g = �

4

� �

�

. Notie

that the partition � overs the ase when the terms f(x) and f(y) are uni�ed

into the same term, so adding this lause would introdue repeated lauses in the

transformation.

We write the fully inequated lause \ineq(s

t

! b

t

); s

t

! b

t

" as \6= (s

t

! b

t

)".

The following fats hold for T and its transformation U(T).

Lemma 4.1. If an expression T has m lauses, then the number of lauses in its

transformation U(T) is at most mt

k

, where t (k, resp.) is the maximum number of

di�erent terms (variables, resp.) in any lause in T .

16 ARIAS AND KHARDON

Proof. It suÆes to see that any lause C produes at most t

k

lauses in U(C).

We will show that if � and �

0

are two partitions that are not disarded by the

transformation algorithm and �

�

= �

�

0

, then � = �

0

. Suppose, then, that � and

�

0

are two suessful partitions suh that �

�

= �

�

0

. Let t and t

0

be two distint

terms of C in the same lass in �. Notie that sine �

�

is a uni�er for A

�

, t and

t

0

have the same representative. Therefore, these two terms have to fall into the

same lass in �

0

(otherwise �

0

would be rejeted). Sine the same argument also

holds in the opposite diretion (i.e. from �

0

to �) we onlude that for all terms

t; t

0

of C, t and t

0

are plaed in the same lass in � if and only they are plaed in

the same lass in �

0

. Hene, � = �

0

. Finally, the bound follows sine there are at

most t

k

substitutions mapping the at most k variables into the at most t terms.

Lemma 4.2. T j= U(T).

Proof. To see this, notie that every lause in U(T) is subsumed by the lause in

T that originated it.

Corollary 4.1. If U(T) j= C, then T j= C. Also, if U(T) j= [s; ℄, then

T j= [s; ℄.

However, the inverse impliation U(T) j= T of Lemma 4.2 does not hold. To see

this, onsider the following example.

Example 4.2. We present an expression T , its transformation U(T) and an

interpretation I suh that I j= U(T) but I 6j= T . The expression T is fp(a; f(a))!

q(a)g and its transformation U(T) = f(a 6= f(a)); p(a; f(a))! q(a)g. The interpre-

tation I has domain D

I

= f1g; the only onstant a = 1; the only funtion f(1) = 1

and the extension ext(I) = fp(1; 1)g.

I 6j= T beause p(a; f(a))

under I

= p(1; 1) 2 ext(I) but q(a)

under I

= q(1) 62

ext(I).

I j= U(T) beause inequality (a 6= f(a))

under I

= (1 6= 1) is false and therefore

the anteedent of the lause is falsi�ed. Hene, the lause is satis�ed.

4.2. Some de�nitions

During the analysis, s will stand for the ardinality of P , the set of prediate

symbols in the language; a for the maximal arity of the prediates in P ; k for the

maximum number of distint variables in a lause of T ; t for the maximum number

of distint terms in a lause of T ; e

t

for the maximum number of distint terms in

a ounterexample; m for the number of lauses of the target expression T ; m

0

for

the number of lauses of the transformation of the target expression U(T).

Definition 4.1. A multi-lause [s; ℄ overs a lause 6= (s

t

! b

t

) if there is a

mapping � from variables in s

t

[fb

t

g into terms in Terms(s[) suh that s

t

�� � s,

ineq(s

t

[fb

t

g) � � � ineq(s [) and b

t

� � 2 Atoms

P

(s [). Equivalently, we say

that 6= (s

t

! b

t

) is overed by [s; ℄.

LEARNING CLOSED HORN EXPRESSIONS 17

The ondition ineq(s

t

[fb

t

g) � � � ineq(s[) establishes that the substitution �

is non-unifying, i.e., it does not unify terms in s

t

! b

t

in the sense that two distint

terms in s

t

! b

t

will remain distint after applying the substitution �.

Definition 4.2. A multi-lause [s; ℄ aptures a lause 6= (s

t

! b

t

) if there is a

mapping � from variables in s

t

into terms in s suh that 6= (s

t

! b

t

) is overed by

[s; ℄ via � and b

t

� � 2 . Equivalently, we say that 6= (s

t

! b

t

) is aptured by [s; ℄.

4.3. Brief desription of the proof of orretness

It is lear that if the algorithm stops, then the returned hypothesis is orret.

Therefore the proof fouses on assuring that the algorithm �nishes. To do so, a

bound is established on the length of the sequene S. That is, only a �nite number

of ounterexamples an be added to S and every re�nement of an existing multi-

lause redues its size, and hene termination is guaranteed.

To bound the length of the sequene S the following ondition is proved. Every

element in S aptures some lause of U(T) but no two distint elements of S apture

the same lause of U(T) (Lemma 4.17). The bound on the length of S is therefore

m

0

, the number of lauses of the transformation U(T).

To see that every element in S aptures some lause in U(T), it is shown

that all ounterexamples in S are full multi-lauses w.r.t. the target expression

T (Lemma 4.7) and that any full multi-lause must apture some lause in U(T)

(Corollary 4.2).

To see that no two distint elements of S apture the same lause of U(T), two

important properties are established in the proof. Lemma 4.16 shows that if a oun-

terexample [s

x

;

x

℄ aptures some lause of U(T) whih is overed by some [s

i

;

i

℄

then the algorithm will replae [s

i

;

i

℄ with one of their basi pairings. Lemma 4.15

shows that a basi pairing annot apture a lause not aptured by either of the

original lauses. These properties are used in Lemma 4.17 to prove uniqueness of

aptured lauses.

One the bound on S is established, we derive our �nal theorem by arefully

ounting the number of queries made to the orales in every proedure. We proeed

now with the analysis in detail.

4.4. Properties of substitutions

Our proof of orretness relies partly on some basi properties of substitutions.

Here we list all of the properties used. However, they might not be expliitly

referened in the proof.

Let � (and subsripted variations of it) be substitutions, S and s two sets of

atoms and �

N

a non-unifying substitution (w.r.t. s ! b). With a non-unifying

substitution (w.r.t. some expression �) we mean that if t; t

0

are two distint terms

in �, then the terms t � �

N

and t

0

� �

N

are distint terms as well.

Lemma 4.3.

1. If b 2 s, then b � � 2 s � �.

2. If b 62 s, then b � �

N

62 s � �

N

.

18 ARIAS AND KHARDON

3. If b 2 S n s, then b � � 2 S � � n s � � unless b � � 2 s � �.

4. If b 2 S n s, then b � �

N

2 S � �

N

n s � �

N

.

5. If � = (�

1

� �

2

) and t � � 6= t

0

� �, then t � �

1

6= t

0

� �

1

.

6. If T j= s! b, then T j= s � � ! b � �.

Proof. We prove some of the properties. For Property 2., suppose that b 62 s.

The substitution �

N

is non-unifying for s and b, therefore, distint terms in b

remain distint after applying �

N

. Therefore we an reverse �

N

, and we on-

lude that if b � �

N

2 s � �

N

then b 2 s. Hene, b � �

N

62 s � �

N

. Property 3. is

straightforward, and with Property 2., it implies that Property 4. holds. For Prop-

erty 5., notie that if t ��

1

= t

0

��

1

, then � annot distinguish the terms t and t

0

.

4.5. Properties of full multi-lauses

The next two lemmas use properties of derivation graphs to improve over the

model onstrution argument given in a preliminary version of the paper [2℄ whih

only holds for Range Restrited expressions.

Lemma 4.4. If [s; ℄ is subsumed by a lause C, then [s; ℄ aptures some lause

in U(C).

Proof. By assumption, C = s

! b

subsumes [s; ℄. That is, there is a substi-

tution � suh that s

� � � s and b

� � 2 . To see whih lause in U(C) is aptured

by [s; ℄ onsider the partition � de�ned by the way terms in s

[fb

g are uni�ed

by the substitution �. More preisely, two distint terms t; t

0

appearing in s

[fb

g

fall into the same lass of � if and only if t �� = t

0

��. The proof proeeds by arguing

that the lause U

�

(C) appears in U(C) and that [s; ℄ aptures U

�

(C).

We observe that � is a uni�er for A

�

= fA(t

1

; :::; t

l

) j 8i : 1 � i � l : t

i

2 �

i

g.

Thus, a mgu �

�

exists. Therefore, � = �

�

�

^

� for some substitution

^

�. The trans-

formation proedure rejets a partition � when some of the following onditions

hold. Either A

�

is not uni�able (however, we have seen it is) or the representa-

tives of two distint lasses are equal. The seond ondition does not hold beause

�

i

� �

�

= �

j

� �

�

(with i 6= j) implies �

i

� � = �

j

� �, whih is not true by the way �

was onstruted.

Finally, we show that [s; ℄ aptures U

�

(C) = (6= (s

t

! b

t

)) via

^

�. Notie that

s

� �

�

= s

t

and b

� �

�

= b

t

. We need to hek (1) s

t

�

^

� � s, (2) ineq(s

t

[fb

t

g) �

^

� � ineq(s [) and (3) b

t

�

^

� 2 . Condition (1) is easy: s

t

�

^

� = s

� �

�

�

^

� =

s

� � � s by hypothesis. For (2), let t; t

0

be two di�erent terms in s

t

[fb

t

g. It

is suÆient to hek that t �

^

�; t

0

�

^

� are also di�erent terms (i.e.,

^

� does not unify

them). Let t

; t

0

be the two terms in C suh that t

� �

�

= t and t

0

� �

�

= t

0

.

Sine t 6= t

0

, it follows that t

; t

0

belong to a di�erent lass of � (otherwise �

�

would have uni�ed them). Therefore, by onstrution, t

� � 6= t

0

� �. Equivalently,

t

��

�

�

^

� 6= t

0

��

�

�

^

� and hene t �

^

� 6= t

0

�

^

� as required. Condition (3) is like (1).

Lemma 4.5. If a multi-lause [s; ℄ is orret for some losed target expression

T , 6= ; and it is losed w.r.t. T , then some lause of U(T) must be aptured by

[s; ℄.

LEARNING CLOSED HORN EXPRESSIONS 19

Proof. Fix any b 2 . Clearly, T j= s ! b (sine we have assumed [s; ℄

orret). Consider a minimal derivation graph G of s ! b from T . By Theo-

rem 2.1 suh a graph exists. We start with atom b in the graph and onsider

Pred(b), the set of atoms that have an edge ending at b. If any of the atoms

b

0

in Pred(b) does not appear in s, then we take b

0

as our next b. Notie that

b

0

62 s implies b

0

2 , sine [s; ℄ is losed. We iterate until we �nd an atom

b

0

2 suh that Pred(b

0

) � s. By onstrution of derivation graphs, the lause

Pred(b

0

) ! b

0

must be an instane of some lause C in T . Equivalently, C sub-

sumes Pred(b

0

)! b

0

and therefore it also subsumes [s; ℄ beause Pred(b

0

) � s and

b

0

2 . Using Lemma 4.4 we onlude that some lause in U(T) is aptured by

[s; ℄.

Corollary 4.2. If a multi-lause [s; ℄ is full w.r.t. some target expression T

and 6= ;, then some lause of U(T) must be aptured by [s; ℄.

Lemma 4.6. If [s; ℄ aptures some lause of U(T), then rhs(s;) 6= ;.

Proof. The fat that [s; ℄ aptures some lause of U(T) implies that there is a

lause s

! b

in T and a substitution � suh that s

� � � s and b

� � 2 . Clearly,

T j= s

! b

j= s

� � ! b

� � and hene the atom b

� � 2 survives the rhs

operation.

Corollary 4.3. If [s; ℄ is a full multi-lause w.r.t. T and 6= ;, then rhs(s;) 6=

;.

4.6. Properties of minimised multi-lauses

This setion inludes properties of minimised multi-lauses as produed by the

minimisation proedure. Throughout the proof, we will refer to the minimised

multi-lause as [s

x

;

x

℄.

Lemma 4.10 shows that every minimised ounterexample ontains a syntati

variant of some lause in U(T), exluding inequalities. This is an important prop-

erty and it is responsible for one of the main improvements in the bounds.

Definition 4.3. A multi-lause [s; ℄ is a positive ounterexample for some

target expression T and some hypothesis H if T j= [s; ℄, 6= ; and for all atoms

b 2 , H 6j= s! b.

Lemma 4.7. Every minimised [s

x

;

x

℄ is full w.r.t. the target expression T .

Proof. We proeed by indution on the updates of [s

x

;

x

℄ during omputation of

the minimisation proedure. Our base ase is the �rst version of the ounterexample

[s

x

;

x

℄ as produed by step 2 of the algorithm. This multi-lause is full, sine it is

the output of funtion TClosure that produes full multi-lauses by de�nition.

20 ARIAS AND KHARDON

To see that the �nal multi-lause is orret it suÆes to observe that every time

the andidate multi-lause has been updated, the onsequent part is omputed as

the output of the proedure rhs. Therefore, it must be orret.

To see that the �nal multi-lause is losed, we prove �rst that after generalising

a term the resulting ounterexample is losed. Let [s

x

;

x

℄ be the multi-lause

before generalising t and [s

0

x

;

0

x

℄ after. Let the substitution �

t

be fx

t

7! tg. Then,

s

0

x

� �

t

= s

x

and

x

=

0

x

� �

t

, beause x

t

is a new variable that does not appear in

[s

x

;

x

℄. By way of ontradition, suppose that some atom b 2 Atoms

P

(s

0

x

[

0

x

)ns

0

x

suh that T j= s

0

x

! b is not in

0

x

. Notie that the substitution �

t

is non-unifying

w.r.t. s

0

x

[

0

x

, and therefore using properties 2. and 4. in Lemma 4.3 we onlude

that b � �

t

2 Atoms

p

(s

x

[

x

) n s

x

and b � �

t

62

x

. Sine T j= s

x

! b � �

t

, this

ontradits our (impliit) indution hypothesis stating that [s

x

;

x

℄ is losed, sine

the atom b � �

t

would be missing. Hene, any ounterexample [s

x

;

x

℄ after step 3 is

losed.

We will show now that after dropping some term t the multi-lause still remains

losed. Again, let [s

x

;

x

℄ be the multi-lause before removing t and [s

0

x

;

0

x

℄ after re-

moving it. It is lear that s

0

x

� s

x

and

0

x

�

x

sine both have been obtained by only

removing atoms. By the indution hypothesis, the only atoms that ould be missing

are atoms in

x

n

0

x

and s

x

ns

0

x

. Sine for the losure of [s

0

x

;

0

x

℄ we only onsider atoms

in Atoms

P

(s

0

x

[

0

x

) and these atoms do not ontain t (all ourrenes have been re-

moved), the removed atoms annot be missing beause they all ontain t. Therefore,

after step 6 and as returned by the minimisation proedure, the ounterexample

[s

x

;

x

℄ is losed.

Lemma 4.8. All ounterexamples given by the equivalene query orale are pos-

itive w.r.t. the target T and the hypothesis H.

Proof. The algorithm makes sure that all lauses in H are orret (lines 3 and 6

of Algorithm 3 and lines 2, 5 and 8 of Algorithm 4). Therefore, T j= H .

Lemma 4.9. Every minimised [s

x

;

x

℄ is a positive ounterexample w.r.t. target

T and hypothesis H.

Proof. To prove that [s

x

;

x

℄ is a positive ounterexample we need to prove that

T j= [s

x

;

x

℄,

x

6= ; and for every b 2

x

it holds that H 6j= s

x

! b

x

. By Lemma 4.7,

we know that [s

x

;

x

℄ is full, and hene orret. This implies that T j= [s

x

;

x

℄. It

remains to show that H does not imply any of the lauses in [s

x

;

x

℄ and that

x

6= ;.

Let A! a be the original ounterexample obtained from the equivalene orale.

This A! a is suh that T j= A! a but H 6j= A! a (by Lemma 4.8), and therefore

a will not be inluded in the anteedent of the �rst [s

x

;

x

℄ by HClosure beause it

is not implied by H . However, a is inluded in

x

beause a 2 Atoms

P

(A! a) and

T j= A ! a. Thus,

x

6= ; after step 2 of the minimisation proedure. Moreover,

the all to the proedure HClosure guarantees that every atom implied by H will

be put into the anteedent s

x

, leaving no spae for any atom implied by H to be put

into the onsequent

x

by TClosure. Thus, after step 2, [s

x

;

x

℄ is a ounterexample.

LEARNING CLOSED HORN EXPRESSIONS 21

Next, we will see that after generalising some funtional term t, the multi-lause

still remains a positive ounterexample. The multi-lause [s

x

;

x

℄ is only updated

if the onsequent part is nonempty, therefore, all the multi-lauses obtained by

generalising will have a nonempty onsequent. Let [s

x

;

x

℄ be the multi-lause before

generalising t, and [s

0

x

;

0

x

℄ after. Assume [s

x

;

x

℄ is a positive ounterexample. Let

�

t

be the substitution fx

t

7! tg. As in Lemma 4.7, s

0

x

� �

t

= s

x

and

0

x

� �

t

=

x

.

Suppose by way of ontradition that H j= s

0

x

! b

0

, for some b

0

2

0

x

. Then,

H j= s

0

x

� �

t

! b

0

� �

t

. And we get that H j= s

x

! b

0

� �

t

. Note that b

0

2

0

x

implies that b

0

� �

t

2

x

. This ontradits our assumption stating that [s

x

;

x

℄

was a ounterexample. Thus, the multi-lause [s

x

;

x

℄ after step 3 is a positive

ounterexample.

Finally, we will show that after dropping some term t the multi-lause still re-

mains a positive ounterexample. As before, the multi-lause [s

x

;

x

℄ is only updated

if the onsequent part is nonempty, therefore, all the multi-lauses obtained by drop-

ping will have a nonempty onsequent. Let [s

x

;

x

℄ be the multi-lause before remov-

ing some of its atoms, and [s

0

x

;

0

x

℄ after. It is the ase that s

0

x

� s

x

and

0

x

�

x

. As-

sume [s

x

;

x

℄ is a positive ounterexample. Then, for all b 2

x

: H 6j= s

x

! b. Sine

0

x

�

x

, it holds that for all b 2

0

x

: H 6j= s

x

! b. Sine s

0

x

� s

x

, we obtain that

for all b 2

0

x

: H 6j= s

0

x

! b. Thus, the multi-lause [s

x

;

x

℄ after step 6 is a positive

ounterexample.

Lemma 4.10. If a minimised [s

x

;

x

℄ aptures some lause 6= (s

t

! b

t

) of U(T),

then it must be via some substitution � suh that � is a variable renaming, i.e., �

maps distint variables of s

t

into distint variables of s

x

only.

Proof. [s

x

;

x

℄ is apturing 6= (s

t

! b

t

), hene there must exist a substitution �

from variables in s

t

[fb

t

g into terms in s

x

[

x

suh that s

t

�� � s

x

, ineq(s

t

[fb

t

g)�� �

ineq(s

x

[

x

) and b

t

� � 2

x

. We will show that � must be a variable renaming.

By way of ontradition, suppose that � maps some variable v of s

t

[fb

t

g into a

funtional term t of s

x

[

x

(i.e. v � � = t). Consider the generalisation of the term

t in step 3 of the minimisation proedure. We will see that the term t should have

been generalised and substituted by the new variable x

t

.

Suppose, then that [s

x

;

x

℄ is the multi-lause previous to generalising t and

[s

0

x

;

0

x

℄ after. We generalise the term t to the fresh variable x

t

. Consider the

substitution �

0

de�ned as � n fv 7! tg [fv 7! x

t

g. The substitution �

0

behaves like

� on all terms exept for variable v. We will see that [s

0

x

;

0

x

℄ aptures 6= (s

t

! b

t

)

via �

0

and hene rhs(s

0

x

;

0

x

) 6= ; (Lemma 4.6). Therefore t must be generalised to

the variable x

t

.

To see that [s

0

x

;

0

x

℄ aptures 6= (s

t

! b

t

) via �

0

we need to show (1) s

t

� �

0

� s

0

x

,

(2) b

t

��

0

2

0

x

and (3) ineq(s

t

[fb

t

g) ��

0

� ineq(s

0

x

[

0

x

). For (1), onsider any atom

b of s

t

. We observe the following: after substitution �

0

: b(:::v:::)) b(:::x

t

:::), and

after substitution � and generalising t: b(:::v:::)) b(:::t:::)) b(:::x

t

:::). The part

of the \dots" in the previous expressions is idential for both lines, sine � and �

0

behave equally for terms di�erent than v. Moreover, the fat that � does not unify

terms in s

t

[fb

t

g assures that the rest of terms will di�er from t and x

t

after applying

� or �

0

. Therefore, we get that b � �

0

2 s

0

x

i� b � � 2 s

x

and sine s

t

� � � s

x

, Property

22 ARIAS AND KHARDON

(1) follows. Property (2) is idential to Property (1). For (3), let t; t

0

be two distint

terms of s

t

[fb

t

g. We have to show that t � �

0

and t

0

� �

0

are two di�erent terms of

s

0

x

[

0

x

and therefore their inequality appears in ineq(s

0

x

[

0

x

). It is easy to see that

they are terms of s

0

x

[

0

x

sine by previous properties (s

t

[fb

t

g) ��

0

� (s

0

x

[

0

x

). Now,

let �

t

be the substitution fx

t

! tg and notie that � = �

0

��

t

. Sine � does not unify

terms in s

t

[fb

t

g, then none of �

0

and �

t

do. Therefore, t ��

0

6= t

0

��

0

as required.

4.7. Properties of the number of terms in minimised examples

Lemma 4.11. Let [s

x

;

x

℄ be a multi-lause as output by the minimisation proe-

dure. Let 6= (s

t

! b

t

) be a lause of U(T) aptured by [s

x

;

x

℄. Then, the number

of distint terms in [s

x

;

x

℄ is equal to the number of distint terms in 6= (s

t

! b

t

).

Proof. Let n

x

and n

t

be the number of distint terms appearing in [s

x

;

x

℄ and

s

t

! b

t

, respetively. Subterms should also be ounted. The multi-lause [s

x

;

x

℄

aptures 6= (s

t

! b

t

). Therefore there is a substitution � satisfying ineq(s

t

[fb

t

g) �

� � ineq(s

x

[

x

). Thus, di�erent variables in s

t

! b

t

are mapped into di�erent

terms of s

x

[

x

by �. By Lemma 4.10, we know also that every variable of s

t

; b

t

is mapped into a variable of s

x

;

x

. Therefore, � maps distint variables of s

t

; b

t

into distint variables of s

x

;

x

. Therefore, the number of terms in s

t

; b

t

equals

the number of terms in (s

t

[fb

t

g) � �, sine there has only been a non-unifying

renaming of variables. Also, s

t

� � � s

x

and b

t

� � 2

x

. We have to hek that the

remaining atoms in (s

x

n s

t

� �)[(

x

n b

t

� �) do not inlude any term not appearing

in (s

t

[fb

t

g) � �.

Suppose there is an atom l 2 (s

x

ns

t

��)[(

x

nb

t

��) ontaining some term, say t, not

appearing in (s

t

[fb

t

g) � �. Consider when in step 6 of the minimisation proedure

the term t was heked as a andidate to be removed. Let [s

0

x

;

0

x

℄ be the lause

obtained after the removal of the atoms ontaining t. Then, s

t

�� � s

0

x

and b

t

�� 2

0

x

beause all the atoms in (s

t

[fb

t

g)�� do not ontain t. Moreover, ineq(s

t

[fb

t

g)�� �

ineq(s

0

x

[

0

x

). To see this, take any two terms t 6= t

0

from s

t

! b

t

. The terms t�� and

t

0

�� appear in s

0

x

[

0

x

beause they ontain terms in (s

t

[b

t

) �� only (so they are not

removed). Further, sine t �� 6= t

0

�� in s

x

[

x

and ft ��; t

0

��g � (s

0

x

[

0

x

) � (s

x

[

x

)

we onlude that t �� 6= t

0

�� in s

0

x

[

0

x

. Thus, [s

0

x

;

0

x

℄ still aptures 6= (s

t

! b

t

). And

therefore, rhs(s

0

x

;

0

x

) 6= ; and suh a term t annot exist. We onlude that n

t

=

n

x

.

Corollary 4.4. The number of terms of a ounterexample as generated by the

minimisation proedure is bounded by t, the maximum of the number of distint

terms in the target lauses.

Lemma 4.12. Let [s; ℄ be a multi-lause overing some 6= (s

t

! b

t

). Let n and

n

t

be the number of distint terms in s[and s

t

[fb

t

g, respetively. Then, n

t

� n.

LEARNING CLOSED HORN EXPRESSIONS 23

Proof. Sine [s; ℄ overs the lause 6= (s

t

! b

t

), there is a � s.t. ineq(s

t

[

fb

t

g) � � � ineq(s [). Therefore, any two distint terms of s

t

[fb

t

g appear as

distint terms in s[. And therefore, [s; ℄ has at least as many terms as s

t

! b

t

.

Corollary 4.5. Let 6= (s

t

! b

t

) be a lause of U(T) with n

t

distint terms.

Let [s

x

;

x

℄ be a multi-lause with n

x

distint terms as output by the minimisation

proedure suh that [s

x

;

x

℄ aptures the lause 6= (s

t

! b

t

). Let [s

i

;

i

℄ be a multi-

lause with n

i

terms overing the lause 6= (s

t

! b

t

). Then n

x

� n

i

.

4.8. Properties of pairings

Lemma 4.13. Let [s

x

;

x

℄ and [s

i

;

i

℄ be two full multi-lauses w.r.t. the target

expression T . Let � be a basi mathing between the terms in s

x

and s

i

that is not

rejeted by the pairing proedure. Let [s; ℄ be the basi pairing of [s

x

;

x

℄ and [s

i

;

i

℄

indued by �. Then the multi-lause [s; rhs(s;)℄ is also full w.r.t. T .

Proof. To see that [s; rhs(s;)℄ is full w.r.t. T , it is suÆient to show that [s; ℄

is losed. That is, whenever T j= s ! b and b 2 Atoms

P

(s [) n s, then b 2 .

Suppose, then, that T j= s! b with b 2 Atoms

P

(s[)ns. Sine s = lgg

j

�

(s

x

; s

i

) �

lgg(s

x

; s

i

), we know that there exist �

x

and �

i

suh that s � �

x

� s

x

and s � �

i

� s

i

.

T j= s! b implies both T j= s ��

x

! b ��

x

and T j= s ��

i

! b ��

i

. Let b

x

= b ��

x

and

b

i

= b � �

i

. Finally, we obtain that T j= s

x

! b

x

and T j= s

i

! b

i

. By assumption,

[s

x

;

x

℄ and [s

i

;

i

℄ are full, and therefore b

x

2 s

x

[

x

and b

i

2 s

i

[

i

beause

b

x

2 Atoms

P

(s

x

[

x

) and b

i

2 Atoms

P

(s

i

[

i

) (remember that b 2 Atoms

P

(s[)).

Also, sine the same lgg table is used for all lgg(�; �) we know that b = lgg(b

x

; b

i

).

Therefore b must appear in one of lgg(s

x

; s

i

); lgg(s

x

;

i

); lgg(

x

; s

i

) or lgg(

x

;

i

).

But b 62 lgg(s

x

; s

i

) sine b 62 s by assumption.

Note that all terms and subterms in b appear in s[, beause b 2 Atoms

P

(s[).

We know that � is basi and hene legal, and therefore it ontains all subterms

of terms appearing in s [. Thus, by restriting any of the lgg(�; �) to lgg

j

�

(�; �),

we will not get rid of b, sine it is built up from terms that appear in s [and

hene in �. Therefore, b 2 lgg

j

�

(s

x

;

i

) [lgg

j

�

(

x

; s

i

) [lgg

j

�

(

x

;

i

) = as re-

quired.

Lemma 4.14. Let [s; ℄ be a pairing of two multi-lauses [s

x

;

x

℄ and [s

i

;

i

℄. Then,

it is the ase that jsj � js

i

j and js [j � js

i

[

i

j.

Proof. It is suÆient to observe that in s there is at most one opy of ev-

ery atom in s

i

. This is true sine the mathing used to inlude atoms in s is

1 to 1 and therefore a term an only be ombined with a unique term and no

dupliation of atoms ours. The same idea applies to the seond inequality.

Lemma 4.15. Let [s

1

;

1

℄ and [s

2

;

2

℄ be two full multi-lauses w.r.t. some Horn

expression T . Let [s; ℄ be any legal pairing between them. The following holds:

1. If [s; ℄ overs a lause 6= (s

t

! b

t

) in U(T), then both [s

1

;

1

℄ and [s

2

;

2

℄ over

6= (s

t

! b

t

).

24 ARIAS AND KHARDON

2. If [s; ℄ aptures a lause 6= (s

t

! b

t

) in U(T), then at least one of [s

1

;

1

℄ or

[s

2

;

2

℄ aptures 6= (s

t

! b

t

).

Proof. Condition 1. By assumption, 6= (s

t

! b

t

) is overed by [s; ℄, i.e., there is

a � suh that s

t

� � � s, ineq(s

t

[fb

t

g) � � � ineq(s[) and b

t

� � 2 Atoms

P

(s [).

This implies that if t; t

0

are two distint terms of s

t

[fb

t

g, then t � � and t

0

� � are

distint terms appearing in s [. Let � be the 1-1 legal mathing induing the

pairing. The anteedent s is de�ned to be lgg

j

�

(s

1

; s

2

), and therefore there exist

substitutions �

1

and �

2

suh that s � �

1

� s

1

and s � �

2

� s

2

. We laim that [s

1

;

1

℄

and [s

2

;

2

℄ over 6= (s

t

! b

t

) via � ��

1

and � ��

2

, respetively. We will prove this for

[s

1

;

1

℄ only, the proof for [s

2

;

2

℄ is idential. Notie that s

t

� � � s, and therefore

s

t

� � � �

1

� s � �

1

. Sine s � �

1

� s

1

, we obtain s

t

� � � �

1

� s

1

. We show now that

ineq(s

t

[fb

t

g) � � � �

1

� ineq(s

1

[

1

). Observe that all top-level terms appearing in

s[also appear as one entry of the mathing �, beause otherwise they ould not

have survived the restrition imposed by �. Further, sine � is legal, all subterms of

terms of s[also appear as an entry in �. Let t; t

0

be two distint terms appearing

in s

t

[fb

t

g. Sine (s

t

[fb

t

g) � � � s[and � inludes all terms appearing in s[,

the distint terms t � � and t

0

� � appear as the lgg of distint entries in �. These

entries have the form [t � � � �

1

- t � � � �

2

=> t � �℄, sine lgg(t � � � �

1

; t � � � �

2

) = t � �.

Sine � is 1-1, we know that t � � � �

1

6= t

0

� � � �

1

. Finally, we need to show that

b

t

� � � �

1

2 Atoms

P

(s

1

[

1

). Notie that s � �

1

� s

1

and � �

1

� (s

1

[

1

).

Therefore, s

t

[fb

t

g � � � s[implies s

t

[fb

t

g � � � �

1

� (s[) � �

1

� s

1

[

1

. Thus,

b

t

� � � �

1

2 Atoms

P

(s

1

[

1

) as required.

Condition 2. By hypothesis, b

t

� � 2 and is de�ned to be lgg

j

�

(s

1

;

2

) [

lgg

j

�

(

1

; s

2

) [lgg

j

�

(

1

;

2

). Observe that all these lggs share the same table, so

the same pairs of terms will be mapped into the same expressions. Observe also

that the substitutions �

1

and �

2

are de�ned aording to this table, so that if

any atom l 2 lgg

j

�

(

1

; �), then l � �

1

2

1

. Equivalently, if l 2 lgg

j

�

(�;

2

), then

l � �

2

2

2

. Therefore we get that if b

t

� � 2 lgg

j

�

(

1

; �), then b

t

� � � �

1

2

1

and if b

t

� � 2 lgg

j

�

(�;

2

), then b

t

� � � �

2

2

2

. Now, observe that in any of

the three possibilities for , one of

1

or

2

is inluded in the lgg

j

�

. Thus it

is the ase that either b

t

� � � �

1

2

1

or b

t

� � � �

2

2

2

. Sine both [s

1

;

1

℄

and [s

2

;

2

℄ over 6= (s

t

! b

t

), one of [s

1

;

1

℄ or [s

2

;

2

℄ aptures 6= (s

t

! b

t

).

It is ruial for Lemma 4.15 that the pairing involved is legal. It is indeed possible

for a non-legal pairing to apture some lause that is not even overed by some of

its originating multi-lauses, as the next example illustrates.

Example 4.3. In this example we present two multi-lauses [s

1

;

1

℄ and [s

2

;

2

℄,

a non-legal mathing � and a lause 6= (s

t

! b

t

) suh that the non-legal pairing

indued by � aptures 6= (s

t

! b

t

) but none of [s

1

;

1

℄ and [s

2

;

2

℄ do.

� [s

1

;

1

℄ = [p(ffa; gffa)! q(fa)℄ with terms fa; fa; ffa; gffag

ineq(s

1

) = (a 6= fa 6= ffa 6= gffa).

� [s

2

;

2

℄ = [p(fb; gff)! q(b)℄ with terms fb; ; fb; f; ff; gffg.

� The mathing � is [a - => X℄

[fa - b => Y℄

LEARNING CLOSED HORN EXPRESSIONS 25

[ffa - fb => fY℄

[gffa - gff => gffX℄

� [s; ℄ = [p(fY; gffX)! q(Y)℄.

� (x 6= fx 6= ffx 6= gffx 6= y 6= fy)

| {z }

ineq(s

t

)

; p(fy; gffx)

| {z }

s

t

! q(y)

|{z}

b

t

.

� � = fx 7! X; y 7! Y g.

� �

1

= fX 7! a; Y 7! fag.

� � � �

1

= fx 7! a; y 7! fag.

The multi-lause [s; ℄ aptures 6= (s

t

! b

t

) via � = fx 7! X; y 7! Y g. But [s

1

;

1

℄

does not over 6= (s

t

! b

t

) beause the ondition ineq(s

t

) � � � �

1

� ineq(s

1

) fails to

hold:

(a 6= fa 6= �a 6= gffa 6= fa 6= �a)

| {z }

(x 6=fx 6=ffx 6=gffx6=y 6=fy)����

1

6� (a 6= fa 6= ffa 6= gffa)

| {z }

ineq(s

1

)

Corollary 4.6. Let [s

1

;

1

℄; [s

2

;

2

℄; [s

3

;

3

℄; :::; [s

k

;

k

℄; ::: be a sequene of full

multi-lauses suh that every multi-lause [s

i+1

;

i+1

℄ is a legal pairing between the

previous multi-lause [s

i

;

i

℄ in the sequene and some other full multi-lause [s

0

i

;

0

i

℄,

for i � 1. Suppose some [s

k

;

k

℄ in the sequene overs a lause 6= (s

t

! b

t

). Then,

all previous [s

i

;

i

℄ in the sequene (where i < k), must over the lause 6= (s

t

! b

t

),

too.

4.9. Properties of the sequene S

Corollary 4.7. Every element [s; ℄ appearing in the sequene S is full w.r.t.

the target expression T .

Proof. The sequene S is onstruted by appending minimised ounterexam-

ples or by re�ning existing elements with a pairing with another minimised oun-

terexample. Lemma 4.7 guarantees that all minimised ounterexamples are full

and, by Lemma 4.13, any basi pairing between full multi-lauses is also full.

Lemma 4.16. Let S be the sequene [[s

1

;

1

℄; [s

2

;

2

℄; :::; [s

k

;

k

℄℄. If a minimised

ounterexample [s

x

;

x

℄ is produed suh that it aptures some lause 6= (s

t

! b

t

) in

U(T) overed by some [s

i

;

i

℄ of S, then some multi-lause [s

j

;

j

℄ will be replaed

by a basi pairing of [s

x

;

x

℄ and [s

j

;

j

℄, where j � i.

Proof. We will show that if no element [s

j

;

j

℄ where j < i is replaed, then

the element [s

i

;

i

℄ will be replaed. We have to prove that there is a basi pairing

[s; ℄ of [s

x

;

x

℄ and [s

i

;

i

℄ with the following two properties: (1)rhs(s;) 6= ; and

(2)size(s) � size(s

i

) or (size(s) = size(s

i

) and size() � size(

i

)).

We have assumed that there is some lause 6= (s

t

! b

t

) 2 U(T) aptured by

[s

x

;

x

℄ and overed by [s

i

;

i

℄. Let �

0

x

be the substitution showing that 6= (s

t

! b

t

)

26 ARIAS AND KHARDON

is aptured by [s

x

;

x

℄ and �

0

i

the substitution showing that 6= (s

t

! b

t

) is overed

by [s

i

;

i

℄. Thus the following properties hold:

� s

t

� �

0

x

� s

x

� ineq(s

t

[fb

t

g) � �

0

x

� ineq(s

x

[

x

)

� b

t

� �

0

x

2

x

� b

t

� �

0

x

2 Atoms

P

(s

x

[

x

)

� s

t

� �

0

i

� s

i

� ineq(s

t

[fb

t

g) � �

0

i

� ineq(s

i

[

i

)

� b

t

� �

0

i

2 Atoms

P

(s

i

[

i

)

We onstrut a mathing � that inludes all entries

[t � �

0

x

- t � �

0

i

=> lgg(t � �

0

x

; t � �

0

i

)℄

suh that t is a term appearing in s

t

[fb

t

g (one entry for every distint term).

Example 4.4. Consider the following:

� s

t

= fp(g(); x; f(y); z)g.

With terms ; g(); x; y; f(y) and z.

� s

x

= fp(g(); x

0

; f(y

0

); z); p(g(); g(); f(y

0

);)g.

With terms ; g(); x

0

; y

0

; f(y

0

) and z.

� s

i

= fp(g(); f(1); f(f(2)); z)g.

With terms ; g(); 1; f(1); 2; f(2); f(f(2)) and z.

� The substitution �

0

x

= fx 7! x

0

; y 7! y

0

; z 7! zg and it is a variable renaming.

� The substitution �

0

i

= fx 7! f(1); y 7! f(2); z 7! zg.

� The lgg(s

x

; s

i

) is fp(g(); X; f(Y); z); p(g(); Z; f(Y); V)g and it produes the

following lgg table.

[- => ℄ [g() - g() => g()℄

[x' - f(1) => X℄ [y' - f(2) => Y℄

[f(y') - f(f(2)) => f(Y)℄ [z - z => z℄

[g() - f(1) => Z℄ [- z => V℄

� The extended mathing � is

) [- => ℄

g()) [g() - g() => g()℄)

x) [x' - f(1) => X℄

y) [y' - f(2) => Y℄

f(y)) [f(y') - f(f(2)) => f(Y)℄

z) [z - z => z℄

� The pairing indued by � is lgg

j

�

(s

x

; s

i

) = fp(g(); X; f(Y); z)g.

LEARNING CLOSED HORN EXPRESSIONS 27

Claim. The mathing � as desribed above is 1-1 and the number of entries

equals the minimum of the number of distint terms in s

x

[

x

and s

i

[

i

.

Proof. All the entries of � have the form [t � �

0

x

- t � �

0

i

=> lgg(t � �

0

x

; t � �

0

i

)℄.

For � to be 1-1 it is suÆient to see that there are no two terms t; t

0

of s

t

[fb

t

g

generating the following entries in �

[t � �

0

x

- t � �

0

i

=> lgg(t � �

0

x

; t � �

0

i

)℄

[t

0

� �

0

x

- t

0

� �

0

i

=> lgg(t

0

� �

0

x

; t � �

0

i

)℄

suh that t � �

0

x

= t

0

� �

0

x

or t � �

0

i

= t

0

� �

0

i

. But this is lear sine [s

x

;

x

℄ and [s

i

;

i

℄

are overing 6= (s

t

! b

t

) via �

0

x

and �

0

i

, respetively. Therefore ineq(s

t

[fb

t

g) � �

0

x

�

ineq(s

x

[

x

) and ineq(s

t

[fb

t

g) � �

0

i

� ineq(s

i

[

i

). And therefore t � �

0

x

and t

0

� �

0

x

appear as di�erent terms in s

x

[

x

. Also, t � �

0

i

and t

0

� �

0

i

appear as di�erent terms

in s

i

[

i

. Thus � is 1-1.

By onstrution, the number of entries equals the number of distint terms in

s

t

[fb

t

g, that by Lemma 4.11 is the number of distint terms in s

x

[

x

. And by

Lemma 4.12, [s

i

;

i

℄ ontains at least as many terms as s

t

[fb

t

g. Therefore, the num-

ber of entries in � oinides with the minimum of the number of distint terms in s

x

[

x

and s

i

[

i

.

Claim. The mathing � is legal.

Proof. A mathing is legal if the subterms of any term appearing as the lgg of

the mathing, also appear in some other entries of the mathing. We will prove it

by indution on the struture of the terms. We prove that if t is a term in s

t

[fb

t

g,

then the term lgg(t��

0

x

; t��

0

i

) and all its subterms appear somewhere in the extension

of �.

Base ase. When t = a, with a being some onstant. The entry in � for it is [a -

a => a℄, sine a � � = a, for any substitution � if a is a onstant and lgg(a; a) = a.

The term a has no subterms, and therefore all its subterms trivially appear as

entries in �.

Base ase. When t = v, where v is any variable in s

t

[fb

t

g. The entry for it in �

is [v ��

0

x

- v ��

0

i

=> lgg(v ��

0

x

; v ��

0

i

)℄. [s

x

;

x

℄ is minimised and by Lemma 4.10 v ��

0

x

must be a variable. Therefore, its lgg with anything else must also be a variable.

Hene, all its subterms appear trivially sine there are no subterms.

Step ase. When t = f(t

1

; :::; t

l

), where f is a funtion symbol of arity l and

t

1

; :::; t

l

its arguments. The entry for it in � is

[f(t

1

; :::; t

l

) � �

0

x

- f(t

1

; :::; t

l

) � �

0

i

=> lgg(f(t

1

; :::; t

l

) � �

0

x

; f(t

1

; :::; t

l

) � �

0

x

)

| {z }

f(lgg(t

1

��

0

x

;t

1

��

0

i

);:::;lgg(t

l

��

0

x

;t

l

��

0

i

))

℄

The entries [t

j

� �

0

x

- t

j

� �

0

i

=> lgg(t

j

� �

0

x

; t

j

� �

0

x

)℄, with 1 � j � l, are also

inluded in �, sine all t

j

are terms of s

t

[fb

t

g. By the indution hypothesis, all the

subterms of every lgg(t

j

��

0

x

; t

j

��

0

x

) are inluded in �, and therefore, all the subterms

of lgg(f(t

1

; :::; t

l

) � �

0

x

; f(t

1

; :::; t

l

) � �

0

x

) are also inluded in � and the step ase

holds.

28 ARIAS AND KHARDON

Claim. The mathing � is basi.

Proof. A basi mathing is de�ned only for two multi-lauses [s

x

;

x

℄ and [s

i

;

i

℄

suh that the number of terms in s

x

[

x

is less or equal than the number of terms

in s

i

[

i

. Corollary 4.5 shows that this is indeed the ase. Following the de�nition,

it should be also 1-1 and legal. The laims above show that it is 1-1 and that it is

also legal. It is only left to see that it is basi: if entry f(t

1

; :::; t

n

)� t is in �, then

t = f(r

1

; :::; r

n

) and t

l

� r

l

2 � for all l = 1; :::; n.

Suppose, then, that f(t

1

; :::; t

n

) � t is in �. By onstrution of � all entries

are of the form

^

t � �

0

x

�

^

t � �

0

i

, where

^

t is a term in s

t

[fb

t

g. Thus, assume

^

t �

�

0

x

= f(t

1

; :::; t

n

) and

^

t � �

0

i

= t. We also know that �

0

x

is a variable renaming,

therefore, the term

^

t � �

0

x

is a variant of

^

t. Therefore, the terms f(t

1

; :::; t

n

) and

^

t

are variants. That is,

^

t itself has the form f(t

0

1

; :::; t

0

n

), where every t

0

j

is a variant

of t

j

and t

0

j

� �

0

x

= t

j

, where j = 1; :::; n. Therefore, t =

^

t � �

0

i

= f(r

1

= t

0

1

�

�

0

i

; :::; r

n

= t

0

n

� �

0

i

) as required. We have seen that t

j

= t

0

j

� �

0

x

and r

j

= t

0

j

� �

0

i

. By

onstrution, � inludes the entries t

j

� r

j

, for any j = 1; :::; n and our laim

holds.

The laims above show that the mathing � is a good mathing in the sense that

it will be one of the mathings onstruted by the algorithm. Now we onsider the

pairing of [s

x

;

x

℄ and [s

i

;

i

℄ indued by �. Notie that this pairing (all it [s; ℄)

will not be disarded by our algorithm. The disarded pairings are those that do

not agree with the lgg of s

x

and s

i

, but this does not happen in this ase, sine �

has been onstruted preisely using the lgg of some terms in [s

x

;

x

℄ and [s

i

;

i

℄.

It is left to show that onditions for replaement in the algorithm hold. The

following two laims show that this is indeed the ase.

Claim. rhs(s;) 6= ;.

Proof. Let �

x

and �

i

be de�ned as follows. An entry in � [t � �

0

x

- t � �

0

i

=>

lgg(t � �

0

x

; t � �

0

i

)℄ suh that lgg(t � �

0

x

; t � �

0

i

) is a variable will generate the mapping

lgg(t � �

0

x

; t � �

0

i

) 7! t � �

0

x

in �

x

and lgg(t � �

0

x

; t � �

0

i

) 7! t � �

0

i

in �

i

. That is, �

x

=

flgg(t ��

0

x

; t ��

0

i

) 7! t ��

0

x

g and �

i

= flgg(t ��

0

x

; t ��

0

i

) 7! t ��

0

i

g, whenever lgg(t ��

0

x

; t ��

0

i

)

is a variable and t is a term in s

t

[fb

t

g.

In our example, �

x

= fX 7! x

0

; Y 7! y

0

; z 7! zg and �

i

= fX 7! f(1); Y 7!

f(2); z 7! zg.

� s � �

x

� s

x

. Let l be an atom in s, l has been obtained by taking the lgg of

two atoms l

x

and l

i

in s

x

and s

i

, respetively. That is, l = lgg(l

x

; l

i

). Moreover,

l only ontains terms in the extension of �, otherwise it would have been removed

when restriting the lgg. The substitution �

x

is suh that l � �

x

= l

x

beause it

\undoes" what the lgg does for the atoms with terms in �. And l

x

2 s

x

, therefore,

the inlusion s � �

x

� s

x

holds.

� s � �

i

� s

i

. Similar to previous.

Let � be the substitution that maps all variables in s

t

[fb

t

g to their orresponding

expression assigned in the extension of �. That is, � maps any variable v of s

t

[fb

t

g

to the term lgg(v � �

0

x

; v � �

0

i

). In our example, � = fx 7! X; y 7! Y; z 7! zg.

LEARNING CLOSED HORN EXPRESSIONS 29

The proof that rhs(s;) 6= ; onsists in showing that 6= (s

t

! b

t

) is aptured by

[s; ℄ via �. Then we apply Lemma 4.6 and onlude that rhs(s;) 6= ;.

The following properties hold:

� � � �

x

= �

0

x

. Let v be a variable in s

t

[fb

t

g. The substitution � maps v into

lgg(v � �

0

x

; v � �

0

i

). This is a variable, say V , sine we know �

0

x

is a variable renaming.

The substitution �

x

ontains the mapping

lgg(v � �

0

x

; v � �

0

i

)

| {z }

V

7! v � �

0

x

:

And v is mapped into v � �

0

x

by � � �

x

.

In our example: �

0

x

= fx 7! x

0

; y 7! y

0

; z 7! zg, and

� � �

x

= fx 7! X; y 7! Y; z 7! zg � fX 7! x

0

; Y 7! y

0

; z 7! zg.

� � � �

i

= �

0

i

. As in previous property.

To see how 6= (s

t

! b

t

) is aptured by [s; ℄ via �:

� s

t

� � � s = lgg

j

�

(s

x

; s

i

). Let l be an atom in s

t

. We show that l � � is in

lgg(s

x

; s

i

) and that it is not removed by the restrition to �. Let t be a term

appearing in l. The mathing � ontains the entry

[t � �

0

x

- t � �

0

i

=> lgg(t � �

0

x

; t � �

0

i

)℄;

sine t appears in s

t

. The substitution � ontains fv 7! lgg(v � �

0

x

; v � �

0

i

)g for

every variable v appearing in s

t

[fb

t

g (and thus for every variable in s

t

), therefore

t � � = lgg(t � �

0

x

; t � �

0

i

). Indeed, lgg(t � �

0

x

; t � �

0

i

) appears in �. The atom l � � appears

in lgg(s

t

� �

0

x

; s

t

� �

0

i

) and therefore in lgg(s

x

; s

i

) sine s

t

� �

0

x

� s

x

, s

t

� �

0

i

� s

i

and

� = fv 7! lgg(v � �

0

x

; v � �

0

i

) j v is a variable of s

t

g. Also, l � � appears in lgg

j

�

(s

x

; s

i

)

sine we have seen that any term in l � � appears in �.

In our example the only l we have in s

t

�� is p(g(); x; f(y); z)�� = p(g(); X; f(Y); z).

And lgg

j

�

(s

x

; s

y

) is preisely fp(g(); X; f(Y); z)g.

� ineq(s

t

[fb

t

g) � � � ineq(s [). We have to show that for any two distint

terms t; t

0

of s

t

[fb

t

g, the terms t � � and t

0

� � are also di�erent terms in s [,

and therefore the inequality t � � 6= t

0

� � appears in ineq(s [). By hypothesis,

ineq(s

t

[fb

t

g) � �

0

x

� ineq(s

x

[

x

). Sine �

0

x

= � � �

x

, we get ineq(s

t

[fb

t

g) � � � �

x

�

ineq(s

x

[

x

) and so t � � � �

x

and t

0

� � � �

x

are di�erent terms of s

x

[

x

. From

Property 5. in Lemma 4.3 it follows that t � � 6= t

0

� � 2 ineq(s [).

� b

t

� � 2 . By hypothesis, b

t

� �

0

x

2

x

. Also, b

t

� �

0

i

2 Atoms

P

(s

i

[

i

) implies

(beause [s

i

;

i

℄ is full), that b

t

� �

0

i

2 s

i

[

i

. Notie that b

t

� � = lgg

j

�

(b

t

� �

0

x

; b

t

� �

0

i

)

by onstrution. Therefore b

t

� � 2 = lgg

j

�

(s

x

;

i

) [lgg

j

�

(

x

; s

i

) [lgg

j

�

(

x

;

i

) as

required.

Claim. size(s) � size(s

i

) or (size(s) = size(s

i

) and size() � size(

i

)).

Proof. By Lemma 4.14, we know that jsj � js

i

j, therefore size(s) � size(s

i

)

sine the lgg never substitutes a term by one of greater weight. Notie that the

30 ARIAS AND KHARDON

lgg substitutes variables for funtional terms. Aording to our de�nition of size,

variables weigh less than funtional terms, therefore the size of a generalisation will

be at most the size of the instane that has been generalised. We over all possible

ases: if size(s) � size(s

i

), then the ondition is true. If size(s) = size(s

i

), then

we know by Lemma 4.14 that js [j � js

i

[

i

j. Sine jsj = js

i

j, we onlude that

jj � j

i

j, and hene size() � size(

i

) by the same argument as above. Thus,

s � �

i

= s

i

and s

i

� �

�1

i

= s. Again, we split the proof into two ases. The ase when

size() � size(

i

) satis�es the ondition. For the ase when size() = size(

i

), we

have that the multi-lauses [s; ℄ and [s

i

;

i

℄ are equal up to variable renaming. We

will elaborate this ase a little more and will arrive to a ontradition, �nishing our

proof. The following fats hold:

� Sine [s; ℄ and [s

i

;

i

℄ are variable renamings, � �

i

=

i

and

i

� �

�1

i

= .

� By the previous laim, it holds that b

t

� � 2 and therefore there exists a b

i

s.t.

b

i

= b

t

� � � �

i

2

i

.

� The substitutions �

i

and �

0

x

are variable renamings, and (by previous laim)

�

0

x

= � � �

x

, therefore the substitution

^

� = �

�1

i

� �

x

is well de�ned and is a variable

renaming.

� It follows that s

i

�

^

� � s

x

and b

i

�

^

� = b

t

� � � �

i

| {z }

b

i

� �

�1

i

� �

x

| {z }

^

�

= b

t

� � � �

x

= b

t

� �

0

x

2

x

(by assumption).

Therefore,H j= s

i

! b

i

j= s

i

�

^

� ! b

i

�

^

� j= s

x

! b

x

(where b

x

= b

t

��

0

x

2

x

) ontra-

diting the fat that [s

x

;

x

℄ is a ounterexample.

This ompletes the proof for the lemma.

Corollary 4.8. If a ounterexample [s

x

;

x

℄ is appended to S, it is beause there

is no element in S apturing a lause in U(T) that is also aptured by [s

x

;

x

℄.

Lemma 4.17. Every time the algorithm is about to make an equivalene query,

it is the ase that every multi-lause in S aptures at least one of the lauses of

U(T) and every lause of U(T) is aptured by at most one multi-lause in S.

Proof. All multi-lauses inluded in S are full by Corollary 4.7. By onstrution,

their onsequents are non-empty so that we an apply Corollary 4.2, and onlude

that all ounterexamples in S apture some lause of U(T).

An indution on the number of iterations of the main loop in line 2 of the learning

algorithm shows that no two di�erent multi-lauses in S apture the same lause of

U(T). In the �rst loop the lemma holds trivially (there are no elements in S). By

the indution hypothesis we assume that the lemma holds before a new iteration of

the loop. We will see that after ompletion of that iteration of the loop the lemma

must also hold. Two ases arise.

The minimised ounterexample [s

x

;

x

℄ is appended to S. By Corollary 4.8, we

know that [s

x

;

x

℄ does not apture any lause in U(T) also aptured by some

element [s

i

;

i

℄ in S. This, together with the indution hypothesis, assures that the

lemma is satis�ed in this ase.

LEARNING CLOSED HORN EXPRESSIONS 31

Some [s

i

;

i

℄ is replaed in S. We denote the updated sequene by S

0

and the

updated element in S

0

by [s

0

i

;

0

i

℄. The indution hypothesis laims that the lemma

holds for S. We have to prove that it also holds for S

0

as updated by the algorithm.

Assume it does not. The only possibility is that the new element [s

0

i

;

0

i

℄ aptures

some lause of U(T), say 6= (s

t

! b

t

) also aptured by some other element [s

j

;

j

℄

of S

0

, with j 6= i. The multi-lause [s

0

i

;

0

i

℄ is a basi pairing of [s

x

;

x

℄ and [s

i

;

i

℄,

and hene it is also legal. Applying Lemma 4.15 we onlude that one of [s

x

;

x

℄ or

[s

i

;

i

℄ aptures 6= (s

t

! b

t

).

Suppose [s

i

;

i

℄ aptures 6= (s

t

! b

t

). This ontradits the indution hypothesis,

sine both [s

i

;

i

℄ and [s

j

;

j

℄ appear in S and apture 6= (s

t

! b

t

) in U(T).

Suppose [s

x

;

x

℄ aptures 6= (s

t

! b

t

). If j < i, then [s

x

;

x

℄ would have re-

�ned [s

j

;

j

℄ instead of [s

i

;

i

℄ (Lemma 4.16). Therefore, j > i. But then we

are in a situation where [s

j

;

j

℄ aptures a lause also overed by [s

i

;

i

℄. By

Corollary 4.6, all multi-lauses in position i over 6= (s

t

! b

t

) during the his-

tory of S. Consider the iteration in whih [s

j

;

j

℄ �rst aptured 6= (s

t

! b

t

).

This ould have happened by appending the ounterexample [s

j

;

j

℄, whih ontra-

dits Lemma 4.16 sine [s

i

;

i

℄ or an anestor of it was overing 6= (s

t

! b

t

) but

was not replaed. Or it ould have happened by re�ning [s

j

;

j

℄ with a pairing

of a ounterexample apturing 6= (s

t

! b

t

). But then, by Lemma 4.16 again,

the element in position i should have been re�ned, instead of re�ning [s

j

;

j

℄.

4.10. Deriving the omplexity bounds

Reall that m

0

stands for the number of lauses in the transformation U(T) and

that by Lemma 4.1, m

0

� mt

k

, where t (k, resp.) is the maximum number of terms

(variables, resp.) in any lause in T . By Lemma 4.17 the number of lauses in

U(T) bounds the number of elements in S, and therefore:

Corollary 4.9. The number of elements in S is bounded by m

0

.

What follows is a detailed aount of the number of queries made in every pro-

edure.

Lemma 4.18. If [s

x

;

x

℄ is a minimised ounterexample, then, js

x

j+ j

x

j � st

a

.

Proof. By Corollary 4.4, there are a maximum of t terms in a minimised oun-

terexample. There are a maximum of st

a

di�erent atoms built up from t terms.

Lemma 4.19. The algorithm makes O(m

0

st

a

) equivalene queries.

Proof. Notie that any set of atoms ontaining t distint terms an be generalised

at most t times. This is beause after generalising a term into a variable, it annot

be further generalised. The sequene S has at most m

0

elements. The following

ations an happen after re�ning a multi-lause in S (possibly ombined): either

(1) one atom is dropped from the anteedent, or (2) an atom moves from anteedent

to onsequent, or (3) an atom is dropped from the onsequent, or (4) some term

is generalised. This an happen m

0

st

a

times for (1), m

0

st

a

times for (2), m

0

st

a

32 ARIAS AND KHARDON

times for (3), and m

0

t times for (4), that is m

0

(t+3st

a

) in total. We need m

0

extra

alls to add all the ounterexamples. In total m

0

(1+ t+3st

a

), that is O(m

0

st

a

).

Lemma 4.20. The algorithm makes O(se

a+1

t

) membership queries during the

minimisation proedure.

Proof. To ompute the �rst version of the full multi-lause we need to test the

se

a

t

possible atoms built up from e

t

distint terms appearing in s

x

. Therefore, we

make se

a

t

initial alls. Next, we note that the �rst version of

x

has at most se

a

t

atoms. The �rst loop (generalisation of terms) is exeuted at most e

t

times, one for

every term appearing in the �rst version of s

x

. In every exeution, at most j

x

j � se

a

t

membership alls are made. In this loop there are a total of se

a+1

t

alls. The seond

loop of the minimisation proedure is also exeuted at most e

t

times, one for every

term in s

x

. Again, sine at most se

a

t

alls are made in the body on this seond loop,

the total number of alls is bounded by se

a+1

t

. This makes a total of se

a

t

+2se

a+1

t

,

that is O(se

a+1

t

).

Lemma 4.21. Given a mathing, the algorithm makes at most st

a

membership

queries during the omputation of a basi pairing.

Proof. The number of atoms in the onsequent of a pairing of [s

x

;

x

℄ and

[s

i

;

i

℄ is bounded by the number of atoms in s

x

plus the number of atoms in

x

. By

Lemma 4.18, this is bounded by st

a

.

Lemma 4.22. The algorithm makes O(m

0

s

2

t

a

e

a+1

t

+ m

0

2

s

2

t

2a+k

) membership

queries.

Proof. The main loop is exeuted as many times as equivalene queries are

made. In every loop, the minimisation proedure is exeuted one and for every

element in S, a maximum of t

k

pairings are made.

This is:

sm

0

t

a

| {z }

#iterations

�f se

a+1

t

| {z }

minim:

+ m

0

|{z}

jSj

� t

k

|{z}

#pairings

� st

a

|{z}

pairing

g = O(m

0

s

2

t

a

e

a+1

t

+m

0

2

s

2

t

2a+k

):

We arrive to our main result.

Theorem 4.1. The algorithm exatly identi�es every losed Horn expression

making O(m

0

st

a

) equivalene queries and O(m

0

s

2

t

a

e

a+1

t

+m

0

2

s

2

t

2a+k

) membership

queries. Furthermore, the running time is polynomial in m

0

2

+ s

2

+ t

k

+ t

a

+ e

a

t

.

We onlude that the lasses RRHE, COHE and RRCOHE are learnable using

our algorithm. Sine by Lemma 4.1 we know that m

0

� mt

k

, we obtain:

Corollary 4.10. The algorithm exatly identi�es every losed Horn expression

making O(mst

a+k

) equivalene queries and O(ms

2

t

a+k

e

a+1

t

+m

2

s

2

t

2a+3k

) member-

ship queries. Furthermore, the running time is polynomial in m

2

+s

2

+ t

k

+ t

a

+e

a

t

.

LEARNING CLOSED HORN EXPRESSIONS 33

5. FULLY INEQUATED CLOSED HORN EXPRESSIONS

Clauses in this lass an ontain a new type of atom, that we all inequation or

inequality and has the form t 6= t

0

, where both t and t

0

are terms. Inequated lauses

may ontain any number of inequalities in its anteedent. Let s be a onjuntion

of atoms and inequations. Then, s

p

denotes the onjuntion of atoms in s and s

6=

the onjuntion of inequalities in s. That is s = s

p

^ s

6=

. We say s is ompletely

inequated if s

6=

ontains all possible inequations between distint terms in s

p

, i.e.,

if s

6=

= ineq(s

p

). A lause s! b is ompletely inequated if s = ineq(s

p

[fbg)^ s

p

.

No inequalities are allowed in the onsequent. Similarly, a multi-lause [s; ℄ is

ompletely inequated if s = ineq(s

p

[) ^ s

p

. A fully inequated Closed Horn

expression is a onjuntion of fully inequated losed Horn lauses.

Looking at the way the transformation U(T) desribed in Setion 4.1 is used

in the proof of orretness, the natural question of what happens when the target

expression is already fully inequated (and T = U(T)) arises. As an example, take

the lause human(father(x)) ^ human(mother(x)) ! human(x): The intended

meaning is learly that x 6= faher(x) 6= mother(x), and hene this lause is fully

inequated. We will see that the learning algorithm desribed in Setion 3 has to be

slightly modi�ed in order to ahieve learnability of this lass.

The �rst modi�ation is in the minimisation proedure. It an be the ase that

after generalising or dropping some terms (as done in the two stages of the min-

imisation proedure), the result of the operation is not fully inequated. More pre-

isely, there may be superuous inequalities that involve terms not appearing in

the atoms of the ounterexample's anteedent. These should be eliminated from

the ounterexample, yielding a fully inequated minimised ounterexample.

The seond (and last) modi�ation is in the pairing proedure. Given a mathing

� and two multi-lauses [s

x

;

x

℄ and [s

i

;

i

℄, its pairing [s; ℄ is omputed in the new

algorithm as:

1. s

p

= lgg

j

�

(s

p

x

; s

p

i

)

2. = lgg

j

�

(s

p

x

;

i

) [lgg

j

�

(

x

; s

p

i

) [lgg

j

�

(

x

;

i

)

3. s = ineq(s

p

[) [s

p

Notie that inequations in the original multi-lauses [s

x

;

x

℄ and [s

i

;

i

℄ are ig-

nored. The pairing is omputed only for the atomi information, and �nally the

fully inequated pairing is onstruted by adding all the inequations needed. This

an be done safely beause the algorithm only deals with fully inequated lauses.

The proof of orretness is very similar to the one presented here. Complete details

and proof for the ase of Range Restrited Horn Expressions an be found in [1℄.

Theorem 5.1. The modi�ed algorithm identi�es fully inequated losed Horn

expressions making O(mst

a

) alls to the equivalene orale and O(ms

2

t

a

e

a+1

t

+

m

2

s

2

t

2a+k

) to the membership orale. Furthermore, the running time is polyno-

mial in m

2

+ s

2

+ t

k

+ t

a

+ e

a

t

.

Let the lass FIRRHE be the lass of fully inequated range restrited Horn

expressions, FICOHE the lass of fully inequated onstrained Horn expressions

34 ARIAS AND KHARDON

and FIRRCOHE their union. We onlude that the lasses FIRRHE, FICOHE

and FIRRCOHE are learnable using the modi�ed algorithm.

6. CONCLUSIONS

The paper introdued a new algorithm for learning losed Horn expressions

(CHE) and established the learnability of fully inequated losed Horn expressions

(FICHE). The struture of the algorithm is similar to previous ones, but it uses

arefully hosen operations that take advantage of the struture of funtional terms

in examples. This in turn leads to an improvement of worst ase bounds on the

number of queries required, whih is one of the main ontributions of the paper.

The following table ontains the results obtained in [11℄ for range restrited Horn

Expressions (RRHE) and in this paper for Closed Horn Expressions. This paper

extends [2℄ where similar bounds were obtained for RRHE.

Class EntEQ EntMQ

Result in [11℄ RRHE O(mst

t+a

) O(ms

2

t

t+a

e

a+1

t

+m

2

s

2

t

3t+2a

)

Our result CHE O(mst

k+a

) O(ms

2

t

k+a

e

a+1

t

+m

2

s

2

t

3k+2a

)

Our result FICHE O(mst

a

) O(ms

2

t

a

e

a+1

t

+m

2

s

2

t

k+2a

)

Notie that we signi�antly improve previous results by removing the exponential

dependene of the number of queries on the number of terms. However, we still

remain exponential on the number of variables. The bounds are further improved for

the ase of FICHE. This may be signi�ant as in many ases, while inequalities are

not expliitly written, the intention is that di�erent terms denote di�erent objets.

The redution in the number of queries goes beyond worst ase bounds. The

restrition that pairings are both basi and agree with the lgg table is quite strong

and redues the number of pairings and hene queries. This is not reeted in

our analysis but we believe it will make a di�erene in pratie. Similarly, the

bound m

0

� mt

k

on jU(T)j is quite loose, as a large proportion of partitions will

be disarded if T inludes funtional struture.

Another important di�erene is that the proof in [11℄ assumes that the number

of funtion symbols is �nite. Our proof holds even when the set of funtion symbols

is in�nite or unknown, as long as examples have �nite desriptions.

It is interesting to ompare this result to other similar e�orts in [9, 21, 3, 20, 19℄.

The results in [9, 21℄ rely on the fat that no haining or self-resolution is possible

between rules. Thus subsumption and impliation are the same and it is easy

to know whih examples to ombine in the generalisation proess. The results

in [3, 20℄ allow reursion and haining but assume the expressions are ayli in

terms of haining order, and that an additional query is allowed whih indiates

this order; in addition [3℄ assumes onstrained expressions and [20℄ assumes range

restrited expressions. So both results are overed by our algorithm as speial ases.

On the other hand their omplexity is lower than in our ase. In partiular they

are polynomial in the number of variables whereas our algorithm is exponential.

It would be interesting to �nd out whether suh redued omplexity is possible

without the use of additional query types. One way to explore this question is to

study the query omplexity of the problem (ignoring omputational omplexity) by

LEARNING CLOSED HORN EXPRESSIONS 35

using the notion of erti�ates [8, 7℄. The result in [19℄ goes beyond onstrained

lauses by allowing additional length bounded terms in lause bodies, but uses

\subsumption-queries" to deide how to ombine examples. If we allow suh terms

in our setting we must inlude them in the intermediate term set urrently aptured

by the set Atoms

P

([s; ℄). Unfortunately, several ruial steps in our proof require

that this set does not use additional terms. It remains to be seen whether suh a

generalisation is possible.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewer whose omments helped improve our

omplexity results.

REFERENCES

1. M. Arias and R. Khardon. Learning Inequated Range Restrited Horn Expressions. Tehnial

Report EDI-INF-RR-0011, Division of Informatis, University of Edinburgh, Marh 2000.

2. M. Arias and R. Khardon. A new algorithm for learning range restrited Horn expressions.

In Proeedings of the 10th International Conferene on Indutive Logi Programming, pages

21{39. Springer-Verlag, 2000. LNAI 1866.

3. Hiroki Arimura. Learning ayli �rst-order Horn sentenes from entailment. In Proeedings

of the International Conferene on ALT, Sendai, Japan, 1997. Springer-Verlag. LNAI 1316.

4. W. Cohen. PAC-learning reursive logi programs: EÆient algorithms. Journal of Arti�ial

Intelligene Researh, 2:501{539, 1995.

5. W. Cohen. PAC-learning reursive logi programs: Negative results. Journal of Arti�ial

Intelligene Researh, 2:541{573, 1995.

6. M. Frazier and L. Pitt. Learning from entailment: An appliation to propositional Horn

sentenes. In Proeedings of the International Conferene on Mahine Learning, pages 120{

127, Amherst, MA, 1993. Morgan Kaufmann.

7. T. Hegedus. On generalized teahing dimensions and the query omplexity of learning. In

Proeedings of the 8th Annual Conferene on Computational Learning Theory (COLT'95),

pages 108{117, New York, NY, USA, July 1995. ACM Press.

8. Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and Dawn Wilkins. How many

queries are needed to learn? Journal of the ACM, 43(5):840{862, September 1996.

9. Charles David Page Jr. Anti-uni�ation in onstraint logis: Foundations and appliations

to learnability in �rst-order logi, to speed-up learning, and to dedution. Tehnial Report

UIUCDCS-R-93-1820, University of Illinois at Urbana-Champaign, Department of Computer

Siene, 1993.

10. R. Khardon. Learning funtion free Horn expressions. Mahine Learning, 37:241{275, 1999.

11. R. Khardon. Learning range restrited Horn expressions. In Proeedings of the Fourth Euro-

pean Conferene on Computational Learning Theory, pages 111{125, Nordkirhen, Germany,

1999. Springer-verlag. LNAI 1572.

12. Roni Khardon. Learning Horn expressions with LogAn-H. In Proeedings of the International

Conferene on Mahine Learning, pages 471{478, 2000.

13. J.W. Lloyd. Foundations of Logi Programming. Springer Verlag, 1987.

14. S. Muggleton and C. Feng. EÆient indution of logi programs. In S. Muggleton, editor,

Indutive Logi Programming, pages 281{298. Aademi Press, 1992.

15. S. Muggleton and L. De Raedt. Indutive logi programming: Theory and methods. The

Journal of Logi Programming, 19 & 20:629{680, May 1994.

16. S. Nienhuys-Cheng and R. De Wolf. Foundations of Indutive Logi Programming. Springer-

verlag, 1997. LNAI 1228.

17. G. D. Plotkin. A note on indutive generalization. Mahine Intelligene, 5:153{163, 1970.

18. L. De Raedt and M. Bruynooghe. An overview of the interative onept-learner and the-

ory revisor CLINT. In S. Muggleton, editor, Indutive Logi Programming, pages 163{192.

Aademi Press, 1992.

36 ARIAS AND KHARDON

19. K. Rao and A. Sattar. Learning from entailment of logi programs with loal variables. In

Proeedings of the International Conferene on Algorithmi Learning Theory, Otzenhausen,

Germany, 1998. Springer-verlag. LNAI 1501.

20. C. Reddy and P. Tadepalli. Learning �rst order ayli Horn programs from entailment. In

International Conferene on Indutive Logi Programming, pages 23{37, Madison, WI, 1998.

Springer. LNAI 1446.

21. C. Reddy and P. Tadepalli. Learning Horn de�nitions: Theory and an appliation to planning.

New Generation Computing, 17:77{98, 1999.

22. G. Semeraro, F. Esposito, D. Malerba, and N. Fanizzi. A logi framework for the inremental

indutive synthesis of datalog theories. In Proeedings of the International Conferene on

Logi Program Synthesis and Transformation (LOPSTR'97). Springer-Verlag, 1998. LNAI

1463.

23. E. Y. Shapiro. Algorithmi Program Debugging. MIT Press, Cambridge, MA, 1983.

