Learning Closed Horn Expressions ${ }^{1}$

Marta Arias and Roni Khardon
Electrical Engineering and Computer Science, Tufts University 161 College Avenue, Medford, MA 02155, USA
E-mail: \{marias,roni\}@eecs.tufts.edu

Abstract

The paper studies the learnability of Horn expressions within the framework of learning from entailment, where the goal is to exactly identify some pre-fixed and unknown expression by making queries to membership and equivalence oracles. It is shown that a class that includes both Range Restricted Horn Expressions (where terms in the conclusion also appear in the condition of a Horn clause) and Constrained Horn Expressions (where terms in the condition also appear in the conclusion of a Horn clause) is learnable. This extends previous results by showing that a larger class is learnable with better complexity bounds. A further improvement in the number of queries is obtained when considering the class of Horn expressions with inequalities on all syntactically distinct terms.

Key Words: Computational learning theory, Inductive logic programming, Horn expressions, algorithms, queries

1. INTRODUCTION

This paper considers the problem of learning an unknown first order expression T (often called target expression) from examples of clauses that T entails or does not entail. This type of learning framework is known as learning from entailment. Frazier \& Pitt [6] formalised learning from entailment using equivalence queries and membership queries and showed the learnability of propositional Horn expressions. Generalising this result to the first order setting is of clear interest. Indeed, several works have been done following this line $[9,3,20,19,10,11,2]$ obtaining algorithms that work for certain subsets of Horn expressions.

Learning first order Horn expressions has become a fundamental problem in Inductive Logic Programming [15]. Theoretical results have shown that learning from examples only is feasible for very restricted classes [4] and that, in fact, learnability becomes intractable when slightly more general classes are considered [5]. To

[^0]tackle this problem, learners have been equipped with the ability to ask questions. It is the case that with this ability larger classes can be learned. In this paper, the questions that the learner is allowed to ask are membership and equivalence queries. While our work is purely theoretical, there are systems that are able to learn using equivalence and membership queries (MIS [23], CLINT [18], for example). Some of the techniques developed in this framework have been adapted for systems that learn from examples only $[21,12]$.

We present an algorithm to learn certain subsets of Horn expressions. The algorithm is related to the ones in [10, 11], which learn Range Restricted Horn expressions. The algorithms in $[10,11]$ and here use two main procedures. The first, given a counterexample clause, minimises the clause while maintaining it as a counterexample. The minimisation procedure used here is stronger than those in [10, 11], resulting in a clause which includes a syntactic variant of a target clause as a subset. The second procedure combines two examples producing a new clause that may be a better approximation for the target. While the algorithm in [10, 11] uses direct products of models we use an operation based on the lgg (least general generalisation [17]). The use of $l g g$ seems a more natural and intuitive technique to use for learning from entailment, and it has been used before, both in theoretical and applied work [3, 20, 19, 14]. The class of Closed Horn Expressions shown to be learnable here, includes both the class of Range Restricted Horn Expressions, the class of Constrained Horn Expressions and their union ${ }^{2}$. In addition, the complexity of the algorithm is better than that of the algorithm in [10, 11].

We extend our results to the class of Fully Inequated Closed Horn Expressions. The main property of this class is that it does not allow unification of its terms. To avoid unification, every clause in this class includes in its antecedent a series of inequalities between all its terms. With a minor modification to the learning algorithm, we are able to show learnability of the class of fully inequated closed Horn expressions. The more restricted nature of this class allows for better bounds to be derived.

The rest of the paper is organised as follows. Section 2 gives some preliminary definitions. The learning algorithm is presented in Section 3 and proved correct in Section 4. The results are extended to the fully inequated case in Section 5. Finally, Section 6 compares the results obtained in this paper with previous results and includes further discussion of the result and related work.

2. PRELIMINARIES

We consider a subset of the class of universally quantified expressions in first order logic. In the learning problem, a pre-fixed known and finite signature of the language is assumed. This signature \mathcal{S} consists of a finite set of predicates P and a finite set of functions F, both predicates and functions with their associated arity. Constants are functions with arity 0 . A set of variables $x_{1}, x_{2}, x_{3}, \ldots$ is used to construct expressions.

[^1]Definitions of first order languages can be found in standard texts, e.g. [13]. Here we briefly introduce the necessary constructs. A variable is a term of depth 0 . If t_{1}, \ldots, t_{n} are terms, each of depth at most i and one with depth precisely i and $f \in F$ is a function symbol of arity n, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term of depth $i+1$.

An atom is an expression $p\left(t_{1}, \ldots, t_{n}\right)$ where $p \in P$ is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms. An atom is called a positive literal. A negative literal is an expression $\neg l$ where l is a positive literal.

Let X be a term, or set of terms, or atom, or set of atoms. The set $\operatorname{Terms}(X)$ is the set of terms and subterms appearing in X.

Let P be a set of predicates together with their arities, and X a term, or set of terms, or atom, or set of atoms. The set $\operatorname{Atoms}_{P}(X)$ is the set of atoms built from predicate symbols in P (of the correct arity) and terms in $\operatorname{Terms}(X)$.

Example 2.1. Suppose $P=\{p / 2, q / 1\}$ and r is a predicate of arity 1 .

- $\operatorname{Terms}(f(x, g(a)))=\{x, a, g(a), f(x, g(a))\}$
- Atoms ${ }_{P}(r(f(1)))=\{p(1,1), p(1, f(1)), p(f(1), 1), p(f(1), f(1)), q(1), q(f(1))\}$

A clause is a disjunction of literals where all variables are universally quantified. A Horn clause has at most one positive literal and an arbitrary number of negative literals. A Horn clause $\neg p_{1} \vee \ldots \vee \neg p_{n} \vee p_{n+1}$ is equivalent to its implicational form $p_{1} \wedge \ldots \wedge p_{n} \rightarrow p_{n+1}$. We call $p_{1} \wedge \ldots \wedge p_{n}$ the antecedent and p_{n+1} the consequent of the clause. A Horn clause is definite if it has exactly one positive literal.

A Range Restricted Horn clause $s \rightarrow b$ is a definite Horn clause in which every term appearing in its consequent also appears in its antecedent, possibly as a subterm of another term. That is, Terms $(b) \subseteq \operatorname{Terms}(s)$. A Range Restricted Horn Expression is a conjunction of Range Restricted Horn clauses.

A Constrained Horn clause $s \rightarrow b$ is a definite Horn clause in which every term appearing in its antecedent also appears in its consequent, possibly as a subterm of another term. That is, Terms $(s) \subseteq \operatorname{Terms}(b)$. A Constrained Horn Expression is a conjunction of Constrained Horn clauses.

The truth value of first order expressions is defined relative to an interpretation I of the predicates and function symbols in the signature \mathcal{S}. An interpretation (also called structure or model) I includes a domain D which is a set of elements. For each function $f \in F$ of arity n, I associates a mapping from D^{n} to D. For each predicate symbol $p \in P$ of arity n, I specifies the truth value of p on n-tuples over D. The extension of a predicate in I is the set of positive instantiations of the predicate that are true in I.

Let p be an atom, I an interpretation and θ a mapping of the variables in p to objects in I. The positive literal $p \cdot \theta$ is true in I if it appears in the extension of I. A negative literal is true in I if its negation is not.

A Horn clause $C=p_{1} \wedge \ldots \wedge p_{n} \rightarrow p_{n+1}$ is true in a given interpretation I, denoted $I=C$ if for any variable assignment θ (a total function from the variables in C into the domain elements of I), if all the literals in the antecedent $p_{1} \theta, \ldots, p_{n} \theta$ are true in I, then the consequent $p_{n+1} \theta$ is also true in I. A Horn Expression T is true in I, denoted $I \models T$, if all of its clauses are true in I. The expressions T is true in I, I satisfies T, I is a model of T, and $I=T$ are equivalent.

Let T_{1}, T_{2} be two Horn expressions. We say that $T_{1} \operatorname{implies} T_{2}$, denoted $T_{1} \models T_{2}$, if every model of T_{1} is also a model of T_{2}.

A multi-clause is a pair of the form $[s, c]$, where both s and c are sets of atoms such that $s \cap c=\emptyset ; s$ is the antecedent of the multi-clause and c is the consequent. Both are interpreted as the conjunction of the atoms they contain. Therefore, the multi-clause $[s, c]$ is interpreted as the logical expression $\bigwedge_{b \in c} s \rightarrow b$. An ordinary clause $C=s_{c} \rightarrow b_{c}$ corresponds to the multi-clause $\left[s_{c},\left\{b_{c}\right\}\right]$.

Example 2.2. We represent multi-clauses using set notation: e.g., the multiclause $[\{p(x, f(a)), q(y)\},\{r(a), r(f(a)\}]$ is interpreted as the logical expression

$$
(p(x, f(a)) \wedge q(y) \rightarrow r(a)) \wedge(p(x, f(a)) \wedge q(y) \rightarrow r(f(a)))
$$

The definition of the sets Atoms $_{P}$ and Terms is extended to include clauses and multi-clauses as the input argument in the natural way. That is: $\operatorname{Terms}(s \rightarrow b)=$ $\operatorname{Terms}(s \cup\{b\})$ and $\operatorname{Terms}([s, c])=\operatorname{Terms}(s \cup c)$. Similarly, $\operatorname{Atoms}_{P}(s \rightarrow b)=$ Atoms $_{P}(s \cup\{b\})$ and Atoms $_{P}([s, c])=$ Atoms $_{P}(s \cup c)$.

A multi-clause $[s, c]$ is range restricted if $\operatorname{Terms}(c) \subseteq \operatorname{Terms}(s)$; it is constrained if $\operatorname{Terms}(s) \subseteq \operatorname{Terms}(c)$.

A logical expression T implies (or logically entails) a multi-clause $[s, c]$ if it implies all of its single clause components. That is, $T=[s, c]$ if $T=\bigwedge_{b \in c} s \rightarrow b$.

The size of a term is the number of occurrences of variables plus twice the number of occurrences of function symbols (including constants). The size of an atom is the sum of the sizes of the (top-level) terms it contains plus 1. The size of a set of atoms is the sum of sizes of atoms in it.

Let s_{1}, s_{2} be two sets of atoms. We say that s_{1} subsumes s_{2} (denoted $s_{1} \preceq s_{2}$) if and only if there exists a substitution θ such that $s_{1} \cdot \theta \subseteq s_{2}$. We also say that s_{1} is a generalisation of s_{2}. Equivalently, s_{2} is a instance of s_{1}.

Let s be a set of atoms. Then $\operatorname{ineq}(s)$ is the set of all inequalities between terms appearing in s. As an example, let s be the set $\{p(x, y), q(f(y))\}$ with terms $\{x, y, f(y)\}$. Then $\operatorname{ineq}(s)=\{x \neq y, x \neq f(y), y \neq f(y)\}$ also written as $(x \neq y \neq$ $f(y)$) for short.

Definition 2.1. A derivation of a clause $C=A \rightarrow a$ from a Horn expression T is a finite directed acyclic graph G with the following properties. Nodes in G are atoms possibly containing variables. The node a is the unique node of out-degree zero. For each node b in G, let $\operatorname{Pred}(b)$ be the set of nodes b^{\prime} in G with edges from b^{\prime} to b. Then, for every node b in G, either $b \in A$ or $\operatorname{Pred}(b) \rightarrow b$ is an instance of a clause in T. A derivation G of C from T is minimal if no proper subgraph of G is also a derivation of C from T. A minimal derivation G of a clause $C=A \rightarrow a$ from a Horn expression T is said to be trivial if all nodes b of G are contained in $A \cup\{a\}$, otherwise it is nontrivial.

Theorem 2.1. Let T be any Horn expression and C be a Horn clause which is not a tautology. If $T \models C$, then there is a minimal derivation of C from T.

Proof. As proved by the Subsumption Theorem for SLD-resolution (Theorem 7.10 in [16]), there is a SLD-resolution of C from T. By induction on the depth of the SLD-resolution tree we can show how to transform any SLD-resolution into a derivation graph of C from T. Therefore, there is a derivation graph of C from T which guarantees that there is a minimal one.

Definition 2.2. A class \mathcal{C} of Horn Expressions is closed if for every pair of atoms b and b^{\prime}, every set of atoms s and every Horn expression $T \in \mathcal{C}$, if b^{\prime} is used in a minimal derivation of $s \rightarrow b$ from T, then $b^{\prime} \in \operatorname{Atoms}_{P}(s \rightarrow b)$.

Lemma 2.1. The following classes are closed: RRHE, the class of Range Restricted Horn Expressions, COHE the class of Constrained Horn Expressions and RRCOHE the class RRHE $\cup C O H E$.

Proof. For RRHE: if b^{\prime} appears in any derivation of $T \models s \rightarrow b$, where T is a range restricted Horn expression and s is a set of atoms, then obviously, $T \models s \rightarrow b^{\prime}$. T is range restricted and therefore b^{\prime} is made out of terms in s only. Thus, $b^{\prime} \in$ Atoms $_{P}(s) \subseteq$ Atoms $_{P}(s \rightarrow b)$.

For $C O H E$: consider any minimal derivation of $s \rightarrow b$ from a constrained Horn expression T. If b^{\prime} appears in the derivation, then, since T is constrained, b^{\prime} must be made out of terms in b only. Thus, $b^{\prime} \in \operatorname{Atoms}_{P}(b) \subseteq \operatorname{Atoms}_{P}(s \rightarrow b)$.

For $R R C O H E$ the property follows immediately since $R R C O H E$ is the disjoint union of RRHE and COHE.

Notice that any expression in $R R C O H E$ is either a range restricted Horn expression or a constrained Horn expression. This is not the class of expressions whose clauses are either range restricted or constrained. In the class considered here we do not allow expressions with mixed types of clauses.

Definition 2.3. A multi-clause $[s, c]$ is correct w.r.t. a Horn expression T if $T \models[s, c]$. A multi-clause $[s, c]$ is closed w.r.t. a Horn expression T if for all $b \in \operatorname{Atoms}_{P}(s \cup c) \backslash s$ such that $T \models s \rightarrow b, b \in c$. A multi-clause $[s, c]$ is full if it is correct and closed.

2.1. Most General Unifier

Let Σ be a finite set of expressions (here by "expressions" we mean terms or atoms). A substitution θ is called a unifier for Σ if $\Sigma \cdot \theta$ is a singleton. If there exists a unifier for Σ, we say that Σ is unifiable. The only expression in $\Sigma \cdot \theta$ will also be called a unifier.

The substitution θ is a most general unifier (abbreviated to $m g u$) for Σ if θ is a unifier for Σ and if for any other unifier σ there is a substitution γ such that $\sigma=\theta \gamma$. Also, the only element in $\Sigma \cdot \theta$ will be called a $m g u$ of Σ if θ is a $m g u$.

The disagreement set of a finite set of expressions Σ is defined as follows. Locate the leftmost symbol position at which not all members of Σ have the same symbol,
and extract from each expression in Σ the subexpression beginning at that symbol position. The set of all these expressions is the disagreement set.

Example 2.3. $\quad \Sigma=\{p(x, \underline{y}, v), p(x, \underline{f(g(a))}, x), p(x, \underline{f(z)}, f(a))\}$. Its disagreement set is $\{y, f(g(a)), f(z)\}$.

Algorithm 1 (The Unification Algorithm).

1. Let Σ be the set of expressions to be unified.
2. Set k to 0 and σ_{0} to \emptyset, the empty substitution.
3. Repeat until $\Sigma \cdot \sigma_{k}$ is a singleton
4. Let D_{k} be the disagreement set for $\Sigma \cdot \sigma_{k}$.
5. If there exist x, t in D_{k} s. t. x is a variable not occurring in t
6. Then set $\sigma_{k+1}=\sigma_{k} \cdot\{x \mapsto t\}$.
7. Else report that Σ is not unifiable and stop.
8. Return σ_{k}.

Theorem 2.2 (Unification Theorem). Let Σ be a finite set of expressions. If Σ is unifiable, then the Unification Algorithm terminates and gives a mgu for Σ. If Σ is not unifiable, then the Unification Algorithm terminates and reports the fact that Σ is not unifiable.

Proof. See [13].

2.2. Least General Generalisation

The algorithm proposed uses the least general generalisation or lgg operation [17]. This operation computes a generalisation of two sets of literals. It works as follows.

The $l g g$ of two terms $f\left(s_{1}, \ldots, s_{n}\right)$ and $g\left(t_{1}, \ldots, t_{m}\right)$ is defined as the term

$$
f\left(\lg g\left(s_{1}, t_{1}\right), \ldots, \lg g\left(s_{n}, t_{n}\right)\right)
$$

if $f=g$ and $n=m$. Otherwise, it is a new variable x, where x stands for the $l g g$ of that pair of terms throughout the computation of the lgg . This information is kept in what we call the lgg table.

The $l g g$ of two compatible atoms $p\left(s_{1}, \ldots, s_{n}\right)$ and $p\left(t_{1}, \ldots, t_{n}\right)$ is the atom

$$
p\left(\lg g\left(s_{1}, t_{1}\right), \ldots, \lg g\left(s_{n}, t_{n}\right)\right)
$$

The $l g g$ is only defined for compatible atoms, that is, atoms with the same predicate symbol and arity.

The $l g g$ of two compatible positive literals l_{1} and l_{2} is the $l g g$ of the underlying atoms. The lgg of two compatible negative literals l_{1} and l_{2} is the negation of the lgg of the underlying atoms. Two literals are compatible if they share predicate symbol, arity and sign.

The $l g g$ of two sets of literals s_{1} and s_{2} is the set

$$
\left\{\operatorname{lgg}\left(l_{1}, l_{2}\right) \mid\left(l_{1}, l_{2}\right) \text { are two compatible literals of } s_{1} \text { and } s_{2}\right\} .
$$

It is important to note that all lggs share the same table.
Example 2.4. Let $s_{1}=\{p(a, f(b)), p(g(a, x), c), q(a)\}$.
Let $s_{2}=\{p(z, f(2)), q(z)\}$.
Their $\lg g$ is $\operatorname{lgg}\left(s_{1}, s_{2}\right)=\{p(X, f(Y)), p(Z, V), q(X)\}$.
The $l g g$ table produced during the computation of $\lg g\left(s_{1}, s_{2}\right)$ is

$$
\begin{array}{ll}
{[\mathrm{a}-\mathrm{z}=>\mathrm{X}]} & (\text { from } p(\underline{a}, f(b)) \text { with } p(\underline{z}, f(2))) \\
{[\mathrm{b}-2 \Rightarrow \mathrm{Y}]} & (\text { from } p(a, f(\underline{b})) \text { with } p(z, f(\underline{2}))) \\
{[\mathrm{f}(\mathrm{~b})-\mathrm{f}(2) \Rightarrow \mathrm{f}(\mathrm{Y})]} & (\text { from } p(a, \underline{f(b)}) \text { with } p(z, \underline{f(2)))} \\
{[\mathrm{g}(\mathrm{a}, \mathrm{x})-\mathrm{z}=>\mathrm{Z}]} & (\text { from } p(\underline{g(a, x)}, c) \text { with } p(\underline{z}, f(2))) \\
{[\mathrm{c}-\mathrm{f}(2)=>\mathrm{V}]} & (\text { from } p(g(a, x), \underline{c}) \text { with } p(z, \underline{f(2)}))
\end{array}
$$

2.3. The Learning Model

We consider the model of exact learning from entailment [6]. In this model examples are clauses. Let T be the target expression, H any hypothesis presented by the learner and C any clause. An example C is positive for a target theory T if $T \models C$, otherwise it is negative. The learning algorithm can make two types of queries. An Entailment Equivalence Query (EntEQ) returns "Yes" if $H=T$ and otherwise it returns a clause C that is a counter example, i.e., $T \neq C$ and $H \not \vDash C$ or vice versa. For an Entailment Membership Query (EntMQ), the learner presents a clause C and the oracle returns "Yes" if $T \neq C$, and "No" otherwise. The aim of the learning algorithm is to exactly identify the target expression T by making queries to the equivalence and membership oracles.

3. THE ALGORITHM

Before presenting the algorithm, we define some operations. Suppose that the class \mathcal{C} is closed. Suppose that $H, T \in \mathcal{C}$. Then we define:

- TClosure $_{T}([s, c])=\left[s,\left\{b \in\right.\right.$ Atoms $\left.\left._{P}(s \cup c) \backslash s \mid T \models s \rightarrow b\right\}\right]$
- HClosure $_{H}([s, c])=\left[\left\{b \in\right.\right.$ Atoms $\left.\left._{P}(s \cup c) \mid H \models s \rightarrow b\right\}, c\right]$
- $r h s_{T}(s, c)=\{b \in c \mid T \models s \rightarrow b\}$

The algorithm computes these operations for the case when T is the target expression and H is a hypothesis. In practice, we do not know what the target expression T is, but we can use the $E n t M Q$ oracle to compute TClosure $_{T}$ and $r h s_{T}$. Since T always refers to the target expression, we omit the " T " subscript and write:

- TClosure $([s, c])=\left[s,\left\{b \in\right.\right.$ Atoms $\left.\left._{P}(s \cup c) \backslash s \mid \operatorname{EntMQ}(s \rightarrow b)=Y e s\right\}\right]$
- $r h s(s, c)=\{b \in c \mid E n t M Q(s \rightarrow b)=Y e s\}$

Notice that, in general, the computation of HClosure might not be feasible. However, in our case, we will show that this can be done with a polynomial number
of subsumption tests by forward chaining. This is due to the fact that we only check for atoms in the polynomially bounded set $\operatorname{Atoms}_{P}(s \cup c)$ as potential consequents. We will incrementally construct the set of consequents (CONS in the algorithm), starting with the antecedent s. The algorithm is as follows:

Algorithm 2 (The HClosure (s, c) Procedure).

1. $C O N S=s$.
2. Repeat until no more atoms are added to $C O N S$
3. For every atom b in Atom $_{P}(s \cup c) \backslash C O N S$ do
4. If clause $C O N S \rightarrow b$ is subsumed by a clause $C \in H$
5. Then Set $C O N S=C O N S \cup\{b\}$.
6. Return $[C O N S, c]$

Lemma 3.1. Algorithm 2 computes the set $\operatorname{HClosure}(s, c)$.

Proof. Take any atom $b \in \operatorname{HClosure}(s, c)$. By Theorem 2.1, there is a derivation of $s \rightarrow b$ from H. The previous algorithm searches through all possible closed derivations, therefore it will eventually reach the node b in the corresponding derivation, and b will be included in the set CONS. Soundness of forward chaining guarantees that atoms not in $H C l o s u r e(s, c)$ are never added to the set CONS .

We finally present our learning algorithm.
Algorithm 3 (The Learning Algorithm).

1. Set S to be the empty sequence and H to be the empty hypothesis.
2. Repeat until $\operatorname{Ent} E Q(H)$ returns "Yes":
3. Minimise the counterexample x - use calls to $E n t M Q$

Let $\left[s_{x}, c_{x}\right]$ be the minimised counterexample produced.
4. Find the first $\left[s_{i}, c_{i}\right] \in S$ such that there is a basic pairing $[s, c]$ of [s_{i}, c_{i}] and $\left[s_{x}, c_{x}\right]$ satisfying:
(i) $r h s(s, c) \neq \emptyset$ and
(ii) $\operatorname{size}(s) \lesseqgtr \operatorname{size}\left(s_{i}\right)$ or $\left(\operatorname{size}(s)=\operatorname{size}\left(s_{i}\right)\right.$ and $\left.\operatorname{size}(c) \lesseqgtr \operatorname{size}\left(c_{i}\right)\right)$
5. If such an $\left[s_{i}, c_{i}\right]$ is found
6. Then replace it by the multi-clause $[s, r h s(s, c)]$
7. Else append $\left[s_{x}, c_{x}\right]$ to S
8. \quad Set H to $\bigwedge_{[s, c] \in S}\{s \rightarrow b \mid b \in c\}$

9. Return H

The algorithm follows pretty much the structure of the algorithm in [6] for the propositional case. It keeps a sequence S of representative multi-clauses. The hypothesis H is generated from this sequence, and the main task of the algorithm is to refine the counterexamples in S in order to get a more accurate hypothesis in each iteration of the main loop (line 2) until hypothesis and target expression coincide.

There are two basic operations on counterexamples that need to be explained in detail. These are minimisation (line 3), that takes a counterexample as given by
the equivalence oracle and produces a positive, full counterexample; and pairing (line 4), that takes two counterexamples and generates a series of candidate counterexamples. The counterexamples obtained by combination of previous ones (by pairing them) are the candidates to refine the sequence S.

3.1. Minimising the counterexample

The minimisation procedure has to transform a counterexample clause $A \rightarrow a$ as generated by the equivalence query oracle into a multi-clause counterexample [$\left.s_{x}, c_{x}\right]$ ready to be handled by the learning algorithm.

Algorithm 4 (The Minimisation Procedure).

1. Let $A \rightarrow a$ be the counterexample obtained by the $E n t E Q$ oracle.
2. Set $\left[s_{x}, c_{x}\right]$ to TClosure (HClosure $\left.([A,\{a\}])\right)$.
3. For every functional term t in $s_{x} \cup c_{x}$, in decreasing order of size do
4. Let $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ be the multi-clause obtained from $\left[s_{x}, c_{x}\right]$
after substituting all occurrences of the term t
by a new variable x_{t}
5. If $r h s\left(s_{x}^{\prime}, c_{x}^{\prime}\right) \neq \emptyset$ then set $\left[s_{x}, c_{x}\right]$ to $\left[s_{x}^{\prime}, r h s\left(s_{x}^{\prime}, c_{x}^{\prime}\right)\right]$
6. For every term t in $s_{x} \cup c_{x}$, in increasing order of size do
7. Let $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ be the multi-clause obtained after removing from $\left[s_{x}, c_{x}\right]$ all those atoms containing t
8. If $r h s\left(s_{x}^{\prime}, c_{x}^{\prime}\right) \neq \emptyset$ then set $\left[s_{x}, c_{x}\right]$ to $\left[s_{x}^{\prime}, r h s\left(s_{x}^{\prime}, c_{x}^{\prime}\right)\right]$
9. Return $\left[s_{x}, c_{x}\right]$

Example 3.1. This example illustrates the behaviour of the minimisation procedure. Parentheses are omitted; function f is unary. T consists of the single clause $p(a, f x) \rightarrow q(x)$. We start with the counterexample $[p(a, f 1), q(2), r(1) \rightarrow q(1)]$ as obtained after step 2 of the minimisation procedure. In the third column of the table, correct atoms in the consequent appear with a box around them. If no atom is correct, the multi-clause is not positive and the counterexample is not updated.

$\left[s_{x}, c_{x}\right]$	After generalising term	
$[p(a, f 1), q(2), r(1) \rightarrow q(1)]$	$f 1 \mapsto X$	$[p(a, X), q(2), r(1) \rightarrow q(1)]$
$[p(a, f 1), q(2), r(1) \rightarrow q(1)]$	$1 \mapsto X$	$[p(a, f X), q(2), r(X) \rightarrow \mathrm{q(X)}]$
$[p(a, f X), q(2), r(X) \rightarrow q(X)]$	$2 \mapsto Y$	$[p(a, f X), q(Y), r(X) \rightarrow \mathrm{q(X)}]$
$[p(a, f X), q(Y), r(X) \rightarrow q(X)]$	$a \mapsto Z$	$[p(Z, f X), q(Y), r(X) \rightarrow q(X)]$
$\left[s_{x}, c_{x}\right]$		After dropping term
$[p(a, f X), q(Y), r(X) \rightarrow q(X)]$	X	$[q(Y) \rightarrow]$
$[p(a, f X), q(Y), r(X) \rightarrow q(X)]$	Y	$[p(a, f X), r(X) \rightarrow q(X)]$
$[p(a, f X), r(X) \rightarrow q(X)]$	a	$[r(X) \rightarrow q(X)]$
$[p(a, f X), r(X) \rightarrow q(X)]$	$f X$	$[r(X) \rightarrow q(X)]$
$[p(a, f X), r(X) \rightarrow q(X)]$		

Notice that the minimised counterexample is very similar to the target clause. In fact, it is the case that every minimised counterexample contains a syntactic variant of one of the target clauses (Lemma 4.10). However, it may still contain extra atoms that the minimisation procedure is unable to get rid of - like $r(X)$ in Example 3.1 - these will have to disappear in some other way: pairing.

3.2. Pairings

A crucial process in the algorithm is how two counterexamples are combined into a new one, hopefully yielding a better approximation of some target clause. The operation proposed here uses pairings of clauses, based on the lgg.

We have two multi-clauses, $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$ that need to be combined. To do so, we generate a series of matchings between the terms of $s_{x} \cup c_{x}$ and $s_{i} \cup c_{i}$, and any of these matchings will produce the candidate to refine the sequence S.

3.2.1. Matchings

A matching is a set whose elements are pairs of terms $t_{x}-t_{i}$, where t_{x} and t_{i} are terms in $s_{x} \cup c_{x}$ and $s_{i} \cup c_{i}$, respectively. Usually, we denote a matching by the Greek letter σ. A matching σ should include all the terms in one of $s_{x} \cup c_{x}$ or $s_{i} \cup c_{i}$, more formally: $|\sigma|=\min \left(\left|\operatorname{Terms}\left(s_{x} \cup c_{x}\right)\right|,\left|\operatorname{Terms}\left(s_{i} \cup c_{i}\right)\right|\right)$. We only use 1-1 matchings, i.e., once a term has been included in the matching it cannot appear in any other entry of the matching.

Example 3.2. Let $\left[s_{x}, c_{x}\right]$ be $[\{p(a, b)\},\{q(a)\}]$ with terms $\{a, b\}$. Let $\left[s_{i}, c_{i}\right]$ be $[\{p(f(1), 2)\},\{q(f(1))\}]$ with terms $\{1,2, f(1)\}$. The 6 possible 1-1 matchings are:

$$
\begin{array}{lll}
\sigma_{1}=\{a-1, b-2\} & \sigma_{3}=\{a-2, b-1\} & \sigma_{5}=\{a-f(1), b-1\} \\
\sigma_{2}=\{a-1, b-f(1)\} & \sigma_{4}=\{a-2, b-f(1)\} & \sigma_{6}=\{a-f(1), b-2\}
\end{array}
$$

An extended matching is an ordinary matching with an extra column added to every entry of the matching. This extra column contains the lgg of every pair in the matching. The lggs are simultaneous, that is, they share the same table.

An extended matching σ is legal if every subterm of some term appearing as the $l g g$ of some entry, also appears as the $l g g$ of some other entry of σ. An ordinary matching is legal if its extension is.

Example 3.3. Parentheses are omitted as functions f and g are unary. Let σ_{1} be $\{a-c, f a-b, f f a-f b, g f f a-g f f c\}$ and $\sigma_{2}=\{a-c, f a-b, f f a-f b\}$. The matching σ_{1} is not legal, since the term $f X$ is not present in its extension column and it is a subterm of $g f f X$, which is present. The matching σ_{2} is legal.

Extended σ_{1}	Extended σ_{2}
$[\mathrm{a}-\mathrm{c}=>\mathrm{X}]$	$[\mathrm{a}-\mathrm{c}=>\mathrm{X}]$
$[\mathrm{fa}-\mathrm{b} \Rightarrow \mathrm{Y}]$	$[\mathrm{fa}-\mathrm{b}=>\mathrm{Y}]$
$[\mathrm{ffa}-\mathrm{fb} \Rightarrow \mathrm{fY}]$	$[\mathrm{ffa}-\mathrm{fb} \Rightarrow \mathrm{fY}]$
$[\mathrm{gffa}-\mathrm{gffc} \Rightarrow \mathrm{gffX}]$	

Our algorithm considers yet a more restricted type of matching. A basic matching σ is a 1-1, legal matching between two multi-clauses $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$. This operation is asymmetric and the order in which the arguments is given is relevant. It is only defined if the number of distinct terms in $\left[s_{x}, c_{x}\right]$ (first argument) is smaller or equal than the number of distinct terms in $\left[s_{i}, c_{i}\right]$ (second argument). It restricts how the functional structure of the terms is matched. More formally, if entry $f\left(t_{1}, \ldots, t_{n}\right)-t \in \sigma$, then $t=f\left(r_{1}, \ldots, r_{n}\right)$ and $t_{i}-r_{i} \in \sigma$ for all $i=1, \ldots, n$. As we show below, a basic matching maps all variables in $\left[s_{x}, c_{x}\right]$ to terms in $\left[s_{i}, c_{i}\right]$ and then adds the remaining entries following the functional structure of the terms in $\left[s_{x}, c_{x}\right]$. Therefore an entry $[\mathrm{x}-\mathrm{f}(\mathrm{y})]$ might be included in a basic pairing but an entry $\left[\mathrm{f}(\mathrm{y})-\mathrm{x}\right.$] cannot (terms on the left belong to $\left[s_{x}, c_{x}\right]$, terms on the right to $\left[s_{i}, c_{i}\right]$).

The following procedure shows how to construct basic matchings between multiclauses $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$.

Algorithm 5 (How to Construct Basic Matchings).

1. Match every variable in $s_{x} \cup c_{x}$ to a different term in $s_{i} \cup c_{i}$.

Every possibility will potentially yield to a basic matching
between $\left[s_{x}, c_{x}\right.$] and $\left[s_{i}, c_{i}\right]$
2. Complete all potential basic matchings by adding the functional terms in $s_{x} \cup c_{x}$ to the basic matchings as follows:
3. For every potential basic matching created in step 1 do
4. Consider all functional terms in $s_{x} \cup c_{x}$ in an upwards fashion, beginning with simpler terms:
5. For every term $f\left(t_{1}, \ldots, t_{n}\right)$ in $s_{x} \cup c_{x}$ such that all $\left[t_{i}-r_{i}\right]$ (with $i=1, \ldots, n$) appear in the basic matching already do
6. Add a new entry $\left[f\left(t_{1}, \ldots, t_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right)\right]$
7. If $f\left(r_{1}, \ldots, r_{n}\right)$ does not appear in $s_{i} \cup c_{i}$ or the term $f\left(r_{1}, \ldots, r_{n}\right)$ has been used already
8. Then discard the matching

Example 3.4. Let $s_{x} \cup c_{x}$ contain the terms $\{a, x, f x\}$ and $s_{i} \cup c_{i}$ the terms $\{a, 1,2, f 1\}$. No parentheses for functions are written. The algorithm starts by matching variables in $s_{x} \cup c_{x}$ to terms in $s_{i} \cup c_{i}$. Then, it matches functional terms in $s_{x} \cup c_{x}$ using the constraints described in the procedure above. This computation is described in the table below.

Terms	Matching 1	Matching 2	Matching 3	Matching 4
x	$[\mathrm{x}-\mathrm{a}]$	$[\mathrm{x}-\mathrm{1}]$	$[\mathrm{x}-2]$	$[\mathrm{x}-\mathrm{f} 1]$
a	NO! $[\mathrm{a}-\mathrm{a}]$	$[\mathrm{a}-\mathrm{a}]$	$[\mathrm{a}-\mathrm{a}]$	$[\mathrm{a}-\mathrm{a}]$
$f x$	DISCARDED	$[\mathrm{fx}-\mathrm{f} 1]$	NO! $[\mathrm{fx}-\mathrm{f} 2]$	NO! $[\mathrm{fx}-\mathrm{ff} 1]$
	DISCARDED	OK	DISCARDED	DISCARDED

The table is interpreted as follows. In the first column we have the terms in $s_{x} \cup c_{x}$ as how they would be considered by our algorithm. In the columns thereafter, we
have all potential matchings. The last row indicates which of the matchings has been discarded. The entries on top of the "OK" matchings contain the matching's pairs.

Notice that we have only 1 basic matching between the set of terms $\{a, x, f x\}$ and $\{a, 1,2, f 1\}$. Compare this with the 24 different 1-1 matchings that would be considered by previous algorithms. This difference grows with the complexity of the functional structure in the examples.

Lemma 3.2. The procedure described above finds all basic matchings between the two input multi-clauses and only basic matchings are produced.

Proof. First, we will show that every matching constructed by the procedure is basic. It is 1-1 because after step 1 the matchings are $1-1$, and the new pairs added in step 2 are checked not to be included in the matchings already. It is legal because only terms which have all of its subterms included in the matching are added. It is basic because functional structure is respected when adding a new pair.

Secondly, we will show that every basic matching will be found by the procedure. First notice that matchings including the combination of a pair [functional term in $s_{x} \cup c_{x}$ - variable in $s_{i} \cup c_{i}$] is not permitted, since subterms of the functional term in s_{x} have to be included in the matching and they would not have any possible legal term to be matched to because a variable has no subterms. Therefore, the only possibility involving variables is [variable in s_{x} - term in s_{i}]. All these are found in step 1 of the procedure and appropriately completed in step 2.

One of the key points of our algorithm lies in reducing the number of matchings needed to be checked by ruling out some of the candidate matchings that do not satisfy the restrictions imposed. By doing so we avoid testing too many pairings and hence avoid making unnecessary calls to the oracles. One of the restrictions has already been mentioned, it consists in considering basic pairings only, as opposed to considering every possible matching. This reduces the t^{t} possible distinct matchings to only t^{k} distinct basic pairings. Notice that there are a maximum of t^{k} basic matchings between $\left[s_{x}, c_{x}\right]$ with k variables and $\left[s_{i}, c_{i}\right]$ with t terms, since we only combine variables of s_{x} with terms in s_{i}. The other restriction on the candidate matching consists in the fact that every one of its entries must appear in the original $l g g$ table, as we will see in the next section.

3.2.2. Pairings

Pairing is an operation that takes two multi-clauses and a matching between its terms and produces another multi-clause. We say that the pairing is induced by the matching it is fed as input. A legal pairing is a pairing for which the inducing matching is legal; a basic pairing is one for which the inducing matching is basic.

The antecedent s of the pairing is computed as the $l g g$ of s_{x} and s_{i} restricted to the matching σ inducing it; we denote this by $\lg g_{\left.\right|_{\sigma}}\left(s_{x}, s_{i}\right)$. An atom is included in the pairing only if all of its top-level terms appear as entries in the extended matching. This restriction is quite strong in the sense that, for example, if an atom $p(f(x))$ appears in both s_{x} and s_{i} then their $\lg g p(f(x))$ will not be included unless
the entry $[f(x)-f(x) \Rightarrow f(x)]$ appears in the matching. In case $[x-x=>$ x] appears but $[\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{x}) \Rightarrow \mathrm{f}(\mathrm{x})$] does not, the atom $p(f(x))$ is ignored. We only consider matchings that are subsets of the lgg table.

The consequent c of the pairing is computed as the union of the sets $l g g_{\left.\right|_{\sigma}}\left(s_{x}, c_{i}\right)$, $l g g_{\left.\right|_{\sigma}}\left(c_{x}, s_{i}\right)$ and $l g g_{\left.\right|_{\sigma}}\left(c_{x}, c_{i}\right)$. Note that in the consequent all the possible $l g g \mathrm{~s}$ of pairs among $\left\{s_{x}, c_{x}\right\}$ and $\left\{s_{i}, c_{i}\right\}$ are included except $\lg g_{\left.\right|_{\sigma}}\left(s_{x}, s_{i}\right)$, which constitutes the antecedent.

When computing any of the lggs, the same table is used. That is, the same pair of terms will be bound to the same expression in any of the four possible lggs that are computed in a pairing. The paring between $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$ induced by σ is computed as follows:

Algorithm 6 (The Pairing Procedure).

1. Set s to $\lg g_{\left.\right|_{\sigma}}\left(s_{x}, s_{i}\right)$
2. Set c to $l g g_{\left.\right|_{\sigma}}\left(s_{x}, c_{i}\right) \cup l g g_{\left.\right|_{\sigma}}\left(c_{x}, s_{i}\right) \cup l g g_{\left.\right|_{\sigma}}\left(c_{x}, c_{i}\right)$
3. Return $[s, c]$

Example 3.5. The table below describes two examples. Both examples have the same terms as in Example 3.4, so there is only one basic matching. Ex. 3.5.1 shows how to compute a pairing. Ex. 3.5.2 shows that a basic matching may be rejected if it does not agree with the $\lg g$ table (entries $[\mathrm{x}-1 \Rightarrow \mathrm{X}$] and [fx $\mathrm{f} 1 \mathrm{f}=\mathrm{fX}$] do not appear in the $l g g$ table).

	Example 3.5.1	Example 3.5.2
s_{x}	$\{p(a, f x)\}$	$\{p(a, f x)\}$
s_{i}	$\{p(a, f 1), p(a, 2)\}$	$\{q(a, f 1), p(a, 2)\}$
$\operatorname{lgg}\left(s_{x}, s_{i}\right)$	$\{p(a, f X), p(a, Y)\}$	$\{p(a, Y)\}$
$l g g$ table	$[\mathrm{a}-\mathrm{a}=>\mathrm{a}]$	$[\mathrm{a}-\mathrm{a}=\mathrm{a}]$
	$[\mathrm{x}-1=>\mathrm{X}]$	$[\mathrm{fx}-2=>\mathrm{Y}]$
basic σ	$[\mathrm{fx}-\mathrm{f} 1 \Rightarrow \mathrm{fX}]$	
	$[\mathrm{fx}-2=>\mathrm{Y}]$	$[\mathrm{a}-\mathrm{a}=>\mathrm{a}]$
	$[\mathrm{a}-\mathrm{a}=>\mathrm{a}]$	$[\mathrm{x}-1=>\mathrm{X}]$
$\lg g_{\left.\right\|_{\sigma}}\left(s_{x}, s_{i}\right)$	$[\mathrm{x}-1=>\mathrm{X}]$	$[\mathrm{fx}-\mathrm{f} 1=>\mathrm{fX}]$

As the examples demonstrate, the requirement that the matchings are both basic and comply with the lgg table is quite strong. The more structure examples have, the greater the reduction in possible pairings (and hence queries) is, since that structure needs to be matched. While it is not possible to quantify this effect without introducing further parameters, we expect this to be a considerable improvement in practice.

A note for potential implementations. In practice, when trying to construct basic pairings between s_{x} and s_{i} it is better to consider as entries for the matching
those entries appearing in the $l g g$ table only. That is, when combining multi-clauses [$\left.s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$, one would first compute the $\lg g\left(s_{x}, s_{i}\right)$ and record the lgg table. The next step would be to construct basic pairings using the entries in the lgg table. Instead of considering any pair between terms of s_{x} and s_{i}, the choice would be restricted to those pairs of terms present in the lgg table. The advantage of this method is that subsets of the lgg table that constitute a basic matching are systematically constructed. This implies that there is no need to check whether a given basic matching agrees with the $l g g$ table and only subsets of the $l g g$ table are generated. This consideration is not reflected in the bounds for the worst case analysis. However, it should constitute an important speedup in practice.

4. PROOF OF CORRECTNESS

Before going into the details of the proof of correctness, we describe the transformation $U(T)$ performed on a target expression T. It extends the transformation described in [10] (where expressions were function-free) and it serves analogous purposes.

4.1. Transforming the target expression

This transformation is never computed by the learning algorithm; it is only used in the analysis of the proof of correctness. The transformation introduces new clauses and adds some inequalities to every clause's antecedent. This avoids unification of terms in the transformed clauses. Related work in [22] also uses inequalities in clauses, although the learning algorithm and approach are completely different.

The idea is to create from every clause C in T the set of clauses $U(C)$. Every clause in $U(C)$ corresponds to the original clause C with its terms unified in a unique way, different from every other clause in $U(C)$. Every possible unification of terms of C are covered by one of the clauses in $U(C)$. The clauses in $U(C)$ will only be satisfied if the terms are unified in exactly that way.

Algorithm 7 (The Transformation Algorithm).

```
    Set \(U(T)\) to be the empty expression
    For every clause \(C=s_{c} \rightarrow b_{c}\) in \(T\) do
    For every partition of \(\operatorname{Terms}(C) \pi=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right\}\) do
            Let \(A_{\pi}\) be the set of atoms \(\left\{A\left(t_{1}, \ldots, t_{l}\right) \mid \forall i: 1 \leq i \leq l: t_{i} \in \pi_{i}\right\}\)
            Let \(\sigma_{\pi}\) be an \(m g u\) of \(A_{\pi}\).
            If no \(m g u\) exists or there are \(\pi_{i} \neq \pi_{j}\) s.t. \(\pi_{i} \cdot \sigma_{\pi}=\pi_{j} \cdot \sigma_{\pi}\)
            Then discard the partition
            Else
                Set \(U_{\pi}(C)=\operatorname{ineq}(C \cdot \sigma), s_{c} \cdot \sigma \rightarrow b_{c} \cdot \sigma\)
                    Set \(U(T)=U(T) \wedge U_{\pi}(C)\)
                    11. Return \(U(T)\).
```

We construct $U(T)$ from T by considering every clause separately. For a clause C in T we generate a set of clauses $U(C)$. To do that, we consider all partitions of the set of terms in Terms (C); each such partition, say π, can generate a clause of $U(C)$, denoted $U_{\pi}(C)$. Therefore, $U(T)=\bigwedge_{C \in T} U(C)$ and
$U(C)=\bigwedge_{\pi \in \operatorname{ValidPartitions}(\text { Terms }(C))} U_{\pi}(C)$. The set ValidPartitions $(\operatorname{Terms}(C))$ captures those partitions for which a simultaneous unifier of all of its classes exists and partitions whose representatives are all different. The use of A_{π} provides the simultaneous $m g u$; uniqueness of representatives is tested on line 6 in the transformation algorithm. We call a representative of a class π_{i} the only element in $\pi_{i} \cdot \sigma_{\pi}$, where σ_{π} is a $m g u$ for the set A_{π} as described in the algorithm above.

Example 4.1. Let C be $p(f(x), f(y), g(z)) \rightarrow q(x, y, z)$. The terms appearing in C are $\{x, y, z, f(x), f(y), g(z)\}$. We consider some possible partitions:

- When $\pi=\{x, y\},\{z\},\{f(x), f(y)\},\{g(z)\}$, then

$$
A_{\pi}=\left\{\begin{array}{l}
A(x, z, f(x), g(z)) \\
A(x, z, f(y), g(z)) \\
A(y, z, f(x), g(z)) \\
A(y, z, f(y), g(z))
\end{array}\right.
$$

A $m g u$ for A_{π} is $\sigma_{\pi}=\{y \mapsto x\}$. Therefore,

$$
U_{\pi}(C)=(x \neq z \neq f(x) \neq g(z)), p(f(x), f(x), g(z)) \rightarrow q(x, x, z)
$$

- When $\pi^{\prime}=\{x, y, z\},\{f(x), g(z)\},\{f(y)\}$, then

$$
A_{\pi^{\prime}}=\left\{\begin{array}{l}
A(x, f(x), f(y)) \\
A(x, g(z), f(y)) \\
A(y, f(x), f(y)) \\
A(y, g(z), f(y)) \\
A(z, f(x), f(y)) \\
A(z, g(z), f(y))
\end{array}\right.
$$

There is no $m g u$ for the set $A_{\pi^{\prime}}$, therefore this partition does not contribute to the transformation $U(C)$.

- When $\pi^{\prime \prime}=\{x, y\},\{z\},\{f(x)\},\{f(y)\},\{g(z)\}$, then

$$
A_{\pi^{\prime \prime}}=\left\{\begin{array}{l}
A(x, z, f(x), f(y), g(z)) \\
A(y, z, f(x), f(y), g(z))
\end{array}\right.
$$

A $m g u$ for $A_{\pi^{\prime \prime}}$ is $\sigma_{\pi^{\prime \prime}}=\{y \mapsto x\}$. However, this partition is discarded because the representatives for classes π_{3} and π_{4} coincide: $\pi_{3} \cdot \sigma_{\pi}=\{f(x)\}=\pi_{4} \cdot \sigma_{\pi}$. Notice that the partition π covers the case when the terms $f(x)$ and $f(y)$ are unified into the same term, so adding this clause would introduce repeated clauses in the transformation.

We write the fully inequated clause "ineq $\left(s_{t} \rightarrow b_{t}\right), s_{t} \rightarrow b_{t}$ " as " $\neq\left(s_{t} \rightarrow b_{t}\right)$ ". The following facts hold for T and its transformation $U(T)$.

Lemma 4.1. If an expression T has m clauses, then the number of clauses in its transformation $U(T)$ is at most $m t^{k}$, where t (k, resp.) is the maximum number of different terms (variables, resp.) in any clause in T.

Proof. It suffices to see that any clause C produces at most t^{k} clauses in $U(C)$. We will show that if π and π^{\prime} are two partitions that are not discarded by the transformation algorithm and $\sigma_{\pi}=\sigma_{\pi^{\prime}}$, then $\pi=\pi^{\prime}$. Suppose, then, that π and π^{\prime} are two successful partitions such that $\sigma_{\pi}=\sigma_{\pi^{\prime}}$. Let t and t^{\prime} be two distinct terms of C in the same class in π. Notice that since σ_{π} is a unifier for A_{π}, t and t^{\prime} have the same representative. Therefore, these two terms have to fall into the same class in π^{\prime} (otherwise π^{\prime} would be rejected). Since the same argument also holds in the opposite direction (i.e. from π^{\prime} to π) we conclude that for all terms t, t^{\prime} of C, t and t^{\prime} are placed in the same class in π if and only they are placed in the same class in π^{\prime}. Hence, $\pi=\pi^{\prime}$. Finally, the bound follows since there are at most t^{k} substitutions mapping the at most k variables into the at most t terms.

Lemma 4.2. $T \models U(T)$.

Proof. To see this, notice that every clause in $U(T)$ is subsumed by the clause in T that originated it.

Corollary 4.1. If $U(T) \vDash C$, then $T \neq C$. Also, if $U(T) \vDash[s, c]$, then $T \models[s, c]$.

However, the inverse implication $U(T) \models T$ of Lemma 4.2 does not hold. To see this, consider the following example.

Example 4.2. We present an expression T, its transformation $U(T)$ and an interpretation I such that $I \models U(T)$ but $I \not \vDash T$. The expression T is $\{p(a, f(a)) \rightarrow$ $q(a)\}$ and its transformation $U(T)=\{(a \neq f(a)), p(a, f(a)) \rightarrow q(a)\}$. The interpretation I has domain $D_{I}=\{1\}$; the only constant $a=1$; the only function $f(1)=1$ and the extension $\operatorname{ext}(I)=\{p(1,1)\}$.
$I \not \vDash T$ because $p(a, f(a))^{\text {under } I}=p(1,1) \in \operatorname{ext}(I)$ but $q(a)^{\text {under } I}=q(1) \notin$ $\operatorname{ext}(I)$.
$I \models U(T)$ because inequality $(a \neq f(a))^{\text {under } I}=(1 \neq 1)$ is false and therefore the antecedent of the clause is falsified. Hence, the clause is satisfied.

4.2. Some definitions

During the analysis, s will stand for the cardinality of P, the set of predicate symbols in the language; a for the maximal arity of the predicates in $P ; k$ for the maximum number of distinct variables in a clause of $T ; t$ for the maximum number of distinct terms in a clause of $T ; e_{t}$ for the maximum number of distinct terms in a counterexample; m for the number of clauses of the target expression $T ; m^{\prime}$ for the number of clauses of the transformation of the target expression $U(T)$.

Definition 4.1. A multi-clause $[s, c]$ covers a clause $\neq\left(s_{t} \rightarrow b_{t}\right)$ if there is a mapping θ from variables in $s_{t} \cup\left\{b_{t}\right\}$ into terms in $\operatorname{Terms}(s \cup c)$ such that $s_{t} \cdot \theta \subseteq s$, $\operatorname{ineq}\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \subseteq \operatorname{ineq}(s \cup c)$ and $b_{t} \cdot \theta \in \operatorname{Atoms}_{P}(s \cup c)$. Equivalently, we say that $\neq\left(s_{t} \rightarrow b_{t}\right)$ is covered by $[s, c]$.

The condition $\operatorname{ineq}\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \subseteq \operatorname{ineq}(s \cup c)$ establishes that the substitution θ is non-unifying, i.e., it does not unify terms in $s_{t} \rightarrow b_{t}$ in the sense that two distinct terms in $s_{t} \rightarrow b_{t}$ will remain distinct after applying the substitution θ.

Definition 4.2. A multi-clause $[s, c]$ captures a clause $\neq\left(s_{t} \rightarrow b_{t}\right)$ if there is a mapping θ from variables in s_{t} into terms in s such that $\neq\left(s_{t} \rightarrow b_{t}\right)$ is covered by $[s, c]$ via θ and $b_{t} \cdot \theta \in c$. Equivalently, we say that $\neq\left(s_{t} \rightarrow b_{t}\right)$ is captured by $[s, c]$.

4.3. Brief description of the proof of correctness

It is clear that if the algorithm stops, then the returned hypothesis is correct. Therefore the proof focuses on assuring that the algorithm finishes. To do so, a bound is established on the length of the sequence S. That is, only a finite number of counterexamples can be added to S and every refinement of an existing multiclause reduces its size, and hence termination is guaranteed.

To bound the length of the sequence S the following condition is proved. Every element in S captures some clause of $U(T)$ but no two distinct elements of S capture the same clause of $U(T)$ (Lemma 4.17). The bound on the length of S is therefore m^{\prime}, the number of clauses of the transformation $U(T)$.

To see that every element in S captures some clause in $U(T)$, it is shown that all counterexamples in S are full multi-clauses w.r.t. the target expression T (Lemma 4.7) and that any full multi-clause must capture some clause in $U(T)$ (Corollary 4.2).

To see that no two distinct elements of S capture the same clause of $U(T)$, two important properties are established in the proof. Lemma 4.16 shows that if a counterexample $\left[s_{x}, c_{x}\right]$ captures some clause of $U(T)$ which is covered by some $\left[s_{i}, c_{i}\right]$ then the algorithm will replace $\left[s_{i}, c_{i}\right]$ with one of their basic pairings. Lemma 4.15 shows that a basic pairing cannot capture a clause not captured by either of the original clauses. These properties are used in Lemma 4.17 to prove uniqueness of captured clauses.

Once the bound on S is established, we derive our final theorem by carefully counting the number of queries made to the oracles in every procedure. We proceed now with the analysis in detail.

4.4. Properties of substitutions

Our proof of correctness relies partly on some basic properties of substitutions. Here we list all of the properties used. However, they might not be explicitly referenced in the proof.

Let θ (and subscripted variations of it) be substitutions, S and s two sets of atoms and θ_{N} a non-unifying substitution (w.r.t. $s \rightarrow b$). With a non-unifying substitution (w.r.t. some expression Σ) we mean that if t, t^{\prime} are two distinct terms in Σ, then the terms $t \cdot \theta_{N}$ and $t^{\prime} \cdot \theta_{N}$ are distinct terms as well.

Lemma 4.3.

1. If $b \in s$, then $b \cdot \theta \in s \cdot \theta$.
2. If $b \notin s$, then $b \cdot \theta_{N} \notin s \cdot \theta_{N}$.
3. If $b \in S \backslash s$, then $b \cdot \theta \in S \cdot \theta \backslash s \cdot \theta$ unless $b \cdot \theta \in s \cdot \theta$.
4. If $b \in S \backslash s$, then $b \cdot \theta_{N} \in S \cdot \theta_{N} \backslash s \cdot \theta_{N}$.
5. If $\theta=\left(\theta_{1} \cdot \theta_{2}\right)$ and $t \cdot \theta \neq t^{\prime} \cdot \theta$, then $t \cdot \theta_{1} \neq t^{\prime} \cdot \theta_{1}$.
6. If $T \models s \rightarrow b$, then $T \models s \cdot \theta \rightarrow b \cdot \theta$.

Proof. We prove some of the properties. For Property 2., suppose that $b \notin s$. The substitution θ_{N} is non-unifying for s and b, therefore, distinct terms in b remain distinct after applying θ_{N}. Therefore we can reverse θ_{N}, and we conclude that if $b \cdot \theta_{N} \in s \cdot \theta_{N}$ then $b \in s$. Hence, $b \cdot \theta_{N} \notin s \cdot \theta_{N}$. Property 3. is straightforward, and with Property 2., it implies that Property 4. holds. For Property 5 ., notice that if $t \cdot \theta_{1}=t^{\prime} \cdot \theta_{1}$, then θ cannot distinguish the terms t and t^{\prime}.

4.5. Properties of full multi-clauses

The next two lemmas use properties of derivation graphs to improve over the model construction argument given in a preliminary version of the paper [2] which only holds for Range Restricted expressions.

Lemma 4.4. If $[s, c]$ is subsumed by a clause C, then $[s, c]$ captures some clause in $U(C)$.

Proof. By assumption, $C=s_{c} \rightarrow b_{c}$ subsumes $[s, c]$. That is, there is a substitution θ such that $s_{c} \cdot \theta \subseteq s$ and $b_{c} \cdot \theta \in c$. To see which clause in $U(C)$ is captured by $[s, c]$ consider the partition π defined by the way terms in $s_{c} \cup\left\{b_{c}\right\}$ are unified by the substitution θ. More precisely, two distinct terms t, t^{\prime} appearing in $s_{c} \cup\left\{b_{c}\right\}$ fall into the same class of π if and only if $t \cdot \theta=t^{\prime} \cdot \theta$. The proof proceeds by arguing that the clause $U_{\pi}(C)$ appears in $U(C)$ and that $[s, c]$ captures $U_{\pi}(C)$.

We observe that θ is a unifier for $A_{\pi}=\left\{A\left(t_{1}, \ldots, t_{l}\right) \mid \forall i: 1 \leq i \leq l: t_{i} \in \pi_{i}\right\}$. Thus, a $m g u \sigma_{\pi}$ exists. Therefore, $\theta=\sigma_{\pi} \cdot \hat{\theta}$ for some substitution $\hat{\theta}$. The transformation procedure rejects a partition π when some of the following conditions hold. Either A_{π} is not unifiable (however, we have seen it is) or the representatives of two distinct classes are equal. The second condition does not hold because $\pi_{i} \cdot \sigma_{\pi}=\pi_{j} \cdot \sigma_{\pi}$ (with $i \neq j$) implies $\pi_{i} \cdot \theta=\pi_{j} \cdot \theta$, which is not true by the way π was constructed.

Finally, we show that $[s, c]$ captures $U_{\pi}(C)=\left(\neq\left(s_{t} \rightarrow b_{t}\right)\right)$ via $\hat{\theta}$. Notice that $s_{c} \cdot \sigma_{\pi}=s_{t}$ and $b_{c} \cdot \sigma_{\pi}=b_{t}$. We need to check (1) $s_{t} \cdot \hat{\theta} \subseteq s$, (2) ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right)$. $\hat{\theta} \subseteq \operatorname{ineq}(s \cup c)$ and (3) $b_{t} \cdot \hat{\theta} \in c$. Condition (1) is easy: $s_{t} \cdot \hat{\theta}=s_{c} \cdot \sigma_{\pi} \cdot \hat{\theta}=$ $s_{c} \cdot \theta \subseteq s$ by hypothesis. For (2), let t, t^{\prime} be two different terms in $s_{t} \cup\left\{b_{t}\right\}$. It is sufficient to check that $t \cdot \hat{\theta}, t^{\prime} \cdot \hat{\theta}$ are also different terms (i.e., $\hat{\theta}$ does not unify them). Let t_{c}, t_{c}^{\prime} be the two terms in C such that $t_{c} \cdot \sigma_{\pi}=t$ and $t_{c}^{\prime} \cdot \sigma_{\pi}=t^{\prime}$. Since $t \neq t^{\prime}$, it follows that t_{c}, t_{c}^{\prime} belong to a different class of π (otherwise σ_{π} would have unified them). Therefore, by construction, $t_{c} \cdot \theta \neq t_{c}^{\prime} \cdot \theta$. Equivalently, $t_{c} \cdot \sigma_{\pi} \cdot \hat{\theta} \neq t_{c}^{\prime} \cdot \sigma_{\pi} \cdot \hat{\theta}$ and hence $t \cdot \hat{\theta} \neq t^{\prime} \cdot \hat{\theta}$ as required. Condition (3) is like (1).

Lemma 4.5. If a multi-clause $[s, c]$ is correct for some closed target expression $T, c \neq \emptyset$ and it is closed w.r.t. T, then some clause of $U(T)$ must be captured by [$s, c]$.

Proof. Fix any $b \in c$. Clearly, $T \mid=s \rightarrow b$ (since we have assumed $[s, c$] correct). Consider a minimal derivation graph G of $s \rightarrow b$ from T. By Theorem 2.1 such a graph exists. We start with atom b in the graph and consider $\operatorname{Pred}(b)$, the set of atoms that have an edge ending at b. If any of the atoms b^{\prime} in $\operatorname{Pred}(b)$ does not appear in s, then we take b^{\prime} as our next b. Notice that $b^{\prime} \notin s$ implies $b^{\prime} \in c$, since $[s, c]$ is closed. We iterate until we find an atom $b^{\prime} \in c$ such that $\operatorname{Pred}\left(b^{\prime}\right) \subseteq s$. By construction of derivation graphs, the clause $\operatorname{Pred}\left(b^{\prime}\right) \rightarrow b^{\prime}$ must be an instance of some clause C in T. Equivalently, C subsumes $\operatorname{Pred}\left(b^{\prime}\right) \rightarrow b^{\prime}$ and therefore it also subsumes $[s, c]$ because $\operatorname{Pred}\left(b^{\prime}\right) \subseteq s$ and $b^{\prime} \in c$. Using Lemma 4.4 we conclude that some clause in $U(T)$ is captured by $[s, c]$.

Corollary 4.2. If a multi-clause $[s, c]$ is full w.r.t. some target expression T and $c \neq \emptyset$, then some clause of $U(T)$ must be captured by $[s, c]$.

Lemma 4.6. If $[s, c]$ captures some clause of $U(T)$, then $r h s(s, c) \neq \emptyset$.

Proof. The fact that [s, c] captures some clause of $U(T)$ implies that there is a clause $s_{c} \rightarrow b_{c}$ in T and a substitution θ such that $s_{c} \cdot \theta \subseteq s$ and $b_{c} \cdot \theta \in c$. Clearly, $T \vDash s_{c} \rightarrow b_{c}=s_{c} \cdot \theta \rightarrow b_{c} \cdot \theta$ and hence the atom $b_{c} \cdot \theta \in c$ survives the rhs operation.

Corollary 4.3. If $[s, c]$ is a full multi-clause w.r.t. T and $c \neq \emptyset$, then $r h s(s, c) \neq$ \emptyset.

4.6. Properties of minimised multi-clauses

This section includes properties of minimised multi-clauses as produced by the minimisation procedure. Throughout the proof, we will refer to the minimised multi-clause as $\left[s_{x}, c_{x}\right]$.

Lemma 4.10 shows that every minimised counterexample contains a syntactic variant of some clause in $U(T)$, excluding inequalities. This is an important property and it is responsible for one of the main improvements in the bounds.

Definition 4.3. A multi-clause $[s, c]$ is a positive counterexample for some target expression T and some hypothesis H if $T \models[s, c], c \neq \emptyset$ and for all atoms $b \in c, H \not \vDash s \rightarrow b$.

Lemma 4.7. Every minimised $\left[s_{x}, c_{x}\right]$ is full w.r.t. the target expression T.

Proof. We proceed by induction on the updates of $\left[s_{x}, c_{x}\right]$ during computation of the minimisation procedure. Our base case is the first version of the counterexample [s_{x}, c_{x}] as produced by step 2 of the algorithm. This multi-clause is full, since it is the output of function TClosure that produces full multi-clauses by definition.

To see that the final multi-clause is correct it suffices to observe that every time the candidate multi-clause has been updated, the consequent part is computed as the output of the procedure rhs. Therefore, it must be correct.

To see that the final multi-clause is closed, we prove first that after generalising a term the resulting counterexample is closed. Let $\left[s_{x}, c_{x}\right.$] be the multi-clause before generalising t and $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ after. Let the substitution θ_{t} be $\left\{x_{t} \mapsto t\right\}$. Then, $s_{x}^{\prime} \cdot \theta_{t}=s_{x}$ and $c_{x}=c_{x}^{\prime} \cdot \theta_{t}$, because x_{t} is a new variable that does not appear in $\left[s_{x}, c_{x}\right]$. By way of contradiction, suppose that some atom $b \in \operatorname{Atoms}_{P}\left(s_{x}^{\prime} \cup c_{x}^{\prime}\right) \backslash s_{x}^{\prime}$ such that $T \neq s_{x}^{\prime} \rightarrow b$ is not in c_{x}^{\prime}. Notice that the substitution θ_{t} is non-unifying w.r.t. $s_{x}^{\prime} \cup c_{x}^{\prime}$, and therefore using properties 2. and 4. in Lemma 4.3 we conclude that $b \cdot \theta_{t} \in \operatorname{Atoms}_{p}\left(s_{x} \cup c_{x}\right) \backslash s_{x}$ and $b \cdot \theta_{t} \notin c_{x}$. Since $T \models s_{x} \rightarrow b \cdot \theta_{t}$, this contradicts our (implicit) induction hypothesis stating that $\left[s_{x}, c_{x}\right]$ is closed, since the atom $b \cdot \theta_{t}$ would be missing. Hence, any counterexample $\left[s_{x}, c_{x}\right]$ after step 3 is closed.

We will show now that after dropping some term t the multi-clause still remains closed. Again, let $\left[s_{x}, c_{x}\right]$ be the multi-clause before removing t and $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ after removing it. It is clear that $s_{x}^{\prime} \subseteq s_{x}$ and $c_{x}^{\prime} \subseteq c_{x}$ since both have been obtained by only removing atoms. By the induction hypothesis, the only atoms that could be missing are atoms in $c_{x} \backslash c_{x}^{\prime}$ and $s_{x} \backslash s_{x}^{\prime}$. Since for the closure of $\left[s_{x}^{\prime}, c_{x}^{\prime}\right.$] we only consider atoms in Atoms $_{P}\left(s_{x}^{\prime} \cup c_{x}^{\prime}\right)$ and these atoms do not contain t (all occurrences have been removed), the removed atoms cannot be missing because they all contain t. Therefore, after step 6 and as returned by the minimisation procedure, the counterexample $\left[s_{x}, c_{x}\right]$ is closed.

Lemma 4.8. All counterexamples given by the equivalence query oracle are positive w.r.t. the target T and the hypothesis H.

Proof. The algorithm makes sure that all clauses in H are correct (lines 3 and 6 of Algorithm 3 and lines 2,5 and 8 of Algorithm 4). Therefore, $T \models H$.

Lemma 4.9. Every minimised $\left[s_{x}, c_{x}\right]$ is a positive counterexample w.r.t. target T and hypothesis H.

Proof. To prove that $\left[s_{x}, c_{x}\right]$ is a positive counterexample we need to prove that $T \models\left[s_{x}, c_{x}\right], c_{x} \neq \emptyset$ and for every $b \in c_{x}$ it holds that $H \not \vDash s_{x} \rightarrow b_{x}$. By Lemma 4.7, we know that $\left[s_{x}, c_{x}\right]$ is full, and hence correct. This implies that $T \models\left[s_{x}, c_{x}\right]$. It remains to show that H does not imply any of the clauses in $\left[s_{x}, c_{x}\right]$ and that $c_{x} \neq \emptyset$.

Let $A \rightarrow a$ be the original counterexample obtained from the equivalence oracle. This $A \rightarrow a$ is such that $T \neq A \rightarrow a$ but $H \not \models A \rightarrow a$ (by Lemma 4.8), and therefore a will not be included in the antecedent of the first $\left[s_{x}, c_{x}\right]$ by HClosure because it is not implied by H. However, a is included in c_{x} because $a \in$ Atoms $_{P}(A \rightarrow a)$ and $T \models A \rightarrow a$. Thus, $c_{x} \neq \emptyset$ after step 2 of the minimisation procedure. Moreover, the call to the procedure HClosure guarantees that every atom implied by H will be put into the antecedent s_{x}, leaving no space for any atom implied by H to be put into the consequent c_{x} by TClosure. Thus, after step $2,\left[s_{x}, c_{x}\right]$ is a counterexample.

Next, we will see that after generalising some functional term t, the multi-clause still remains a positive counterexample. The multi-clause $\left[s_{x}, c_{x}\right]$ is only updated if the consequent part is nonempty, therefore, all the multi-clauses obtained by generalising will have a nonempty consequent. Let $\left[s_{x}, c_{x}\right]$ be the multi-clause before generalising t, and $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ after. Assume $\left[s_{x}, c_{x}\right]$ is a positive counterexample. Let θ_{t} be the substitution $\left\{x_{t} \mapsto t\right\}$. As in Lemma 4.7, $s_{x}^{\prime} \cdot \theta_{t}=s_{x}$ and $c_{x}^{\prime} \cdot \theta_{t}=c_{x}$. Suppose by way of contradiction that $H \models s_{x}^{\prime} \rightarrow b^{\prime}$, for some $b^{\prime} \in c_{x}^{\prime}$. Then, $H \models s_{x}^{\prime} \cdot \theta_{t} \rightarrow b^{\prime} \cdot \theta_{t}$. And we get that $H \models s_{x} \rightarrow b^{\prime} \cdot \theta_{t}$. Note that $b^{\prime} \in c_{x}^{\prime}$ implies that $b^{\prime} \cdot \theta_{t} \in c_{x}$. This contradicts our assumption stating that $\left[s_{x}, c_{x}\right]$ was a counterexample. Thus, the multi-clause $\left[s_{x}, c_{x}\right.$] after step 3 is a positive counterexample.

Finally, we will show that after dropping some term t the multi-clause still remains a positive counterexample. As before, the multi-clause $\left[s_{x}, c_{x}\right.$] is only updated if the consequent part is nonempty, therefore, all the multi-clauses obtained by dropping will have a nonempty consequent. Let $\left[s_{x}, c_{x}\right.$] be the multi-clause before removing some of its atoms, and $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ after. It is the case that $s_{x}^{\prime} \subseteq s_{x}$ and $c_{x}^{\prime} \subseteq c_{x}$. Assume $\left[s_{x}, c_{x}\right]$ is a positive counterexample. Then, for all $b \in c_{x}: H \not \models s_{x} \rightarrow b$. Since $c_{x}^{\prime} \subseteq c_{x}$, it holds that for all $b \in c_{x}^{\prime}: H \not \models s_{x} \rightarrow b$. Since $s_{x}^{\prime} \subseteq s_{x}$, we obtain that for all $b \in c_{x}^{\prime}: H \not \models s_{x}^{\prime} \rightarrow b$. Thus, the multi-clause [s_{x}, c_{x}] after step 6 is a positive counterexample.

Lemma 4.10. If a minimised $\left[s_{x}, c_{x}\right]$ captures some clause $\neq\left(s_{t} \rightarrow b_{t}\right)$ of $U(T)$, then it must be via some substitution θ such that θ is a variable renaming, i.e., θ maps distinct variables of s_{t} into distinct variables of s_{x} only.

Proof. $\left[s_{x}, c_{x}\right]$ is capturing $\neq\left(s_{t} \rightarrow b_{t}\right)$, hence there must exist a substitution θ from variables in $s_{t} \cup\left\{b_{t}\right\}$ into terms in $s_{x} \cup c_{x}$ such that $s_{t} \cdot \theta \subseteq s_{x}, i n e q\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \subseteq$ $\operatorname{ine} q\left(s_{x} \cup c_{x}\right)$ and $b_{t} \cdot \theta \in c_{x}$. We will show that θ must be a variable renaming.

By way of contradiction, suppose that θ maps some variable v of $s_{t} \cup\left\{b_{t}\right\}$ into a functional term t of $s_{x} \cup c_{x}$ (i.e. $v \cdot \theta=t$). Consider the generalisation of the term t in step 3 of the minimisation procedure. We will see that the term t should have been generalised and substituted by the new variable x_{t}.

Suppose, then that $\left[s_{x}, c_{x}\right.$] is the multi-clause previous to generalising t and $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ after. We generalise the term t to the fresh variable x_{t}. Consider the substitution θ^{\prime} defined as $\theta \backslash\{v \mapsto t\} \cup\left\{v \mapsto x_{t}\right\}$. The substitution θ^{\prime} behaves like θ on all terms except for variable v. We will see that $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$ via θ^{\prime} and hence $r h s\left(s_{x}^{\prime}, c_{x}^{\prime}\right) \neq \emptyset$ (Lemma 4.6). Therefore t must be generalised to the variable x_{t}.

To see that $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$ via θ^{\prime} we need to show (1) $s_{t} \cdot \theta^{\prime} \subseteq s_{x}^{\prime}$, (2) $b_{t} \cdot \theta^{\prime} \in c_{x}^{\prime}$ and (3) ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta^{\prime} \subseteq \operatorname{ineq}\left(s_{x}^{\prime} \cup c_{x}^{\prime}\right)$. For (1), consider any atom b of s_{t}. We observe the following: after substitution $\theta^{\prime}: b(\ldots v \ldots) \Rightarrow b\left(\ldots x_{t} \ldots\right)$, and after substitution θ and generalising $t: b(\ldots v \ldots) \Rightarrow b(\ldots t \ldots) \Rightarrow b\left(\ldots x_{t} \ldots\right)$. The part of the "dots" in the previous expressions is identical for both lines, since θ and θ^{\prime} behave equally for terms different than v. Moreover, the fact that θ does not unify terms in $s_{t} \cup\left\{b_{t}\right\}$ assures that the rest of terms will differ from t and x_{t} after applying θ or θ^{\prime}. Therefore, we get that $b \cdot \theta^{\prime} \in s_{x}^{\prime}$ iff $b \cdot \theta \in s_{x}$ and since $s_{t} \cdot \theta \subseteq s_{x}$, Property
(1) follows. Property (2) is identical to Property (1). For (3), let t, t^{\prime} be two distinct terms of $s_{t} \cup\left\{b_{t}\right\}$. We have to show that $t \cdot \theta^{\prime}$ and $t^{\prime} \cdot \theta^{\prime}$ are two different terms of $s_{x}^{\prime} \cup c_{x}^{\prime}$ and therefore their inequality appears in $\operatorname{ineq}\left(s_{x}^{\prime} \cup c_{x}^{\prime}\right)$. It is easy to see that they are terms of $s_{x}^{\prime} \cup c_{x}^{\prime}$ since by previous properties $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta^{\prime} \subseteq\left(s_{x}^{\prime} \cup c_{x}^{\prime}\right)$. Now, let θ_{t} be the substitution $\left\{x_{t} \rightarrow t\right\}$ and notice that $\theta=\theta^{\prime} \cdot \theta_{t}$. Since θ does not unify terms in $s_{t} \cup\left\{b_{t}\right\}$, then none of θ^{\prime} and θ_{t} do. Therefore, $t \cdot \theta^{\prime} \neq t^{\prime} \cdot \theta^{\prime}$ as required.

4.7. Properties of the number of terms in minimised examples

Lemma 4.11. Let $\left[s_{x}, c_{x}\right]$ be a multi-clause as output by the minimisation procedure. Let $\neq\left(s_{t} \rightarrow b_{t}\right)$ be a clause of $U(T)$ captured by $\left[s_{x}, c_{x}\right]$. Then, the number of distinct terms in $\left[s_{x}, c_{x}\right]$ is equal to the number of distinct terms in $\neq\left(s_{t} \rightarrow b_{t}\right)$.

Proof. Let n_{x} and n_{t} be the number of distinct terms appearing in $\left[s_{x}, c_{x}\right]$ and $s_{t} \rightarrow b_{t}$, respectively. Subterms should also be counted. The multi-clause [s_{x}, c_{x}] captures $\neq\left(s_{t} \rightarrow b_{t}\right)$. Therefore there is a substitution θ satisfying ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right)$. $\theta \subseteq \operatorname{ineq}\left(s_{x} \cup c_{x}\right)$. Thus, different variables in $s_{t} \rightarrow b_{t}$ are mapped into different terms of $s_{x} \cup c_{x}$ by θ. By Lemma 4.10, we know also that every variable of s_{t}, b_{t} is mapped into a variable of s_{x}, c_{x}. Therefore, θ maps distinct variables of s_{t}, b_{t} into distinct variables of s_{x}, c_{x}. Therefore, the number of terms in s_{t}, b_{t} equals the number of terms in $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta$, since there has only been a non-unifying renaming of variables. Also, $s_{t} \cdot \theta \subseteq s_{x}$ and $b_{t} \cdot \theta \in c_{x}$. We have to check that the remaining atoms in $\left(s_{x} \backslash s_{t} \cdot \theta\right) \cup\left(c_{x} \backslash b_{t} \cdot \theta\right)$ do not include any term not appearing in $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta$.

Suppose there is an atom $l \in\left(s_{x} \backslash s_{t} \cdot \theta\right) \cup\left(c_{x} \backslash b_{t} \cdot \theta\right)$ containing some term, say t, not appearing in $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta$. Consider when in step 6 of the minimisation procedure the term t was checked as a candidate to be removed. Let $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ be the clause obtained after the removal of the atoms containing t. Then, $s_{t} \cdot \theta \subseteq s_{x}^{\prime}$ and $b_{t} \cdot \theta \in c_{x}^{\prime}$ because all the atoms in $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta$ do not contain t. Moreover, ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \subseteq$ $\operatorname{ineq}\left(s_{x}^{\prime} \cup c_{x}^{\prime}\right)$. To see this, take any two terms $t \neq t^{\prime}$ from $s_{t} \rightarrow b_{t}$. The terms $t \cdot \theta$ and $t^{\prime} \cdot \theta$ appear in $s_{x}^{\prime} \cup c_{x}^{\prime}$ because they contain terms in $\left(s_{t} \cup b_{t}\right) \cdot \theta$ only (so they are not removed). Further, since $t \cdot \theta \neq t^{\prime} \cdot \theta$ in $s_{x} \cup c_{x}$ and $\left\{t \cdot \theta, t^{\prime} \cdot \theta\right\} \subseteq\left(s_{x}^{\prime} \cup c_{x}^{\prime}\right) \subseteq\left(s_{x} \cup c_{x}\right)$ we conclude that $t \cdot \theta \neq t^{\prime} \cdot \theta$ in $s_{x}^{\prime} \cup c_{x}^{\prime}$. Thus, $\left[s_{x}^{\prime}, c_{x}^{\prime}\right]$ still captures $\neq\left(s_{t} \rightarrow b_{t}\right)$. And therefore, $\operatorname{rhs}\left(s_{x}^{\prime}, c_{x}^{\prime}\right) \neq \emptyset$ and such a term t cannot exist. We conclude that $n_{t}=$ n_{x}.

Corollary 4.4. The number of terms of a counterexample as generated by the minimisation procedure is bounded by t, the maximum of the number of distinct terms in the target clauses.

Lemma 4.12. Let $[s, c]$ be a multi-clause covering some $\neq\left(s_{t} \rightarrow b_{t}\right)$. Let n and n_{t} be the number of distinct terms in $s \cup c$ and $s_{t} \cup\left\{b_{t}\right\}$, respectively. Then, $n_{t} \leq n$.

Proof. Since $[s, c]$ covers the clause $\neq\left(s_{t} \rightarrow b_{t}\right)$, there is a θ s.t. ineq $\left(s_{t} \cup\right.$ $\left.\left\{b_{t}\right\}\right) \cdot \theta \subseteq \operatorname{ineq}(s \cup c)$. Therefore, any two distinct terms of $s_{t} \cup\left\{b_{t}\right\}$ appear as distinct terms in $s \cup c$. And therefore, $[s, c]$ has at least as many terms as $s_{t} \rightarrow b_{t}$.

Corollary 4.5. Let $\neq\left(s_{t} \rightarrow b_{t}\right)$ be a clause of $U(T)$ with n_{t} distinct terms. Let $\left[s_{x}, c_{x}\right]$ be a multi-clause with n_{x} distinct terms as output by the minimisation procedure such that $\left[s_{x}, c_{x}\right]$ captures the clause $\neq\left(s_{t} \rightarrow b_{t}\right)$. Let $\left[s_{i}, c_{i}\right]$ be a multiclause with n_{i} terms covering the clause $\neq\left(s_{t} \rightarrow b_{t}\right)$. Then $n_{x} \leq n_{i}$.

4.8. Properties of pairings

Lemma 4.13. Let $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$ be two full multi-clauses w.r.t. the target expression T. Let σ be a basic matching between the terms in s_{x} and s_{i} that is not rejected by the pairing procedure. Let $[s, c]$ be the basic pairing of $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$ induced by σ. Then the multi-clause $[s, r h s(s, c)]$ is also full w.r.t. T.

Proof. To see that $[s, r h s(s, c)]$ is full w.r.t. T, it is sufficient to show that $[s, c]$ is closed. That is, whenever $T \models s \rightarrow b$ and $b \in \operatorname{Atoms}_{P}(s \cup c) \backslash s$, then $b \in c$. Suppose, then, that $T=s \rightarrow b$ with $b \in \operatorname{Atoms}_{P}(s \cup c) \backslash s$. Since $s=\lg g_{\left.\right|_{\sigma}}\left(s_{x}, s_{i}\right) \subseteq$ $\operatorname{lgg}\left(s_{x}, s_{i}\right)$, we know that there exist θ_{x} and θ_{i} such that $s \cdot \theta_{x} \subseteq s_{x}$ and $s \cdot \theta_{i} \subseteq s_{i}$. $T \models s \rightarrow b$ implies both $T \models s \cdot \theta_{x} \rightarrow b \cdot \theta_{x}$ and $T \vDash s \cdot \theta_{i} \rightarrow b \cdot \theta_{i}$. Let $b_{x}=b \cdot \theta_{x}$ and $b_{i}=b \cdot \theta_{i}$. Finally, we obtain that $T \models s_{x} \rightarrow b_{x}$ and $T \models s_{i} \rightarrow b_{i}$. By assumption, [s_{x}, c_{x}] and $\left[s_{i}, c_{i}\right]$ are full, and therefore $b_{x} \in s_{x} \cup c_{x}$ and $b_{i} \in s_{i} \cup c_{i}$ because $b_{x} \in \operatorname{Atoms}_{P}\left(s_{x} \cup c_{x}\right)$ and $b_{i} \in \operatorname{Atoms}_{P}\left(s_{i} \cup c_{i}\right)$ (remember that $b \in \operatorname{Atoms}_{P}(s \cup c)$). Also, since the same $\lg g$ table is used for all $\operatorname{lgg}(\cdot, \cdot)$ we know that $b=\lg g\left(b_{x}, b_{i}\right)$. Therefore b must appear in one of $\lg g\left(s_{x}, s_{i}\right), \lg g\left(s_{x}, c_{i}\right), \lg g\left(c_{x}, s_{i}\right)$ or $\operatorname{lgg}\left(c_{x}, c_{i}\right)$. But $b \notin \lg g\left(s_{x}, s_{i}\right)$ since $b \notin s$ by assumption.

Note that all terms and subterms in b appear in $s \cup c$, because $b \in \operatorname{Atoms}_{P}(s \cup c)$. We know that σ is basic and hence legal, and therefore it contains all subterms of terms appearing in $s \cup c$. Thus, by restricting any of the $\lg g(\cdot, \cdot)$ to $\lg g_{\left.\right|_{\sigma}}(\cdot, \cdot)$, we will not get rid of b, since it is built up from terms that appear in $s \cup c$ and hence in σ. Therefore, $b \in \lg g_{\left.\right|_{\sigma}}\left(s_{x}, c_{i}\right) \cup \lg g_{\left.\right|_{\sigma}}\left(c_{x}, s_{i}\right) \cup l g g_{\left.\right|_{\sigma}}\left(c_{x}, c_{i}\right)=c$ as required.

Lemma 4.14. Let $[s, c]$ be a pairing of two multi-clauses $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$. Then, it is the case that $|s| \leq\left|s_{i}\right|$ and $|s \cup c| \leq\left|s_{i} \cup c_{i}\right|$.

Proof. It is sufficient to observe that in s there is at most one copy of every atom in s_{i}. This is true since the matching used to include atoms in s is 1 to 1 and therefore a term can only be combined with a unique term and no duplication of atoms occurs. The same idea applies to the second inequality.

Lemma 4.15. Let $\left[s_{1}, c_{1}\right]$ and $\left[s_{2}, c_{2}\right]$ be two full multi-clauses w.r.t. some Horn expression T. Let $[s, c]$ be any legal pairing between them. The following holds:

1. If $[s, c]$ covers a clause $\neq\left(s_{t} \rightarrow b_{t}\right)$ in $U(T)$, then both $\left[s_{1}, c_{1}\right]$ and $\left[s_{2}, c_{2}\right]$ cover $\neq\left(s_{t} \rightarrow b_{t}\right)$.
2. If $[s, c]$ captures a clause $\neq\left(s_{t} \rightarrow b_{t}\right)$ in $U(T)$, then at least one of $\left[s_{1}, c_{1}\right]$ or $\left[s_{2}, c_{2}\right]$ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$.

Proof. Condition 1. By assumption, $\neq\left(s_{t} \rightarrow b_{t}\right)$ is covered by $[s, c]$, i.e., there is a θ such that $s_{t} \cdot \theta \subseteq s, \operatorname{ineq}\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \subseteq \operatorname{ineq}(s \cup c)$ and $b_{t} \cdot \theta \in \operatorname{Atoms}_{P}(s \cup c)$. This implies that if t, t^{\prime} are two distinct terms of $s_{t} \cup\left\{b_{t}\right\}$, then $t \cdot \theta$ and $t^{\prime} \cdot \theta$ are distinct terms appearing in $s \cup c$. Let σ be the 1-1 legal matching inducing the pairing. The antecedent s is defined to be $\operatorname{lgg_{|_{\sigma }}}\left(s_{1}, s_{2}\right)$, and therefore there exist substitutions θ_{1} and θ_{2} such that $s \cdot \theta_{1} \subseteq s_{1}$ and $s \cdot \theta_{2} \subseteq s_{2}$. We claim that [s_{1}, c_{1}] and $\left[s_{2}, c_{2}\right]$ cover $\neq\left(s_{t} \rightarrow b_{t}\right)$ via $\theta \cdot \theta_{1}$ and $\theta \cdot \theta_{2}$, respectively. We will prove this for [s_{1}, c_{1}] only, the proof for $\left[s_{2}, c_{2}\right.$] is identical. Notice that $s_{t} \cdot \theta \subseteq s$, and therefore $s_{t} \cdot \theta \cdot \theta_{1} \subseteq s \cdot \theta_{1}$. Since $s \cdot \theta_{1} \subseteq s_{1}$, we obtain $s_{t} \cdot \theta \cdot \theta_{1} \subseteq s_{1}$. We show now that $\operatorname{ineq}\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \cdot \theta_{1} \subseteq \operatorname{ineq}\left(s_{1} \cup c_{1}\right)$. Observe that all top-level terms appearing in $s \cup c$ also appear as one entry of the matching σ, because otherwise they could not have survived the restriction imposed by σ. Further, since σ is legal, all subterms of terms of $s \cup c$ also appear as an entry in σ. Let t, t^{\prime} be two distinct terms appearing in $s_{t} \cup\left\{b_{t}\right\}$. Since $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \subseteq s \cup c$ and σ includes all terms appearing in $s \cup c$, the distinct terms $t \cdot \theta$ and $t^{\prime} \cdot \theta$ appear as the $\lg g$ of distinct entries in σ. These entries have the form $\left[t \cdot \theta \cdot \theta_{1}-t \cdot \theta \cdot \theta_{2} \Rightarrow t \cdot \theta\right]$, since $\operatorname{lgg}\left(t \cdot \theta \cdot \theta_{1}, t \cdot \theta \cdot \theta_{2}\right)=t \cdot \theta$. Since σ is $1-1$, we know that $t \cdot \theta \cdot \theta_{1} \neq t^{\prime} \cdot \theta \cdot \theta_{1}$. Finally, we need to show that $b_{t} \cdot \theta \cdot \theta_{1} \in \operatorname{Atoms}_{P}\left(s_{1} \cup c_{1}\right)$. Notice that $s \cdot \theta_{1} \subseteq s_{1}$ and $c \cdot \theta_{1} \subseteq\left(s_{1} \cup c_{1}\right)$. Therefore, $s_{t} \cup\left\{b_{t}\right\} \cdot \theta \subseteq s \cup c$ implies $s_{t} \cup\left\{b_{t}\right\} \cdot \theta \cdot \theta_{1} \subseteq(s \cup c) \cdot \theta_{1} \subseteq s_{1} \cup c_{1}$. Thus, $b_{t} \cdot \theta \cdot \theta_{1} \in$ Atoms $_{P}\left(s_{1} \cup c_{1}\right)$ as required.

Condition 2. By hypothesis, $b_{t} \cdot \theta \in c$ and c is defined to be $\lg g_{\left.\right|_{\sigma}}\left(s_{1}, c_{2}\right) \cup$ $l g g_{\left.\right|_{\sigma}}\left(c_{1}, s_{2}\right) \cup l g g_{\left.\right|_{\sigma}}\left(c_{1}, c_{2}\right)$. Observe that all these $l g g$ s share the same table, so the same pairs of terms will be mapped into the same expressions. Observe also that the substitutions θ_{1} and θ_{2} are defined according to this table, so that if any atom $l \in l g g_{\left.\right|_{\sigma}}\left(c_{1}, \cdot\right)$, then $l \cdot \theta_{1} \in c_{1}$. Equivalently, if $l \in l g g_{\left.\right|_{\sigma}}\left(\cdot, c_{2}\right)$, then $l \cdot \theta_{2} \in c_{2}$. Therefore we get that if $b_{t} \cdot \theta \in \lg g_{\left.\right|_{\sigma}}\left(c_{1}, \cdot\right)$, then $b_{t} \cdot \theta \cdot \theta_{1} \in c_{1}$ and if $b_{t} \cdot \theta \in \lg g_{\left.\right|_{\sigma}}\left(\cdot, c_{2}\right)$, then $b_{t} \cdot \theta \cdot \theta_{2} \in c_{2}$. Now, observe that in any of the three possibilities for c, one of c_{1} or c_{2} is included in the $l g g_{\left.\right|_{\sigma}}$. Thus it is the case that either $b_{t} \cdot \theta \cdot \theta_{1} \in c_{1}$ or $b_{t} \cdot \theta \cdot \theta_{2} \in c_{2}$. Since both [s_{1}, c_{1}] and $\left[s_{2}, c_{2}\right]$ cover $\neq\left(s_{t} \rightarrow b_{t}\right)$, one of $\left[s_{1}, c_{1}\right]$ or $\left[s_{2}, c_{2}\right]$ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$.

It is crucial for Lemma 4.15 that the pairing involved is legal. It is indeed possible for a non-legal pairing to capture some clause that is not even covered by some of its originating multi-clauses, as the next example illustrates.

Example 4.3. In this example we present two multi-clauses $\left[s_{1}, c_{1}\right]$ and $\left[s_{2}, c_{2}\right]$, a non-legal matching σ and a clause $\neq\left(s_{t} \rightarrow b_{t}\right)$ such that the non-legal pairing induced by σ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$ but none of $\left[s_{1}, c_{1}\right]$ and $\left[s_{2}, c_{2}\right]$ do.

- $\left[s_{1}, c_{1}\right]=[p(f f a, g f f a) \rightarrow q(f a)]$ with terms $\{a, f a, f f a, g f f a\}$ $\operatorname{ineq}\left(s_{1}\right)=(a \neq f a \neq f f a \neq g f f a)$.
- $\left[s_{2}, c_{2}\right]=[p(f b, g f f c) \rightarrow q(b)]$ with terms $\{b, c, f b, f c, f f c, g f f c\}$.
- The matching σ is [a-c => X] [fa - b => Y]
[ffa - fb => fY]
[gffa - gffc $=>\mathrm{gff} \mathrm{X}]$
- $[s, c]=[p(f Y, g f f X) \rightarrow q(Y)]$.
- $\underbrace{(x \neq f x \neq f f x \neq g f f x \neq y \neq f y)}_{\text {ineq }\left(s_{t}\right)}, \underbrace{p(f y, g f f x)}_{s_{t}} \rightarrow \underbrace{q(y)}_{b_{t}}$.
- $\theta=\{x \mapsto X, y \mapsto Y\}$.
- $\theta_{1}=\{X \mapsto a, Y \mapsto f a\}$.
- $\theta \cdot \theta_{1}=\{x \mapsto a, y \mapsto f a\}$.

The multi-clause $[s, c]$ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$ via $\theta=\{x \mapsto X, y \mapsto Y\}$. But [s_{1}, c_{1}] does not cover $\neq\left(s_{t} \rightarrow b_{t}\right)$ because the condition ineq $\left(s_{t}\right) \cdot \theta \cdot \theta_{1} \subseteq \operatorname{ineq}\left(s_{1}\right)$ fails to hold:

$$
\underbrace{(a \neq \sqrt[\mathrm{fa}]{\mathrm{ffa}} \neq g f f a \neq \boxed{\mathrm{fa}} \neq \boxed{\mathrm{ffa}})}_{(x \neq f x \neq f f x \neq g f f x \neq y \neq f y) \cdot \theta \cdot \theta_{1}} \not \subset \underbrace{(a \neq f a \neq f f a \neq g f f a)}_{\text {ineq }\left(s_{1}\right)}
$$

Corollary 4.6. Let $\left[s_{1}, c_{1}\right],\left[s_{2}, c_{2}\right],\left[s_{3}, c_{3}\right], \ldots,\left[s_{k}, c_{k}\right], \ldots$ be a sequence of full multi-clauses such that every multi-clause $\left[s_{i+1}, c_{i+1}\right]$ is a legal pairing between the previous multi-clause $\left[s_{i}, c_{i}\right]$ in the sequence and some other full multi-clause $\left[s_{i}^{\prime}, c_{i}^{\prime}\right]$, for $i \geq 1$. Suppose some $\left[s_{k}, c_{k}\right]$ in the sequence covers a clause $\neq\left(s_{t} \rightarrow b_{t}\right)$. Then, all previous $\left[s_{i}, c_{i}\right]$ in the sequence (where $\left.i<k\right)$, must cover the clause $\neq\left(s_{t} \rightarrow b_{t}\right)$, too.

4.9. Properties of the sequence S

Corollary 4.7. Every element $[s, c]$ appearing in the sequence S is full w.r.t. the target expression T.

Proof. The sequence S is constructed by appending minimised counterexamples or by refining existing elements with a pairing with another minimised counterexample. Lemma 4.7 guarantees that all minimised counterexamples are full and, by Lemma 4.13, any basic pairing between full multi-clauses is also full.

Lemma 4.16. Let S be the sequence $\left[\left[s_{1}, c_{1}\right],\left[s_{2}, c_{2}\right], \ldots,\left[s_{k}, c_{k}\right]\right]$. If a minimised counterexample $\left[s_{x}, c_{x}\right]$ is produced such that it captures some clause $\neq\left(s_{t} \rightarrow b_{t}\right)$ in $U(T)$ covered by some $\left[s_{i}, c_{i}\right]$ of S, then some multi-clause $\left[s_{j}, c_{j}\right]$ will be replaced by a basic pairing of $\left[s_{x}, c_{x}\right]$ and $\left[s_{j}, c_{j}\right]$, where $j \leq i$.

Proof. We will show that if no element $\left[s_{j}, c_{j}\right]$ where $j<i$ is replaced, then the element $\left[s_{i}, c_{i}\right]$ will be replaced. We have to prove that there is a basic pairing $[s, c]$ of $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$ with the following two properties: $(1) r h s(s, c) \neq \emptyset$ and $(2) \operatorname{size}(s) \lesseqgtr \operatorname{size}\left(s_{i}\right)$ or $\left(\operatorname{size}(s)=\operatorname{size}\left(s_{i}\right)\right.$ and $\left.\operatorname{size}(c) \lesseqgtr \operatorname{size}\left(c_{i}\right)\right)$.

We have assumed that there is some clause $\neq\left(s_{t} \rightarrow b_{t}\right) \in U(T)$ captured by [$\left.s_{x}, c_{x}\right]$ and covered by $\left[s_{i}, c_{i}\right]$. Let θ_{x}^{\prime} be the substitution showing that $\neq\left(s_{t} \rightarrow b_{t}\right)$
is captured by $\left[s_{x}, c_{x}\right]$ and θ_{i}^{\prime} the substitution showing that $\neq\left(s_{t} \rightarrow b_{t}\right)$ is covered by $\left[s_{i}, c_{i}\right]$. Thus the following properties hold:

- $s_{t} \cdot \theta_{x}^{\prime} \subseteq s_{x}$
- ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta_{x}^{\prime} \subseteq \operatorname{ineq}\left(s_{x} \cup c_{x}\right)$
- $b_{t} \cdot \theta_{x}^{\prime} \in c_{x}$
- $b_{t} \cdot \theta_{x}^{\prime} \in$ Atoms $_{P}\left(s_{x} \cup c_{x}\right)$
- $s_{t} \cdot \theta_{i}^{\prime} \subseteq s_{i}$
- ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta_{i}^{\prime} \subseteq \operatorname{ineq}\left(s_{i} \cup c_{i}\right)$
- $b_{t} \cdot \theta_{i}^{\prime} \in$ Atoms $_{P}\left(s_{i} \cup c_{i}\right)$

We construct a matching σ that includes all entries

$$
\left[t \cdot \theta_{x}^{\prime}-t \cdot \theta_{i}^{\prime} \Rightarrow \operatorname{lgg}\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)\right]
$$

such that t is a term appearing in $s_{t} \cup\left\{b_{t}\right\}$ (one entry for every distinct term).
Example 4.4. Consider the following:

- $s_{t}=\{p(g(c), x, f(y), z)\}$.

With terms $c, g(c), x, y, f(y)$ and z.

- $s_{x}=\left\{p\left(g(c), x^{\prime}, f\left(y^{\prime}\right), z\right), p\left(g(c), g(c), f\left(y^{\prime}\right), c\right)\right\}$.

With terms $c, g(c), x^{\prime}, y^{\prime}, f\left(y^{\prime}\right)$ and z.

- $s_{i}=\{p(g(c), f(1), f(f(2)), z)\}$.

With terms $c, g(c), 1, f(1), 2, f(2), f(f(2))$ and z.

- The substitution $\theta_{x}^{\prime}=\left\{x \mapsto x^{\prime}, y \mapsto y^{\prime}, z \mapsto z\right\}$ and it is a variable renaming.
- The substitution $\theta_{i}^{\prime}=\{x \mapsto f(1), y \mapsto f(2), z \mapsto z\}$.
- The $\operatorname{lgg}\left(s_{x}, s_{i}\right)$ is $\{p(g(c), X, f(Y), z), p(g(c), Z, f(Y), V)\}$ and it produces the following lgg table.

$$
\begin{array}{ll}
{[c-c=>c]} & {[g(c)-g(c) \Rightarrow g(c)]} \\
{[x,-f(1) \Rightarrow X]} & {[y,-f(2) \Rightarrow Y]} \\
{[f(y \prime)-f(f(2)) \Rightarrow f(Y)]} & {[z-z \Rightarrow z]} \\
{[g(c)-f(1) \Rightarrow Z]} & {[c-z \Rightarrow V]}
\end{array}
$$

- The extended matching σ is

$$
\begin{aligned}
c & \Rightarrow[c-c=c] \\
g(c) & \Rightarrow[g(c)-\mathrm{g}(\mathrm{c})=\mathrm{g}(\mathrm{c})]) \\
x & \Rightarrow[\mathrm{x},-\mathrm{f}(1)=\mathrm{X}] \\
y & \Rightarrow[\mathrm{y},-\mathrm{f}(2) \Rightarrow \mathrm{Y}] \\
f(y) & \Rightarrow[\mathrm{f}(\mathrm{y},)-\mathrm{f}(\mathrm{f}(2)) \Rightarrow \mathrm{f}(\mathrm{Y})] \\
z & \Rightarrow[\mathrm{z}-\mathrm{z} \Rightarrow \mathrm{z}]
\end{aligned}
$$

- The pairing induced by σ is $l g g_{\left.\right|_{\sigma}}\left(s_{x}, s_{i}\right)=\{p(g(c), X, f(Y), z)\}$.

Claim. The matching σ as described above is 1-1 and the number of entries equals the minimum of the number of distinct terms in $s_{x} \cup c_{x}$ and $s_{i} \cup c_{i}$.

Proof. All the entries of σ have the form $\left[t \cdot \theta_{x}^{\prime}-t \cdot \theta_{i}^{\prime} \Rightarrow \operatorname{lgg}\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)\right]$. For σ to be $1-1$ it is sufficient to see that there are no two terms t, t^{\prime} of $s_{t} \cup\left\{b_{t}\right\}$ generating the following entries in σ

$$
\begin{aligned}
{\left[t \cdot \theta_{x}^{\prime}-t \cdot \theta_{i}^{\prime}\right.} & \left.\Rightarrow \operatorname{lgg}\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)\right] \\
{\left[t^{\prime} \cdot \theta_{x}^{\prime}-t^{\prime} \cdot \theta_{i}^{\prime}\right.} & \left.\Rightarrow \operatorname{lgg}\left(t^{\prime} \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)\right]
\end{aligned}
$$

such that $t \cdot \theta_{x}^{\prime}=t^{\prime} \cdot \theta_{x}^{\prime}$ or $t \cdot \theta_{i}^{\prime}=t^{\prime} \cdot \theta_{i}^{\prime}$. But this is clear since $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right.$] are covering $\neq\left(s_{t} \rightarrow b_{t}\right)$ via θ_{x}^{\prime} and θ_{i}^{\prime}, respectively. Therefore ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta_{x}^{\prime} \subseteq$ $\operatorname{ineq}\left(s_{x} \cup c_{x}\right)$ and $\operatorname{ineq}\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta_{i}^{\prime} \subseteq \operatorname{ineq}\left(s_{i} \cup c_{i}\right)$. And therefore $t \cdot \theta_{x}^{\prime}$ and $t^{\prime} \cdot \theta_{x}^{\prime}$ appear as different terms in $s_{x} \cup c_{x}$. Also, $t \cdot \theta_{i}^{\prime}$ and $t^{\prime} \cdot \theta_{i}^{\prime}$ appear as different terms in $s_{i} \cup c_{i}$. Thus σ is 1-1.

By construction, the number of entries equals the number of distinct terms in $s_{t} \cup\left\{b_{t}\right\}$, that by Lemma 4.11 is the number of distinct terms in $s_{x} \cup c_{x}$. And by Lemma 4.12, $\left[s_{i}, c_{i}\right]$ contains at least as many terms as $s_{t} \cup\left\{b_{t}\right\}$. Therefore, the number of entries in σ coincides with the minimum of the number of distinct terms in $s_{x} \cup$ c_{x} and $s_{i} \cup c_{i}$.

Claim. The matching σ is legal.

Proof. A matching is legal if the subterms of any term appearing as the lgg of the matching, also appear in some other entries of the matching. We will prove it by induction on the structure of the terms. We prove that if t is a term in $s_{t} \cup\left\{b_{t}\right\}$, then the term $\lg g\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)$ and all its subterms appear somewhere in the extension of σ.

Base case. When $t=a$, with a being some constant. The entry in σ for it is [a $\mathrm{a} \Rightarrow \mathrm{a}$], since $a \cdot \theta=a$, for any substitution θ if a is a constant and $\operatorname{lgg}(a, a)=a$. The term a has no subterms, and therefore all its subterms trivially appear as entries in σ.

Base case. When $t=v$, where v is any variable in $s_{t} \cup\left\{b_{t}\right\}$. The entry for it in σ is $\left[v \cdot \theta_{x}^{\prime}-v \cdot \theta_{i}^{\prime} \Rightarrow \operatorname{lgg}\left(v \cdot \theta_{x}^{\prime}, v \cdot \theta_{i}^{\prime}\right)\right] .\left[s_{x}, c_{x}\right]$ is minimised and by Lemma $4.10 v \cdot \theta_{x}^{\prime}$ must be a variable. Therefore, its $l g g$ with anything else must also be a variable. Hence, all its subterms appear trivially since there are no subterms.

Step case. When $t=f\left(t_{1}, \ldots, t_{l}\right)$, where f is a function symbol of arity l and t_{1}, \ldots, t_{l} its arguments. The entry for it in σ is

$$
[f\left(t_{1}, \ldots, t_{l}\right) \cdot \theta_{x}^{\prime}-f\left(t_{1}, \ldots, t_{l}\right) \cdot \theta_{i}^{\prime} \Rightarrow \underbrace{\operatorname{lgg}\left(f\left(t_{1}, \ldots, t_{l}\right) \cdot \theta_{x}^{\prime}, f\left(t_{1}, \ldots, t_{l}\right) \cdot \theta_{x}^{\prime}\right)}_{f\left(\operatorname{lgg}\left(t_{1} \cdot \theta_{x}^{\prime}, t_{1} \cdot \theta_{i}^{\prime}\right), \ldots, \lg g\left(t_{l} \cdot \theta_{x}^{\prime}, t_{l} \cdot \theta_{i}^{\prime}\right)\right)}]
$$

The entries $\left[t_{j} \cdot \theta_{x}^{\prime}-t_{j} \cdot \theta_{i}^{\prime} \Rightarrow \lg g\left(t_{j} \cdot \theta_{x}^{\prime}, t_{j} \cdot \theta_{x}^{\prime}\right)\right]$, with $1 \leq j \leq l$, are also included in σ, since all t_{j} are terms of $s_{t} \cup\left\{b_{t}\right\}$. By the induction hypothesis, all the subterms of every $\lg g\left(t_{j} \cdot \theta_{x}^{\prime}, t_{j} \cdot \theta_{x}^{\prime}\right)$ are included in σ, and therefore, all the subterms of $\lg g\left(f\left(t_{1}, \ldots, t_{l}\right) \cdot \theta_{x}^{\prime}, f\left(t_{1}, \ldots, t_{l}\right) \cdot \theta_{x}^{\prime}\right)$ are also included in σ and the step case holds.

Claim. The matching σ is basic.

Proof. A basic matching is defined only for two multi-clauses [s_{x}, c_{x}] and $\left[s_{i}, c_{i}\right]$ such that the number of terms in $s_{x} \cup c_{x}$ is less or equal than the number of terms in $s_{i} \cup c_{i}$. Corollary 4.5 shows that this is indeed the case. Following the definition, it should be also 1-1 and legal. The claims above show that it is $1-1$ and that it is also legal. It is only left to see that it is basic: if entry $f\left(t_{1}, \ldots, t_{n}\right)-t$ is in σ, then $t=f\left(r_{1}, \ldots, r_{n}\right)$ and $t_{l}-r_{l} \in \sigma$ for all $l=1, \ldots, n$.

Suppose, then, that $f\left(t_{1}, \ldots, t_{n}\right)-t$ is in σ. By construction of σ all entries are of the form $\hat{t} \cdot \theta_{x}^{\prime}-\hat{t} \cdot \theta_{i}^{\prime}$, where \hat{t} is a term in $s_{t} \cup\left\{b_{t}\right\}$. Thus, assume \hat{t}. $\theta_{x}^{\prime}=f\left(t_{1}, \ldots, t_{n}\right)$ and $\hat{t} \cdot \theta_{i}^{\prime}=t$. We also know that θ_{x}^{\prime} is a variable renaming, therefore, the term $\hat{t} \cdot \theta_{x}^{\prime}$ is a variant of \hat{t}. Therefore, the terms $f\left(t_{1}, \ldots, t_{n}\right)$ and \hat{t} are variants. That is, \hat{t} itself has the form $f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$, where every t_{j}^{\prime} is a variant of t_{j} and $t_{j}^{\prime} \cdot \theta_{x}^{\prime}=t_{j}$, where $j=1, \ldots, n$. Therefore, $t=\hat{t} \cdot \theta_{i}^{\prime}=f\left(r_{1}=t_{1}^{\prime}\right.$. $\left.\theta_{i}^{\prime}, \ldots, r_{n}=t_{n}^{\prime} \cdot \theta_{i}^{\prime}\right)$ as required. We have seen that $t_{j}=t_{j}^{\prime} \cdot \theta_{x}^{\prime}$ and $r_{j}=t_{j}^{\prime} \cdot \theta_{i}^{\prime}$. By construction, σ includes the entries $t_{j}-r_{j}$, for any $j=1, \ldots, n$ and our claim holds.

The claims above show that the matching σ is a good matching in the sense that it will be one of the matchings constructed by the algorithm. Now we consider the pairing of $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$ induced by σ. Notice that this pairing (call it $[s, c]$) will not be discarded by our algorithm. The discarded pairings are those that do not agree with the $\lg g$ of s_{x} and s_{i}, but this does not happen in this case, since σ has been constructed precisely using the $l g g$ of some terms in $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$.

It is left to show that conditions for replacement in the algorithm hold. The following two claims show that this is indeed the case.

Claim. $\quad r h s(s, c) \neq \emptyset$.

Proof. Let θ_{x} and θ_{i} be defined as follows. An entry in $\sigma\left[t \cdot \theta_{x}^{\prime}-t \cdot \theta_{i}^{\prime}=>\right.$ $\left.\lg g\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)\right]$ such that $\operatorname{lgg}\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)$ is a variable will generate the mapping $\lg g\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right) \mapsto t \cdot \theta_{x}^{\prime}$ in θ_{x} and $\operatorname{lgg}\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right) \mapsto t \cdot \theta_{i}^{\prime}$ in θ_{i}. That is, $\theta_{x}=$ $\left\{\operatorname{lgg}\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right) \mapsto t \cdot \theta_{x}^{\prime}\right\}$ and $\theta_{i}=\left\{\operatorname{lgg}\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right) \mapsto t \cdot \theta_{i}^{\prime}\right\}$, whenever $\lg g\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)$ is a variable and t is a term in $s_{t} \cup\left\{b_{t}\right\}$.

In our example, $\theta_{x}=\left\{X \mapsto x^{\prime}, Y \mapsto y^{\prime}, z \mapsto z\right\}$ and $\theta_{i}=\{X \mapsto f(1), Y \mapsto$ $f(2), z \mapsto z\}$.

- $s \cdot \theta_{x} \subseteq s_{x}$. Let l be an atom in s, l has been obtained by taking the $l g g$ of two atoms l_{x} and l_{i} in s_{x} and s_{i}, respectively. That is, $l=\operatorname{lgg}\left(l_{x}, l_{i}\right)$. Moreover, l only contains terms in the extension of σ, otherwise it would have been removed when restricting the $l g g$. The substitution θ_{x} is such that $l \cdot \theta_{x}=l_{x}$ because it "undoes" what the $\lg g$ does for the atoms with terms in σ. And $l_{x} \in s_{x}$, therefore, the inclusion $s \cdot \theta_{x} \subseteq s_{x}$ holds.
- $s \cdot \theta_{i} \subseteq s_{i}$. Similar to previous.

Let θ be the substitution that maps all variables in $s_{t} \cup\left\{b_{t}\right\}$ to their corresponding expression assigned in the extension of σ. That is, θ maps any variable v of $s_{t} \cup\left\{b_{t}\right\}$ to the term $\lg g\left(v \cdot \theta_{x}^{\prime}, v \cdot \theta_{i}^{\prime}\right)$. In our example, $\theta=\{x \mapsto X, y \mapsto Y, z \mapsto z\}$.

The proof that $r h s(s, c) \neq \emptyset$ consists in showing that $\neq\left(s_{t} \rightarrow b_{t}\right)$ is captured by $[s, c]$ via θ. Then we apply Lemma 4.6 and conclude that $r h s(s, c) \neq \emptyset$.

The following properties hold:

- $\theta \cdot \theta_{x}=\theta_{x}^{\prime}$. Let v be a variable in $s_{t} \cup\left\{b_{t}\right\}$. The substitution θ maps v into $\lg g\left(v \cdot \theta_{x}^{\prime}, v \cdot \theta_{i}^{\prime}\right)$. This is a variable, say V, since we know θ_{x}^{\prime} is a variable renaming. The substitution θ_{x} contains the mapping

$$
\underbrace{\operatorname{lgg}\left(v \cdot \theta_{x}^{\prime}, v \cdot \theta_{i}^{\prime}\right)}_{V} \mapsto v \cdot \theta_{x}^{\prime}
$$

And v is mapped into $v \cdot \theta_{x}^{\prime}$ by $\theta \cdot \theta_{x}$.
In our example: $\theta_{x}^{\prime}=\left\{x \mapsto x^{\prime}, y \mapsto y^{\prime}, z \mapsto z\right\}$, and

$$
\theta \cdot \theta_{x}=\{x \mapsto X, y \mapsto Y, z \mapsto z\} \cdot\left\{X \mapsto x^{\prime}, Y \mapsto y^{\prime}, z \mapsto z\right\} .
$$

- $\theta \cdot \theta_{i}=\theta_{i}^{\prime}$. As in previous property.

To see how $\neq\left(s_{t} \rightarrow b_{t}\right)$ is captured by $[s, c]$ via θ :

- $s_{t} \cdot \theta \subseteq s=l g g_{\left.\right|_{\sigma}}\left(s_{x}, s_{i}\right)$. Let l be an atom in s_{t}. We show that $l \cdot \theta$ is in $\operatorname{lgg}\left(s_{x}, s_{i}\right)$ and that it is not removed by the restriction to σ. Let t be a term appearing in l. The matching σ contains the entry

$$
\left[t \cdot \theta_{x}^{\prime}-t \cdot \theta_{i}^{\prime} \Rightarrow \operatorname{lgg}\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)\right]
$$

since t appears in s_{t}. The substitution θ contains $\left\{v \mapsto \operatorname{lgg}\left(v \cdot \theta_{x}^{\prime}, v \cdot \theta_{i}^{\prime}\right)\right\}$ for every variable v appearing in $s_{t} \cup\left\{b_{t}\right\}$ (and thus for every variable in s_{t}), therefore $t \cdot \theta=\lg g\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)$. Indeed, $\lg g\left(t \cdot \theta_{x}^{\prime}, t \cdot \theta_{i}^{\prime}\right)$ appears in σ. The atom $l \cdot \theta$ appears in $\operatorname{lgg}\left(s_{t} \cdot \theta_{x}^{\prime}, s_{t} \cdot \theta_{i}^{\prime}\right)$ and therefore in $\operatorname{lgg}\left(s_{x}, s_{i}\right)$ since $s_{t} \cdot \theta_{x}^{\prime} \subseteq s_{x}, s_{t} \cdot \theta_{i}^{\prime} \subseteq s_{i}$ and $\theta=\left\{v \mapsto \lg g\left(v \cdot \theta_{x}^{\prime}, v \cdot \theta_{i}^{\prime}\right) \mid v\right.$ is a variable of $\left.s_{t}\right\}$. Also, $l \cdot \theta$ appears in $\operatorname{lgg}_{\left.\right|_{\sigma}}\left(s_{x}, s_{i}\right)$ since we have seen that any term in $l \cdot \theta$ appears in σ.
In our example the only l we have in $s_{t} \cdot \theta$ is $p(g(c), x, f(y), z) \cdot \theta=p(g(c), X, f(Y), z)$. And $l g g_{\left.\right|_{\sigma}}\left(s_{x}, s_{y}\right)$ is precisely $\{p(g(c), X, f(Y), z)\}$.

- ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \subseteq \operatorname{ineq}(s \cup c)$. We have to show that for any two distinct terms t, t^{\prime} of $s_{t} \cup\left\{b_{t}\right\}$, the terms $t \cdot \theta$ and $t^{\prime} \cdot \theta$ are also different terms in $s \cup c$, and therefore the inequality $t \cdot \theta \neq t^{\prime} \cdot \theta$ appears in $i n e q(s \cup c)$. By hypothesis, $\operatorname{ineq}\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta_{x}^{\prime} \subseteq \operatorname{ineq}\left(s_{x} \cup c_{x}\right)$. Since $\theta_{x}^{\prime}=\theta \cdot \theta_{x}$, we get ineq $\left(s_{t} \cup\left\{b_{t}\right\}\right) \cdot \theta \cdot \theta_{x} \subseteq$ $\operatorname{ineq}\left(s_{x} \cup c_{x}\right)$ and so $t \cdot \theta \cdot \theta_{x}$ and $t^{\prime} \cdot \theta \cdot \theta_{x}$ are different terms of $s_{x} \cup c_{x}$. From Property 5. in Lemma 4.3 it follows that $t \cdot \theta \neq t^{\prime} \cdot \theta \in \operatorname{ineq}(s \cup c)$.
- $b_{t} \cdot \theta \in c$. By hypothesis, $b_{t} \cdot \theta_{x}^{\prime} \in c_{x}$. Also, $b_{t} \cdot \theta_{i}^{\prime} \in \operatorname{Atoms}_{P}\left(s_{i} \cup c_{i}\right)$ implies (because $\left[s_{i}, c_{i}\right]$ is full), that $b_{t} \cdot \theta_{i}^{\prime} \in s_{i} \cup c_{i}$. Notice that $b_{t} \cdot \theta=\lg g_{\left.\right|_{\sigma}}\left(b_{t} \cdot \theta_{x}^{\prime}, b_{t} \cdot \theta_{i}^{\prime}\right)$ by construction. Therefore $b_{t} \cdot \theta \in c=l g g_{\left.\right|_{\sigma}}\left(s_{x}, c_{i}\right) \cup l g g_{\left.\right|_{\sigma}}\left(c_{x}, s_{i}\right) \cup l g g_{\left.\right|_{\sigma}}\left(c_{x}, c_{i}\right)$ as required.

Claim. $\quad \operatorname{size}(s) \lesseqgtr \operatorname{size}\left(s_{i}\right)$ or $\left(\operatorname{size}(s)=\operatorname{size}\left(s_{i}\right)\right.$ and $\left.\operatorname{size}(c) \lesseqgtr \operatorname{size}\left(c_{i}\right)\right)$.

Proof. By Lemma 4.14, we know that $|s| \leq\left|s_{i}\right|$, therefore $\operatorname{size}(s) \leq \operatorname{size}\left(s_{i}\right)$ since the lgg never substitutes a term by one of greater weight. Notice that the
$l g g$ substitutes variables for functional terms. According to our definition of size, variables weigh less than functional terms, therefore the size of a generalisation will be at most the size of the instance that has been generalised. We cover all possible cases: if $\operatorname{size}(s) \lesseqgtr \operatorname{size}\left(s_{i}\right)$, then the condition is true. If $\operatorname{size}(s)=\operatorname{size}\left(s_{i}\right)$, then we know by Lemma 4.14 that $|s \cup c| \leq\left|s_{i} \cup c_{i}\right|$. Since $|s|=\left|s_{i}\right|$, we conclude that $|c| \leq\left|c_{i}\right|$, and hence $\operatorname{size}(c) \leq \operatorname{size}\left(c_{i}\right)$ by the same argument as above. Thus, $s \cdot \theta_{i}=s_{i}$ and $s_{i} \cdot \theta_{i}^{-1}=s$. Again, we split the proof into two cases. The case when $\operatorname{size}(c) \lesseqgtr \operatorname{size}\left(c_{i}\right)$ satisfies the condition. For the case when $\operatorname{size}(c)=\operatorname{size}\left(c_{i}\right)$, we have that the multi-clauses $[s, c]$ and $\left[s_{i}, c_{i}\right]$ are equal up to variable renaming. We will elaborate this case a little more and will arrive to a contradiction, finishing our proof. The following facts hold:

- Since $[s, c]$ and $\left[s_{i}, c_{i}\right]$ are variable renamings, $c \cdot \theta_{i}=c_{i}$ and $c_{i} \cdot \theta_{i}^{-1}=c$.
- By the previous claim, it holds that $b_{t} \cdot \theta \in c$ and therefore there exists a b_{i} s.t. $b_{i}=b_{t} \cdot \theta \cdot \theta_{i} \in c_{i}$.
- The substitutions θ_{i} and θ_{x}^{\prime} are variable renamings, and (by previous claim) $\theta_{x}^{\prime}=\theta \cdot \theta_{x}$, therefore the substitution $\hat{\theta}=\theta_{i}^{-1} \cdot \theta_{x}$ is well defined and is a variable renaming.
- It follows that $s_{i} \cdot \hat{\theta} \subseteq s_{x}$ and $b_{i} \cdot \hat{\theta}=\underbrace{b_{t} \cdot \theta \cdot \theta_{i}}_{b_{i}} \cdot \underbrace{\theta_{i}^{-1} \cdot \theta_{x}}_{\hat{\theta}}=b_{t} \cdot \theta \cdot \theta_{x}=b_{t} \cdot \theta_{x}^{\prime} \in c_{x}$ (by assumption).

Therefore, $H \models s_{i} \rightarrow b_{i}=s_{i} \cdot \hat{\theta} \rightarrow b_{i} \cdot \hat{\theta} \models s_{x} \rightarrow b_{x}$ (where $b_{x}=b_{t} \cdot \theta_{x}^{\prime} \in c_{x}$) contradicting the fact that $\left[s_{x}, c_{x}\right]$ is a counterexample.

This completes the proof for the lemma.
Corollary 4.8. If a counterexample $\left[s_{x}, c_{x}\right]$ is appended to S, it is because there is no element in S capturing a clause in $U(T)$ that is also captured by $\left[s_{x}, c_{x}\right]$.

Lemma 4.17. Every time the algorithm is about to make an equivalence query, it is the case that every multi-clause in S captures at least one of the clauses of $U(T)$ and every clause of $U(T)$ is captured by at most one multi-clause in S.

Proof. All multi-clauses included in S are full by Corollary 4.7. By construction, their consequents are non-empty so that we can apply Corollary 4.2, and conclude that all counterexamples in S capture some clause of $U(T)$.

An induction on the number of iterations of the main loop in line 2 of the learning algorithm shows that no two different multi-clauses in S capture the same clause of $U(T)$. In the first loop the lemma holds trivially (there are no elements in S). By the induction hypothesis we assume that the lemma holds before a new iteration of the loop. We will see that after completion of that iteration of the loop the lemma must also hold. Two cases arise.

The minimised counterexample $\left[s_{x}, c_{x}\right]$ is appended to S. By Corollary 4.8, we know that $\left[s_{x}, c_{x}\right]$ does not capture any clause in $U(T)$ also captured by some element $\left[s_{i}, c_{i}\right]$ in S. This, together with the induction hypothesis, assures that the lemma is satisfied in this case.

Some $\left[s_{i}, c_{i}\right]$ is replaced in S. We denote the updated sequence by S^{\prime} and the updated element in S^{\prime} by $\left[s_{i}^{\prime}, c_{i}^{\prime}\right]$. The induction hypothesis claims that the lemma holds for S. We have to prove that it also holds for S^{\prime} as updated by the algorithm. Assume it does not. The only possibility is that the new element $\left[s_{i}^{\prime}, c_{i}^{\prime}\right]$ captures some clause of $U(T)$, say $\neq\left(s_{t} \rightarrow b_{t}\right)$ also captured by some other element [s_{j}, c_{j}] of S^{\prime}, with $j \neq i$. The multi-clause $\left[s_{i}^{\prime}, c_{i}^{\prime}\right]$ is a basic pairing of $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$, and hence it is also legal. Applying Lemma 4.15 we conclude that one of $\left[s_{x}, c_{x}\right]$ or $\left[s_{i}, c_{i}\right]$ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$.

Suppose $\left[s_{i}, c_{i}\right]$ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$. This contradicts the induction hypothesis, since both $\left[s_{i}, c_{i}\right]$ and $\left[s_{j}, c_{j}\right]$ appear in S and capture $\neq\left(s_{t} \rightarrow b_{t}\right)$ in $U(T)$.

Suppose $\left[s_{x}, c_{x}\right]$ captures $\neq\left(s_{t} \rightarrow b_{t}\right)$. If $j<i$, then $\left[s_{x}, c_{x}\right.$] would have refined $\left[s_{j}, c_{j}\right]$ instead of $\left[s_{i}, c_{i}\right]$ (Lemma 4.16). Therefore, $j>i$. But then we are in a situation where $\left[s_{j}, c_{j}\right]$ captures a clause also covered by $\left[s_{i}, c_{i}\right]$. By Corollary 4.6, all multi-clauses in position i cover $\neq\left(s_{t} \rightarrow b_{t}\right)$ during the history of S. Consider the iteration in which $\left[s_{j}, c_{j}\right]$ first captured $\neq\left(s_{t} \rightarrow b_{t}\right)$. This could have happened by appending the counterexample $\left[s_{j}, c_{j}\right]$, which contradicts Lemma 4.16 since $\left[s_{i}, c_{i}\right]$ or an ancestor of it was covering $\neq\left(s_{t} \rightarrow b_{t}\right)$ but was not replaced. Or it could have happened by refining $\left[s_{j}, c_{j}\right]$ with a pairing of a counterexample capturing $\neq\left(s_{t} \rightarrow b_{t}\right)$. But then, by Lemma 4.16 again, the element in position i should have been refined, instead of refining $\left[s_{j}, c_{j}\right]$.

4.10. Deriving the complexity bounds

Recall that m^{\prime} stands for the number of clauses in the transformation $U(T)$ and that by Lemma 4.1, $m^{\prime} \leq m t^{k}$, where t (k, resp.) is the maximum number of terms (variables, resp.) in any clause in T. By Lemma 4.17 the number of clauses in $U(T)$ bounds the number of elements in S, and therefore:

Corollary 4.9. The number of elements in S is bounded by m^{\prime}.

What follows is a detailed account of the number of queries made in every procedure.

Lemma 4.18. If $\left[s_{x}, c_{x}\right]$ is a minimised counterexample, then, $\left|s_{x}\right|+\left|c_{x}\right| \leq s t^{a}$.

Proof. By Corollary 4.4, there are a maximum of t terms in a minimised counterexample. There are a maximum of $s t^{a}$ different atoms built up from t terms.

Lemma 4.19. The algorithm makes $O\left(m^{\prime} s t^{a}\right)$ equivalence queries.

Proof. Notice that any set of atoms containing t distinct terms can be generalised at most t times. This is because after generalising a term into a variable, it cannot be further generalised. The sequence S has at most m^{\prime} elements. The following actions can happen after refining a multi-clause in S (possibly combined): either (1) one atom is dropped from the antecedent, or (2) an atom moves from antecedent to consequent, or (3) an atom is dropped from the consequent, or (4) some term is generalised. This can happen $m^{\prime} s t^{a}$ times for (1), $m^{\prime} s t^{a}$ times for (2), $m^{\prime} s t^{a}$
times for (3), and $m^{\prime} t$ times for (4), that is $m^{\prime}\left(t+3 s t^{a}\right)$ in total. We need m^{\prime} extra calls to add all the counterexamples. In total $\underline{m}^{\prime}\left(1+t+3 \underline{s t^{a}}\right)$, that is $O\left(m^{\prime} s t^{a}\right)$.

Lemma 4.20. The algorithm makes $O\left(s e_{t}^{a+1}\right)$ membership queries during the minimisation procedure.

Proof. To compute the first version of the full multi-clause we need to test the $s e_{t}^{a}$ possible atoms built up from e_{t} distinct terms appearing in s_{x}. Therefore, we make $s e_{t}^{a}$ initial calls. Next, we note that the first version of c_{x} has at most $s e_{t}^{a}$ atoms. The first loop (generalisation of terms) is executed at most e_{t} times, one for every term appearing in the first version of s_{x}. In every execution, at most $\left|c_{x}\right| \leq s e_{t}^{a}$ membership calls are made. In this loop there are a total of $s e_{t}^{a+1}$ calls. The second loop of the minimisation procedure is also executed at most e_{t} times, one for every term in s_{x}. Again, since at most $s e_{t}^{a}$ calls are made in the body on this second loop, the total number of calls is bounded by $s e_{t}^{a+1}$. This makes a total of $s e_{t}^{a}+2 s e_{t}^{a+1}$, that is $O\left(s e_{t}^{a+1}\right)$.

Lemma 4.21. Given a matching, the algorithm makes at most st ${ }^{a}$ membership queries during the computation of a basic pairing.

Proof. The number of atoms in the consequent c of a pairing of $\left[s_{x}, c_{x}\right]$ and [s_{i}, c_{i}] is bounded by the number of atoms in s_{x} plus the number of atoms in c_{x}. By Lemma 4.18, this is bounded by $s t^{a}$.

Lemma 4.22. The algorithm makes $O\left(m^{\prime} s^{2} t^{a} e_{t}^{a+1}+m^{\prime 2} s^{2} t^{2 a+k}\right)$ membership queries.

Proof. The main loop is executed as many times as equivalence queries are made. In every loop, the minimisation procedure is executed once and for every element in S, a maximum of t^{k} pairings are made.

This is:

$$
\underbrace{s m^{\prime} t^{a}}_{\text {\#iterations }} \times\{\underbrace{s e_{t}^{a+1}}_{\text {minim. }}+\underbrace{m^{\prime}}_{|S|} \cdot \underbrace{t^{k}}_{\text {pairings }} \cdot \underbrace{s t^{a}}_{\text {pairing }}\}=O\left(m^{\prime} s^{2} t^{a} e_{t}^{a+1}+m^{\prime 2} s^{2} t^{2 a+k}\right)
$$

We arrive to our main result.
THEOREM 4.1. The algorithm exactly identifies every closed Horn expression making $O\left(m^{\prime} s t^{a}\right)$ equivalence queries and $O\left(m^{\prime} s^{2} t^{a} e_{t}^{a+1}+m^{\prime 2} s^{2} t^{2 a+k}\right)$ membership queries. Furthermore, the running time is polynomial in $m^{\prime 2}+s^{2}+t^{k}+t^{a}+e_{t}^{a}$.

We conclude that the classes $R R H E, C O H E$ and $R R C O H E$ are learnable using our algorithm. Since by Lemma 4.1 we know that $m^{\prime} \leq m t^{k}$, we obtain:

Corollary 4.10. The algorithm exactly identifies every closed Horn expression making $O\left(m s t^{a+k}\right)$ equivalence queries and $O\left(m s^{2} t^{a+k} e_{t}^{a+1}+m^{2} s^{2} t^{2 a+3 k}\right)$ membership queries. Furthermore, the running time is polynomial in $m^{2}+s^{2}+t^{k}+t^{a}+e_{t}^{a}$.

5. FULLY INEQUATED CLOSED HORN EXPRESSIONS

Clauses in this class can contain a new type of atom, that we call inequation or inequality and has the form $t \neq t^{\prime}$, where both t and t^{\prime} are terms. Inequated clauses may contain any number of inequalities in its antecedent. Let s be a conjunction of atoms and inequations. Then, s^{p} denotes the conjunction of atoms in s and s^{\neq} the conjunction of inequalities in s. That is $s=s^{p} \wedge s^{\neq}$. We say s is completely inequated if s^{\neq}contains all possible inequations between distinct terms in s^{p}, i.e., if $s^{\neq}=\operatorname{ineq}\left(s^{p}\right)$. A clause $s \rightarrow b$ is completely inequated if $s=\operatorname{ineq}\left(s^{p} \cup\{b\}\right) \wedge s^{p}$. No inequalities are allowed in the consequent. Similarly, a multi-clause $[s, c]$ is completely inequated if $s=\operatorname{ineq}\left(s^{p} \cup c\right) \wedge s^{p}$. A fully inequated Closed Horn expression is a conjunction of fully inequated closed Horn clauses.

Looking at the way the transformation $U(T)$ described in Section 4.1 is used in the proof of correctness, the natural question of what happens when the target expression is already fully inequated (and $T=U(T)$) arises. As an example, take the clause human $($ father $(x)) \wedge \operatorname{human}(\operatorname{mother}(x)) \rightarrow \operatorname{human}(x)$. The intended meaning is clearly that $x \neq \operatorname{faher}(x) \neq \operatorname{mother}(x)$, and hence this clause is fully inequated. We will see that the learning algorithm described in Section 3 has to be slightly modified in order to achieve learnability of this class.

The first modification is in the minimisation procedure. It can be the case that after generalising or dropping some terms (as done in the two stages of the minimisation procedure), the result of the operation is not fully inequated. More precisely, there may be superfluous inequalities that involve terms not appearing in the atoms of the counterexample's antecedent. These should be eliminated from the counterexample, yielding a fully inequated minimised counterexample.

The second (and last) modification is in the pairing procedure. Given a matching σ and two multi-clauses $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$, its pairing $[s, c]$ is computed in the new algorithm as:

1. $s^{p}=\lg g_{\left.\right|_{\sigma}}\left(s_{x}^{p}, s_{i}^{p}\right)$
2. $c=l g g_{\left.\right|_{\sigma}}\left(s_{x}^{p}, c_{i}\right) \cup l g g_{\left.\right|_{\sigma}}\left(c_{x}, s_{i}^{p}\right) \cup l g g_{\left.\right|_{\sigma}}\left(c_{x}, c_{i}\right)$
3. $s=\operatorname{ineq}\left(s^{p} \cup c\right) \cup s^{p}$

Notice that inequations in the original multi-clauses $\left[s_{x}, c_{x}\right]$ and $\left[s_{i}, c_{i}\right]$ are ignored. The pairing is computed only for the atomic information, and finally the fully inequated pairing is constructed by adding all the inequations needed. This can be done safely because the algorithm only deals with fully inequated clauses. The proof of correctness is very similar to the one presented here. Complete details and proof for the case of Range Restricted Horn Expressions can be found in [1].

THEOREM 5.1. The modified algorithm identifies fully inequated closed Horn expressions making $O\left(m s t^{a}\right)$ calls to the equivalence oracle and $O\left(m s^{2} t^{a} e_{t}^{a+1}+\right.$ $m^{2} s^{2} t^{2 a+k}$) to the membership oracle. Furthermore, the running time is polynomial in $m^{2}+s^{2}+t^{k}+t^{a}+e_{t}^{a}$.

Let the class $F I R R H E$ be the class of fully inequated range restricted Horn expressions, $F I C O H E$ the class of fully inequated constrained Horn expressions
and FIRRCOHE their union. We conclude that the classes FIRRHE, FICOHE and FIRRCOHE are learnable using the modified algorithm.

6. CONCLUSIONS

The paper introduced a new algorithm for learning closed Horn expressions $(C H E)$ and established the learnability of fully inequated closed Horn expressions $(F I C H E)$. The structure of the algorithm is similar to previous ones, but it uses carefully chosen operations that take advantage of the structure of functional terms in examples. This in turn leads to an improvement of worst case bounds on the number of queries required, which is one of the main contributions of the paper. The following table contains the results obtained in [11] for range restricted Horn Expressions (RRHE) and in this paper for Closed Horn Expressions. This paper extends [2] where similar bounds were obtained for $R R H E$.

	Class	$E n t E Q$	$E n t M Q$
Result in [11]	$R R H E$	$O\left(m s t^{t+a}\right)$	$O\left(m s^{2} t^{t+a} e_{t}^{a+1}+m^{2} s^{2} t^{3 t+2 a}\right)$
Our result	$C H E$	$O\left(m s t^{k+a}\right)$	$O\left(m s^{2} t^{k+a} e_{t}^{a+1}+m^{2} s^{2} t^{3 k+2 a}\right)$
Our result	$F I C H E$	$O\left(m s t^{a}\right)$	$O\left(m s^{2} t^{a} e_{t}^{a+1}+m^{2} s^{2} t^{k+2 a}\right)$

Notice that we significantly improve previous results by removing the exponential dependence of the number of queries on the number of terms. However, we still remain exponential on the number of variables. The bounds are further improved for the case of $F I C H E$. This may be significant as in many cases, while inequalities are not explicitly written, the intention is that different terms denote different objects.

The reduction in the number of queries goes beyond worst case bounds. The restriction that pairings are both basic and agree with the $l g g$ table is quite strong and reduces the number of pairings and hence queries. This is not reflected in our analysis but we believe it will make a difference in practice. Similarly, the bound $m^{\prime} \leq m t^{k}$ on $|U(T)|$ is quite loose, as a large proportion of partitions will be discarded if T includes functional structure.

Another important difference is that the proof in [11] assumes that the number of function symbols is finite. Our proof holds even when the set of function symbols is infinite or unknown, as long as examples have finite descriptions.

It is interesting to compare this result to other similar efforts in [9, 21, 3, 20, 19]. The results in $[9,21]$ rely on the fact that no chaining or self-resolution is possible between rules. Thus subsumption and implication are the same and it is easy to know which examples to combine in the generalisation process. The results in $[3,20$] allow recursion and chaining but assume the expressions are acyclic in terms of chaining order, and that an additional query is allowed which indicates this order; in addition [3] assumes constrained expressions and [20] assumes range restricted expressions. So both results are covered by our algorithm as special cases. On the other hand their complexity is lower than in our case. In particular they are polynomial in the number of variables whereas our algorithm is exponential. It would be interesting to find out whether such reduced complexity is possible without the use of additional query types. One way to explore this question is to study the query complexity of the problem (ignoring computational complexity) by
using the notion of certificates [8, 7]. The result in [19] goes beyond constrained clauses by allowing additional length bounded terms in clause bodies, but uses "subsumption-queries" to decide how to combine examples. If we allow such terms in our setting we must include them in the intermediate term set currently captured by the set Atoms $_{P}([s, c])$. Unfortunately, several crucial steps in our proof require that this set does not use additional terms. It remains to be seen whether such a generalisation is possible.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewer whose comments helped improve our complexity results.

REFERENCES

1. M. Arias and R. Khardon. Learning Inequated Range Restricted Horn Expressions. Technical Report EDI-INF-RR-0011, Division of Informatics, University of Edinburgh, March 2000.
2. M. Arias and R. Khardon. A new algorithm for learning range restricted Horn expressions. In Proceedings of the 10th International Conference on Inductive Logic Programming, pages 21-39. Springer-Verlag, 2000. LNAI 1866.
3. Hiroki Arimura. Learning acyclic first-order Horn sentences from entailment. In Proceedings of the International Conference on ALT, Sendai, Japan, 1997. Springer-Verlag. LNAI 1316.
4. W. Cohen. PAC-learning recursive logic programs: Efficient algorithms. Journal of Artificial Intelligence Research, 2:501-539, 1995.
5. W. Cohen. PAC-learning recursive logic programs: Negative results. Journal of Artificial Intelligence Research, 2:541-573, 1995.
6. M. Frazier and L. Pitt. Learning from entailment: An application to propositional Horn sentences. In Proceedings of the International Conference on Machine Learning, pages 120127, Amherst, MA, 1993. Morgan Kaufmann.
7. T. Hegedus. On generalized teaching dimensions and the query complexity of learning. In Proceedings of the 8th Annual Conference on Computational Learning Theory (COLT'95), pages 108-117, New York, NY, USA, July 1995. ACM Press.
8. Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and Dawn Wilkins. How many queries are needed to learn? Journal of the ACM, 43(5):840-862, September 1996.
9. Charles David Page Jr. Anti-unification in constraint logics: Foundations and applications to learnability in first-order logic, to speed-up learning, and to deduction. Technical Report UIUCDCS-R-93-1820, University of Illinois at Urbana-Champaign, Department of Computer Science, 1993.
10. R. Khardon. Learning function free Horn expressions. Machine Learning, 37:241-275, 1999.
11. R. Khardon. Learning range restricted Horn expressions. In Proceedings of the Fourth European Conference on Computational Learning Theory, pages 111-125, Nordkirchen, Germany, 1999. Springer-verlag. LNAI 1572.
12. Roni Khardon. Learning Horn expressions with LogAn-H. In Proceedings of the International Conference on Machine Learning, pages 471-478, 2000.
13. J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.
14. S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton, editor, Inductive Logic Programming, pages 281-298. Academic Press, 1992.
15. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. The Journal of Logic Programming, 19 \& 20:629-680, May 1994.
16. S. Nienhuys-Cheng and R. De Wolf. Foundations of Inductive Logic Programming. Springerverlag, 1997. LNAI 1228.
17. G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153-163, 1970.
18. L. De Raedt and M. Bruynooghe. An overview of the interactive concept-learner and theory revisor CLINT. In S. Muggleton, editor, Inductive Logic Programming, pages 163-192. Academic Press, 1992.
19. K. Rao and A. Sattar. Learning from entailment of logic programs with local variables. In Proceedings of the International Conference on Algorithmic Learning Theory, Otzenhausen, Germany, 1998. Springer-verlag. LNAI 1501.
20. C. Reddy and P. Tadepalli. Learning first order acyclic Horn programs from entailment. In International Conference on Inductive Logic Programming, pages 23-37, Madison, WI, 1998. Springer. LNAI 1446.
21. C. Reddy and P. Tadepalli. Learning Horn definitions: Theory and an application to planning. New Generation Computing, 17:77-98, 1999.
22. G. Semeraro, F. Esposito, D. Malerba, and N. Fanizzi. A logic framework for the incremental inductive synthesis of datalog theories. In Proceedings of the International Conference on Logic Program Synthesis and Transformation (LOPSTR'97). Springer-Verlag, 1998. LNAI 1463.
23. E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.

[^0]: ${ }^{1}$ This work has been done at the University of Edinburgh supported by EPSRC Grant GR/M21409, and at Tufts University supported by NSF Grant IIS-0099446.

[^1]: ${ }^{2}$ This extends preliminary work in [2], which showed learnability of Range Restricted Horn Expressions only.

