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The paper studies the learnability of Horn expressions within the frame-
work of learning from entailment, where the goal is to exactly identify some
pre-fixed and unknown expression by making queries to membership and
equivalence oracles. It is shown that a class that includes both Range Re-
stricted Horn Ezpressions (where terms in the conclusion also appear in
the condition of a Horn clause) and Constrained Horn Ezpressions (where
terms in the condition also appear in the conclusion of a Horn clause) is
learnable. This extends previous results by showing that a larger class is
learnable with better complexity bounds. A further improvement in the
number of queries is obtained when considering the class of Horn expres-
sions with inequalities on all syntactically distinct terms.

Key Words: Computational learning theory, Inductive logic programming, Horn expres-
sions, algorithms, queries

1. INTRODUCTION

This paper considers the problem of learning an unknown first order expression
T (often called target expression) from examples of clauses that T entails or does
not entail. This type of learning framework is known as learning from entailment.
Frazier & Pitt [6] formalised learning from entailment using equivalence queries and
membership queries and showed the learnability of propositional Horn expressions.
Generalising this result to the first order setting is of clear interest. Indeed, several
works have been done following this line [9, 3, 20, 19, 10, 11, 2] obtaining algorithms
that work for certain subsets of Horn expressions.

Learning first order Horn expressions has become a fundamental problem in In-
ductive Logic Programming [15]. Theoretical results have shown that learning from
examples only is feasible for very restricted classes [4] and that, in fact, learnabil-
ity becomes intractable when slightly more general classes are considered [5]. To

IThis work has been done at the University of Edinburgh supported by EPSRC Grant
GR/M21409, and at Tufts University supported by NSF Grant I1IS-0099446.
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tackle this problem, learners have been equipped with the ability to ask questions.
It is the case that with this ability larger classes can be learned. In this paper, the
questions that the learner is allowed to ask are membership and equivalence queries.
While our work is purely theoretical, there are systems that are able to learn using
equivalence and membership queries (MIS [23], CLINT [18], for example). Some
of the techniques developed in this framework have been adapted for systems that
learn from examples only [21, 12].

We present an algorithm to learn certain subsets of Horn expressions. The al-
gorithm is related to the ones in [10, 11], which learn Range Restricted Horn ex-
pressions. The algorithms in [10, 11] and here use two main procedures. The
first, given a counterexample clause, minimises the clause while maintaining it as
a counterexample. The minimisation procedure used here is stronger than those in
[10, 11], resulting in a clause which includes a syntactic variant of a target clause
as a subset. The second procedure combines two examples producing a new clause
that may be a better approximation for the target. While the algorithm in [10, 11]
uses direct products of models we use an operation based on the lgg (least general
generalisation [17]). The use of lgg seems a more natural and intuitive technique to
use for learning from entailment, and it has been used before, both in theoretical
and applied work [3, 20, 19, 14]. The class of Closed Horn Ezpressions shown to be
learnable here, includes both the class of Range Restricted Horn Ezpressions, the
class of Constrained Horn Ezpressions and their union?. In addition, the complex-
ity of the algorithm is better than that of the algorithm in [10, 11].

We extend our results to the class of Fully Inequated Closed Horn Expressions.
The main property of this class is that it does not allow unification of its terms.
To avoid unification, every clause in this class includes in its antecedent a series
of inequalities between all its terms. With a minor modification to the learning
algorithm, we are able to show learnability of the class of fully inequated closed
Horn expressions. The more restricted nature of this class allows for better bounds
to be derived.

The rest of the paper is organised as follows. Section 2 gives some preliminary
definitions. The learning algorithm is presented in Section 3 and proved correct
in Section 4. The results are extended to the fully inequated case in Section 5.
Finally, Section 6 compares the results obtained in this paper with previous results
and includes further discussion of the result and related work.

2. PRELIMINARIES

We consider a subset of the class of universally quantified expressions in first
order logic. In the learning problem, a pre-fixed known and finite signature of the
language is assumed. This signature S consists of a finite set of predicates P and a
finite set of functions F, both predicates and functions with their associated arity.
Constants are functions with arity 0. A set of variables z1,xs,z3,... is used to
construct expressions.

2This extends preliminary work in [2], which showed learnability of Range Restricted Horn
Expressions only.
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Definitions of first order languages can be found in standard texts, e.g. [13]. Here
we briefly introduce the necessary constructs. A variable is a term of depth 0. If
t1,...,t, are terms, each of depth at most ¢ and one with depth precisely ¢ and
f € Fis a function symbol of arity n, then f(t1,...,t,) is a term of depth ¢ + 1.

An atom is an expression p(ty, ..., t,) where p € P is a predicate symbol of arity
n and tq,...,t, are terms. An atom is called a positive literal. A negative literal is
an expression -/ where [ is a positive literal.

Let X be a term, or set of terms, or atom, or set of atoms. The set T'erms(X)
is the set of terms and subterms appearing in X.

Let P be a set of predicates together with their arities, and X a term, or set of
terms, or atom, or set of atoms. The set Atomsp(X) is the set of atoms built from
predicate symbols in P (of the correct arity) and terms in Terms(X).

ExAMPLE 2.1. Suppose P = {p/2,q/1} and r is a predicate of arity 1.

o Terms(f(z,g(a))) = {z,a,g(a), f(z,g(a))}
o Atomsp(r(f(1))) = {p(1,1),p(1, f(1)),p(f(1),1),p(f(1), f(1)),q(1),q(f(1))}

A clause is a disjunction of literals where all variables are universally quantified.
A Horn clause has at most one positive literal and an arbitrary number of negative
literals. A Horn clause —p; V ...V =p,, V pr41 18 equivalent to its implicational form
P1L A ... ADp = ppy1. We call p1 A ... A p, the antecedent and p,,+; the consequent
of the clause. A Horn clause is definite if it has exactly one positive literal.

A Range Restricted Horn clause s — b is a definite Horn clause in which every
term appearing in its consequent also appears in its antecedent, possibly as a sub-
term of another term. That is, Terms(b) C Terms(s). A Range Restricted Horn
Expression is a conjunction of Range Restricted Horn clauses.

A Constrained Horn clause s — b is a definite Horn clause in which every term
appearing in its antecedent also appears in its consequent, possibly as a subterm
of another term. That is, Terms(s) C Terms(b). A Constrained Horn Ezpression
is a conjunction of Constrained Horn clauses.

The truth value of first order expressions is defined relative to an interpretation I
of the predicates and function symbols in the signature S. An interpretation (also
called structure or model) I includes a domain D which is a set of elements. For
each function f € F' of arity n, I associates a mapping from D" to D. For each
predicate symbol p € P of arity n, I specifies the truth value of p on n-tuples over
D. The extension of a predicate in I is the set of positive instantiations of the
predicate that are true in I.

Let p be an atom, I an interpretation and € a mapping of the variables in p to
objects in I. The positive literal p - is true in [ if it appears in the extension of I.
A negative literal is true in [ if its negation is not.

A Horn clause C' = py A...Ap,, — P41 18 true in a given interpretation I, denoted
I |= C if for any variable assignment 6 (a total function from the variables in C
into the domain elements of I), if all the literals in the antecedent p6, ..., p,0 are
true in I, then the consequent p,, 416 is also true in I. A Horn Expression T is true
in I, denoted I |= T, if all of its clauses are true in I. The expressions T is true in
I, I satisties T', I is a model of T', and I }= T are equivalent.
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Let T1,T» be two Horn expressions. We say that T implies 7%, denoted T} |= 15,
if every model of T3 is also a model of T5.

A multi-clause is a pair of the form [s,c], where both s and c¢ are sets of atoms
such that s N ¢ = 0; s is the antecedent of the multi-clause and ¢ is the consequent.
Both are interpreted as the conjunction of the atoms they contain. Therefore, the
multi-clause [s, c] is interpreted as the logical expression A,.,s — b. An ordinary
clause C'= s, — b, corresponds to the multi-clause [s¢, {b}].

EXaMPLE 2.2. We represent multi-clauses using set notation: e.g., the multi-
clause [{p(z, f(a)),q(y)}, {r(a),r(f(a)}] is interpreted as the logical expression

(p(z, f(a)) N q(y) — r(a)) A (p(z, f(a)) A qly) — r(f(a))).

The definition of the sets Atomsp and Terms is extended to include clauses and
multi-clauses as the input argument in the natural way. That is: Terms(s — b) =
Terms(s U {b}) and Terms([s,c]) = Terms(s U c). Similarly, Atomsp(s — b) =
Atomsp(s U {b}) and Atomsp([s,c]) = Atomsp(s Uc).

A multi-clause [s, c] is range restricted if Terms(c) C Terms(s); it is constrained
if Terms(s) C Terms(c).

A logical expression T implies (or logically entails) a multi-clause [s, ¢] if it implies
all of its single clause components. That is, 7' |= [s,c] if T' = A,c.s = b.

The size of a term is the number of occurrences of variables plus twice the number
of occurrences of function symbols (including constants). The size of an atom is
the sum of the sizes of the (top-level) terms it contains plus 1. The size of a set of
atoms is the sum of sizes of atoms in it.

Let s1,s2 be two sets of atoms. We say that s subsumes s2 (denoted s; < s2) if
and only if there exists a substitution 6§ such that s; -8 C so. We also say that s;
is a generalisation of so. Equivalently, so is a instance of sp.

Let s be a set of atoms. Then ineq(s) is the set of all inequalities between
terms appearing in s. As an example, let s be the set {p(z,y), ¢(f(y))} with terms

{z,y, f(y)}. Then ineq(s) = {z #y,x # f(y),y # f(y)} also written as (z # y #
f(y)) for short.

DEFINITION 2.1. A derivation of a clause C' = A — a from a Horn expression T'
is a finite directed acyclic graph G with the following properties. Nodes in G are
atoms possibly containing variables. The node a is the unique node of out-degree
zero. For each node b in G, let Pred(b) be the set of nodes b’ in G with edges from
b to b. Then, for every node b in G, either b € A or Pred(b) — b is an instance of
a clause in T'. A derivation G of C from T is minimal if no proper subgraph of G
is also a derivation of C' from T'. A minimal derivation G of a clause C = A — a
from a Horn expression 7' is said to be trivial if all nodes b of G are contained in
A U {a}, otherwise it is nontrivial.

THEOREM 2.1. Let T be any Horn expression and C be a Horn clause which is
not a tautology. If T |= C, then there is a minimal derivation of C' from T.
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Proof.  As proved by the Subsumption Theorem for SLD-resolution (Theo-
rem 7.10 in [16]), there is a SLD-resolution of C' from T'. By induction on the depth
of the SLD-resolution tree we can show how to transform any SLD-resolution into
a derivation graph of C' from T'. Therefore, there is a derivation graph of C from T’

which guarantees that there is a minimal one. M

DEFINITION 2.2. A class C of Horn Expressions is closed if for every pair of
atoms b and b, every set of atoms s and every Horn expression T' € C, if b’ is used
in a minimal derivation of s — b from 7', then b’ € Atomsp(s — b).

LEMMA 2.1. The following classes are closed: RRHE, the class of Range Re-
stricted Horn Expressions, COHE the class of Constrained Horn Expressions and
RRCOHE the class RRHEUCOHE.

Proof. For RRHE: if I/ appears in any derivation of T |= s — b, where
T is a range restricted Horn expression and s is a set of atoms, then obviously,
T = s — V. T is range restricted and therefore b’ is made out of terms in s only.
Thus, b' € Atomsp(s) C Atomsp(s — b).

For COHE: consider any minimal derivation of s — b from a constrained Horn
expression T'. If b’ appears in the derivation, then, since T is constrained, b’ must
be made out of terms in b only. Thus, ' € Atomsp(b) C Atomsp(s — b).

For RRCOHE the property follows immediately since RRCOH E is the disjoint

union of RRHE and COHE. 1

Notice that any expression in RRCOH E is either a range restricted Horn expres-
sion or a constrained Horn expression. This is not the class of expressions whose
clauses are either range restricted or constrained. In the class considered here we
do not allow expressions with mixed types of clauses.

DEFINITION 2.3. A multi-clause [s,c] is correct w.r.t. a Horn expression T' if
T = [s,¢]. A multi-clause [s,c] is closed w.r.t. a Horn expression T' if for all
b € Atomsp(sUc) \ s such that T = s — b, b € ¢. A multi-clause [s, ¢] is full if it
is correct and closed.

2.1. Most General Unifier

Let ¥ be a finite set of expressions (here by “expressions” we mean terms or
atoms). A substitution € is called a unifier for ¥ if ¥ - is a singleton. If there
exists a unifier for ¥, we say that ¥ is unifiable. The only expression in ¥ - 8 will
also be called a unifier.

The substitution € is a most general unifier (abbreviated to mgu) for ¥ if 6 is
a unifier for ¥ and if for any other unifier o there is a substitution v such that
o = 0v. Also, the only element in ¥ - 6 will be called a mgu of ¥ if 6 is a mgu.

The disagreement set of a finite set of expressions X is defined as follows. Locate
the leftmost symbol position at which not all members of ¥ have the same symbol,
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and extract from each expression in ¥ the subexpression beginning at that symbol
position. The set of all these expressions is the disagreement set.

ExampLe 2.3. X = {p(z,y,v),p(z, f(g(a)),z),p(=, f(2), f(a))}. Its disagree-
ment set is {y, f(g(a)), f(2)}.

ALGORITHM 1 (THE UNIFICATION ALGORITHM).

Let X be the set of expressions to be unified.
Set k to 0 and g to @, the empty substitution.
Repeat until ¥ - gy, is a singleton
Let Dy be the disagreement set for X - oy.
If there exist x,¢ in Dy s. t. x is a variable not occurring in ¢
Then set oj11 = op, - {x — t}.
Else report that ¥ is not unifiable and stop.
Return oy

® NS UE W=

THEOREM 2.2 (Unification Theorem). Let ¥ be a finite set of expressions. If
Y is unifiable, then the Unification Algorithm terminates and gives a mgu for .. If
Y is not unifiable, then the Unification Algorithm terminates and reports the fact
that X is not unifiable.

Proof. See [13]. W

2.2. Least General Generalisation
The algorithm proposed uses the least general generalisation or lgg operation
[17]. This operation computes a generalisation of two sets of literals. It works as
follows.
The lgg of two terms f(s1,...,s,) and g(t1, .., t;m) is defined as the term

flgg(s1,t1), .-, 1gg(sn, tn))

if f = ¢ and n = m. Otherwise, it is a new variable x, where « stands for the lgg
of that pair of terms throughout the computation of the lgg. This information is
kept in what we call the lgg table.

The lgg of two compatible atoms p(sy, ..., s,) and p(ty, ..., t,) is the atom

p(lgg(si,t1), .., lgg(sn, tn))-

The lgg is only defined for compatible atoms, that is, atoms with the same predicate
symbol and arity.

The lgg of two compatible positive literals [; and [, is the lgg of the underlying
atoms. The lgg of two compatible negative literals [; and [ is the negation of the
lgg of the underlying atoms. Two literals are compatible if they share predicate
symbol, arity and sign.
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The lgg of two sets of literals s; and s, is the set
{lgg(l1,12)] (I1,12) are two compatible literals of s; and s2} .

It is important to note that all [ggs share the same table.

ExampLE 2.4. Let s1 = {p(a, f(b)),p(g(a,z),c),q(a)}.

Let s» = {p(z, f(2)),q(2)}.

Their lgg is lgg(s1,s2) = {p(X, f(Y)),p(Z, V), q(X)}.

The lgg table produced during the computation of lgg(si, s2) is

[a - z =>X] from p(a, f(b)) with p(z, f(2)))
b - 2 =>7Y] from p(a, f(b)) with p(z, f(2)))
f(0)) Witb p(z, £(2)))

[g(a,x) - z => Z]
[c - £(2) => V]

( (
( (
[£(b) - £(2) => £(V)] (from p(a
( (
( (

2.3. The Learning Model

We consider the model of ezact learning from entailment [6]. In this model
examples are clauses. Let T" be the target expression, H any hypothesis presented
by the learner and C' any clause. An example C' is positive for a target theory T
if T |= C, otherwise it is negative. The learning algorithm can make two types of
queries. An Entailment Equivalence Query (EntEQ) returns “Yes” if H = T and
otherwise it returns a clause C that is a counter example, i.e., T' |= C and H [~ C or
vice versa. For an Entailment Membership Query (EntM @), the learner presents
a clause C' and the oracle returns “Yes” if T' = C, and “No” otherwise. The aim
of the learning algorithm is to exactly identify the target expression T by making
queries to the equivalence and membership oracles.

3. THE ALGORITHM

Before presenting the algorithm, we define some operations. Suppose that the
class C is closed. Suppose that H,T € C. Then we define:

e T'Closurer([s,c]) = [s,{b € Atomsp(sUc)\s| T | s — b}]
e HClosureg([s,c]) = [{b € Atomsp(sUc)| H |=s — b}, ]
o rhst(s,c) ={bec|T = s— b}

The algorithm computes these operations for the case when T is the target expres-
sion and H is a hypothesis. In practice, we do not know what the target expression
T is, but we can use the EntM @ oracle to compute T'Closurep and rhsyp. Since

“w.o»

T always refers to the target expression, we omit the “p” subscript and write:

e T'Closure([s,c]) = [s,{b € Atomsp(sUc)\ s| EntMQ(s — b) = Yes}]
o rhs(s,c) ={b€ c| EntMQ(s — b) = Yes}

Notice that, in general, the computation of HClosure might not be feasible.
However, in our case, we will show that this can be done with a polynomial number
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of subsumption tests by forward chaining. This is due to the fact that we only check
for atoms in the polynomially bounded set Atomsp(sUc) as potential consequents.
We will incrementally construct the set of consequents (CONS in the algorithm),
starting with the antecedent s. The algorithm is as follows:

AvcoriTaM 2 (THE HClosure(s,c) PROCEDURE).

CONS = s.
Repeat until no more atoms are added to CON S
For every atom b in Atomsp(sUc)\ CONS do
If clause CONS — b is subsumed by a clause C' € H
Then Set CONS = CONS U {b}.
Return [CONS, ¢]

AR o S

LEMMA 3.1. Algorithm 2 computes the set HClosure(s,c).

Proof. Take any atom b € HClosure(s,c). By Theorem 2.1, there is a deriva-
tion of s — b from H. The previous algorithm searches through all possible closed
derivations, therefore it will eventually reach the node b in the corresponding deriva-
tion, and b will be included in the set CONS. Soundness of forward chaining

guarantees that atoms not in HClosure(s, ¢) are never added to the set CONS. ®

We finally present our learning algorithm.

ALGORITHM 3 (THE LEARNING ALGORITHM).

1. Set S to be the empty sequence and H to be the empty hypothesis.
2. Repeat until EntEQ(H) returns “Yes”:
3. Minimise the counterexample x - use calls to EntMQ
Let [s;, c;] be the minimised counterexample produced.
4. Find the first [s;, ¢;] € S such that there is a basic pairing [s, ¢] of
[si,ci] and [s,, c,] satisfying:
(i) Ths(s,c) # 0 and
(i1) size(s) < size(s;) or (size(s) = size(s;) and size(c) < size(c;))
5. If such an [s;, ¢;] is found
6. Then replace it by the multi-clause [s, rhs(s, ¢)]
7. Else append [s,,c¢;] to S
8. Set H to \(; jes{s 2 bl b€ c}
9. Return H

The algorithm follows pretty much the structure of the algorithm in [6] for the
propositional case. It keeps a sequence S of representative multi-clauses. The
hypothesis H is generated from this sequence, and the main task of the algorithm
is to refine the counterexamples in S in order to get a more accurate hypothesis
in each iteration of the main loop (line 2) until hypothesis and target expression
coincide.

There are two basic operations on counterexamples that need to be explained in
detail. These are minimisation (line 3), that takes a counterexample as given by
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the equivalence oracle and produces a positive, full counterexample; and pairing
(line 4), that takes two counterexamples and generates a series of candidate coun-
terexamples. The counterexamples obtained by combination of previous ones (by
pairing them) are the candidates to refine the sequence S.

3.1. Minimising the counterexample
The minimisation procedure has to transform a counterexample clause A — a
as generated by the equivalence query oracle into a multi-clause counterexample
[z, cz] ready to be handled by the learning algorithm.

ALGORITHM 4 (THE MINIMISATION PROCEDURE).

1. Let A — a be the counterexample obtained by the EntEQ oracle.
2. Set [sz,¢z] to TClosure(HClosure([A, {a}]))-
3. For every functional term ¢ in s, U ¢;, in decreasing order of size do
4. Let [s,, ¢}] be the multi-clause obtained from [s,, ¢;]
after substituting all occurrences of the term ¢
by a new variable x;
5. If rhs(s,,c.) # 0 then set [s;,c;] to [sh,rhs(s),c)]
6. For every term ¢t in s, U ¢;, in increasing order of size do
7. Let [s”, c!] be the multi-clause obtained after removing
from [s;, c.] all those atoms containing ¢
8. If rhs(s,,c.) # 0 then set [s;,c;] to [sh,rhs(s), c)]
9. Return [s;, ¢, ]

ExampLE 3.1. This example illustrates the behaviour of the minimisation pro-
cedure. Parentheses are omitted; function f is unary. 7" consists of the single clause
p(a, fr) — q(z). We start with the counterexample [p(a, f1),q(2),7(1) — ¢(1)] as
obtained after step 2 of the minimisation procedure. In the third column of the
table, correct atoms in the consequent appear with a box around them. If no atom
is correct, the multi-clause is not positive and the counterexample is not updated.

[Sz, Cu) After generalising term
p(a, £1),4(2),r(1) = q(1)] flm X p(a, X),q(2), ()%q(l)]
p(a, £1),¢(2),7(1) = q(1)] 10 X p(a, FX),q(2), (X H
p(a, FX),q(2),7(X) = q(X)] 20 Y p(a, FX),q(Y),r(X) — X
[pa, FX),q(Y),r(X) = ¢(X)] ar Z p(Z, £ X),q(Y),r(X > ¢(X)]
[s2, Cz] After dropping term
[pla, FX),q(Y),r(X) = ¢(X)] X [a(Y >
[p(a, FX),q(Y),r(X) = ¢(X)] Y p(a, fX),r -1
[pa, fX),r(X) = ¢(X)] a [r(X) (X)
[pla, fX),r(X) = ¢(X)] X [r(X) = q(X)]
[pa, fX),r(X) = ¢(X)]
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Notice that the minimised counterexample is very similar to the target clause.
In fact, it is the case that every minimised counterexample contains a syntactic
variant of one of the target clauses (Lemma 4.10). However, it may still contain
extra atoms that the minimisation procedure is unable to get rid of — like r(X) in
Example 3.1 — these will have to disappear in some other way: pairing.

3.2. Pairings
A crucial process in the algorithm is how two counterexamples are combined into
a new one, hopefully yielding a better approximation of some target clause. The
operation proposed here uses pairings of clauses, based on the lgg.
We have two multi-clauses, [s;,c;] and [s;, ¢;] that need to be combined. To do
s0, we generate a series of matchings between the terms of s, U ¢, and s; U ¢;, and
any of these matchings will produce the candidate to refine the sequence S.

3.2.1.  Matchings

A matching is a set whose elements are pairs of terms t, — t;, where t, and t;
are terms in s, U c, and s; U ¢;, respectively. Usually, we denote a matching by
the Greek letter . A matching o should include all the terms in one of s, U ¢,
or s; U ¢;, more formally: |o| = min(|Terms(s,; U )|, |Terms(s; Uc;)]). We only
use 1-1 matchings, i.e., once a term has been included in the matching it cannot
appear in any other entry of the matching.

EXAMPLE 3.2. Let [s,,c;] be [{p(a,b)}, {g(a)}] with terms {a,b}. Let [s;,c;] be
[{p(f(1),2)},{q(f(1))}] with terms {1,2, f(1)}. The 6 possible 1-1 matchings are:

o ={a—1,b-2} o3 ={a—2,b—1} o5 ={a— f(1),b—1}
o2 ={a—-1b-f(1)} os={a—2,b—f(1)} o6={a—f(1),b-2}

An extended matching is an ordinary matching with an extra column added to
every entry of the matching. This extra column contains the lgg of every pair in
the matching. The lggs are simultaneous, that is, they share the same table.

An extended matching o is legal if every subterm of some term appearing as the
lgg of some entry, also appears as the lgg of some other entry of o. An ordinary
matching is legal if its extension is.

EXAMPLE 3.3. Parentheses are omitted as functions f and g are unary. Let o;
be {a —c¢, fa—0b, ffa— fb,gf fa—gffc} and o3 ={a —c,fa—Db, ffa— fb}. The
matching o, is not legal, since the term fX is not present in its extension column
and it is a subterm of gf fX, which is present. The matching o- is legal.

FExtended o, FExtended o>

[a - ¢ => X] [a - ¢ => X]

[fa - b => Y] [fa - b => Y]
[ffa - fb => fY] [ffa - fb => fY]

[gffa - gffc => gffX]
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Our algorithm considers yet a more restricted type of matching. A basic match-
ing o is a 1-1, legal matching between two multi-clauses [s;, ;] and [s;, ¢;]. This
operation is asymmetric and the order in which the arguments is given is rele-
vant. It is only defined if the number of distinct terms in [s;, ¢;] (first argument)
is smaller or equal than the number of distinct terms in [s;, ¢;] (second argument).
It restricts how the functional structure of the terms is matched. More formally, if
entry f(ti,...,t,) —t € o, then t = f(r1,...,r,) and t; —7; € o for alli = 1,...,n.
As we show below, a basic matching maps all variables in [s,, ¢;] to terms in [s;, ¢;]
and then adds the remaining entries following the functional structure of the terms
in [s;,c;]. Therefore an entry [x - £(y)] might be included in a basic pairing
but an entry [f(y) - x] cannot (terms on the left belong to [s., ¢,], terms on the
right to [s;, ¢;]).

The following procedure shows how to construct basic matchings between multi-
clauses [s;, c.] and [s;, ¢;].

AvGoriTaM 5 (How TO CONSTRUCT BASIC MATCHINGS).

1. Match every variable in s, U ¢, to a different term in s; Uc;.
Every possibility will potentially yield to a basic matching
between [sg, c;] and [s;, ¢;]

2. Complete all potential basic matchings by adding the functional
terms in s, U ¢, to the basic matchings as follows:

3. For every potential basic matching created in step 1 do

4. Consider all functional terms in s, U ¢, in an upwards fashion,
beginning with simpler terms:
5. For every term f(t1,...,t,) in s; U ¢, such that all

[t; — ;] (with ¢ = 1,...,n) appear in the basic
matching already do
6. Add a new entry [f(t1,....,tn) — f(r1,..y )]

7. If f(ry,...,7,) does not appear in s; U ¢; or the term
f(ry,...,7,) has been used already
8. Then discard the matching

ExaMPLE 3.4. Let s, U ¢, contain the terms {a,z, fr} and s; U ¢; the terms
{a,1,2, f1}. No parentheses for functions are written. The algorithm starts by
matching variables in s, U ¢, to terms in s; U¢;. Then, it matches functional terms
in s, Uc, using the constraints described in the procedure above. This computation
is described in the table below.

Terms Matching 1 Matching 2 Matching 3 Matching 4
x [x - a] [x - 1] [x - 2] [x - f1]
a NO! [a - a] [a - a] [a - a] [a - a]
fx DISCARDED [fx - f1] NO! [fx - £2] NO! [fx - ff1]
DISCARDED OK DISCARDED DISCARDED

The table is interpreted as follows. In the first column we have the terms in s, Uc,
as how they would be considered by our algorithm. In the columns thereafter, we
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have all potential matchings. The last row indicates which of the matchings has
been discarded. The entries on top of the “OK” matchings contain the matching’s
pairs.

Notice that we have only 1 basic matching between the set of terms {a,z, fz}
and {a,1,2, f1}. Compare this with the 24 different 1-1 matchings that would be
considered by previous algorithms. This difference grows with the complexity of
the functional structure in the examples.

LeEMMA 3.2. The procedure described above finds all basic matchings between the
two input multi-clauses and only basic matchings are produced.

Proof. First, we will show that every matching constructed by the procedure is
basic. It is 1-1 because after step 1 the matchings are 1-1, and the new pairs added
in step 2 are checked not to be included in the matchings already. It is legal because
only terms which have all of its subterms included in the matching are added. It is
basic because functional structure is respected when adding a new pair.

Secondly, we will show that every basic matching will be found by the proce-
dure. First notice that matchings including the combination of a pair [functional
term in s, U ¢, - variable in s; U ¢;] is not permitted, since subterms of the func-
tional term in s, have to be included in the matching and they would not have any
possible legal term to be matched to because a variable has no subterms. There-
fore, the only possibility involving variables is [variable in s, - term in s;]. All

these are found in step 1 of the procedure and appropriately completed in step 2. H

One of the key points of our algorithm lies in reducing the number of matchings
needed to be checked by ruling out some of the candidate matchings that do not
satisfy the restrictions imposed. By doing so we avoid testing too many pairings
and hence avoid making unnecessary calls to the oracles. One of the restrictions has
already been mentioned, it consists in considering basic pairings only, as opposed to
considering every possible matching. This reduces the t* possible distinct matchings
to only t* distinct basic pairings. Notice that there are a maximum of t* basic
matchings between [s;, ¢,] with k variables and [s;, ¢;] with ¢ terms, since we only
combine variables of s, with terms in s;. The other restriction on the candidate
matching consists in the fact that every one of its entries must appear in the original
lgg table, as we will see in the next section.

3.2.2.  Pairings

Pairing is an operation that takes two multi-clauses and a matching between its
terms and produces another multi-clause. We say that the pairing is induced by
the matching it is fed as input. A legal pairing is a pairing for which the inducing
matching is legal; a basic pairing is one for which the inducing matching is basic.

The antecedent s of the pairing is computed as the lgg of s, and s; restricted to
the matching o inducing it; we denote this by lgg), (s, si). An atom is included
in the pairing only if all of its top-level terms appear as entries in the extended
matching. This restriction is quite strong in the sense that, for example, if an atom
p(f(z)) appears in both s, and s; then their lgg p(f(z)) will not be included unless
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the entry [f(x) - f(x) => f£(x)] appears in the matching. In case [x - x =>
x] appears but [£(x) - £f(x) => £(x)] does not, the atom p(f(x)) is ignored.
We only consider matchings that are subsets of the lgg table.

The consequent c of the pairing is computed as the union of the sets lgg|_ (s, ci),
lgg,, (cz,si) and lgg|, (cs,c;). Note that in the consequent all the possible lggs of
pairs among {s;, c; } and {s;,c;} are included except lgg|, (sz, 5:), which constitutes
the antecedent.

When computing any of the lggs, the same table is used. That is, the same pair
of terms will be bound to the same expression in any of the four possible lggs that
are computed in a pairing. The paring between [s,, c;] and [s;, ¢;] induced by o is
computed as follows:

ALGORITHM 6 (THE PAIRING PROCEDURE).

1. Set s to lgg|, (s, 5:)
2. Set cto lgg), (s, ci) Ulgy, (cu,s:) Ulgg), (ca,ci)
3. Return [s, (]

ExampPLE 3.5. The table below describes two examples. Both examples have the
same terms as in Example 3.4, so there is only one basic matching. Ex. 3.5.1 shows
how to compute a pairing. Ex. 3.5.2 shows that a basic matching may be rejected if
it does not agree with the lgg table (entries [x - 1 => X] and [fx - f1 => £X]
do not appear in the lgg table).

Example 3.5.1 Example 3.5.2

Sz {p(a, fz)} {p(a, fz)}

Sq {p(a’; fl)ap(a’a 2)} {q(a’; fl)ap(a’a 2)}
l99(sa, si) {pla, fX),pla,Y)} {p(a,Y)}
lgg table [a - a => al [a - a => al

[x - 1 =>X] [fx - 2 => Y]

[fx - f1 => fX]
[fx - 2 => Y]

basic o [a—a=>a] [a-a=>al]
[x-1=>X] [x-1=>X]
[fx-f1=>£fX] [fx-f1=>£X]
lgg,, (52, 5:) {p(a, fX)} PAIRING REJECTED

As the examples demonstrate, the requirement that the matchings are both ba-
sic and comply with the [gg table is quite strong. The more structure examples
have, the greater the reduction in possible pairings (and hence queries) is, since
that structure needs to be matched. While it is not possible to quantify this ef-
fect without introducing further parameters, we expect this to be a considerable
improvement in practice.

A note for potential implementations. In practice, when trying to construct
basic pairings between s, and s; it is better to consider as entries for the matching



14 ARIAS AND KHARDON

those entries appearing in the [gg table only. That is, when combining multi-clauses
[z, cz] and [s;, ¢;], one would first compute the lgg(s,, s;) and record the lgg table.
The next step would be to construct basic pairings using the entries in the lgg
table. Instead of considering any pair between terms of s, and s;, the choice would
be restricted to those pairs of terms present in the lgg table. The advantage of
this method is that subsets of the lgg table that constitute a basic matching are
systematically constructed. This implies that there is no need to check whether a
given basic matching agrees with the lgg table and only subsets of the lgg table
are generated. This consideration is not reflected in the bounds for the worst case
analysis. However, it should constitute an important speedup in practice.

4. PROOF OF CORRECTNESS

Before going into the details of the proof of correctness, we describe the trans-
formation U(T") performed on a target expression 7. It extends the transformation
described in [10] (where expressions were function-free) and it serves analogous
purposes.

4.1. Transforming the target expression

This transformation is never computed by the learning algorithm; it is only used
in the analysis of the proof of correctness. The transformation introduces new
clauses and adds some inequalities to every clause’s antecedent. This avoids unifica-
tion of terms in the transformed clauses. Related work in [22] also uses inequalities
in clauses, although the learning algorithm and approach are completely different.

The idea is to create from every clause C in T the set of clauses U(C). Every
clause in U(C) corresponds to the original clause C' with its terms unified in a
unique way, different from every other clause in U(C). Every possible unification
of terms of C are covered by one of the clauses in U(C). The clauses in U(C') will
only be satisfied if the terms are unified in exactly that way.

ALGORITHM 7 (THE TRANSFORMATION ALGORITHM).

Set U(T') to be the empty expression
For every clause C = s, = b, in T do
For every partition of Terms(C) m = {my,m2,...,m} do
Let A; be the set of atoms {A(t1,....4) | Vi:1<i<Il:t; €m}
Let o, be an mgu of A,.
If no mgu exists or there are m; # 7 s.t. ;-0 =7 - 0x
Then discard the partition
Else
Set Ur(C) =ineq(C -0),5.-0 = b. -0
Set U(T) =U(T)AU,(C)
Return U(T).

© XN ot W

— =
- O

We construct U(T') from T by considering every clause separately. For a clause
C in T we generate a set of clauses U(C). To do that, we consider all par-
titions of the set of terms in Terms(C); each such partition, say m, can gen-
erate a clause of U(C), denoted Ur(C). Therefore, U(T) = AycrU(C) and
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U(C) = Arevatidpartitions(Terms(cy) Un(C). The set ValidPartitions(Terms(C))
captures those partitions for which a simultaneous unifier of all of its classes exists
and partitions whose representatives are all different. The use of A, provides the
simultaneous mgu; uniqueness of representatives is tested on line 6 in the transfor-
mation algorithm. We call a representative of a class 7; the only element in 7; - o,
where o, is a mgu for the set A, as described in the algorithm above.

ExaMmPLE 4.1. Let C be p(f(z), f(y),9(2)) = q(z,y, z). The terms appearing
in C are {z,y, z, f(z), f(y), 9(2)}. We consider some possible partitions:

e When 7 = {z,y},{2},{f(2), f()},{9(2)}, then

Az, z, f(2),9(2))

4 = ) Alez 7 (y),9(2))
" Aly, 2, f(),9(2))
Ay, z, f(y),9(2))

A mgu for A is 0, = {y — x}. Therefore,
Ur(C) = (z # 2z # fz) # 9(2)),p(f(2), f(2),9(2)) = q(z,z,2).

e When ' = {x,y,2},{f(z),9(2)},{f(y)}, then

([ A(z, f(x), f(y))

Az, 9(2), f(y))

A, = A @), 1)
" Ay, 9(2), f(y))
Az, f(z), f(y))

L A(z,9(2), f(y))

There is no mgu for the set A.:, therefore this partition does not contribute to the
transformation U(C).

[ ] When 7T" == {m,y}; {2}7 {f(m)}a {f(y)}a {g(z)}a then

A = { Alw, 2, f(2), F(9),9())
" AW,z F@), (), 9(2))

A mgu for Ay is o0 = {y — «}. However, this partition is discarded because the
representatives for classes w3 and w4 coincide: 73 - o, = {f(2)} = 74 - 0. Notice
that the partition = covers the case when the terms f(z) and f(y) are unified
into the same term, so adding this clause would introduce repeated clauses in the
transformation.

We write the fully inequated clause “ineq(s; — b;), s — by” as “# (s — by)”.
The following facts hold for T' and its transformation U (T').

LEMMA 4.1. If an expression T has m clauses, then the number of clauses in its
transformation U(T) is at most mt*, where t (k, resp.) is the maximum number of
different terms (variables, resp.) in any clause in T.
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Proof. 1t suffices to see that any clause C' produces at most t* clauses in U(C).
We will show that if 7 and 7' are two partitions that are not discarded by the
transformation algorithm and o, = o,/, then # = #’. Suppose, then, that = and
' are two successful partitions such that o, = o,. Let t and t' be two distinct
terms of C' in the same class in 7. Notice that since o, is a unifier for A,, ¢ and
t' have the same representative. Therefore, these two terms have to fall into the
same class in 7' (otherwise 7' would be rejected). Since the same argument also
holds in the opposite direction (i.e. from 7’ to 7) we conclude that for all terms
t,t' of C, t and ¢’ are placed in the same class in 7 if and only they are placed in
the same class in 7'. Hence, 7 = «’. Finally, the bound follows since there are at

most t* substitutions mapping the at most &k variables into the at most ¢ terms. M

LEmMmA 4.2. T =U(T).

Proof. To see this, notice that every clause in U(T) is subsumed by the clause in

T that originated it. M

CoroLLARY 4.1. IfU(T) |E C, then T = C. Also, if U(T) E [s,c|, then
T |=[s,(].

However, the inverse implication U(T') = T of Lemma 4.2 does not hold. To see
this, consider the following example.

ExaMPLE 4.2. We present an expression T, its transformation U(T") and an
interpretation I such that I = U(T) but I = T. The expression T' is {p(a, f(a)) —
¢(a)} and its transformation U(T) = {(a # f(a)),p(a, f(a)) — ¢(a)}. The interpre-
tation I has domain D; = {1}; the only constant a = 1; the only function f(1) =1
and the extension ext(I) = {p(1,1)}.

I = T because p(a, f(a))* @ 1 = p(1,1) € ext(I) but g(a) %" ! = ¢(1) ¢
ext(I).

I |= U(T) because inequality (a # f(a))*@" ! = (1 # 1) is false and therefore
the antecedent of the clause is falsified. Hence, the clause is satisfied.

4.2. Some definitions
During the analysis, s will stand for the cardinality of P, the set of predicate
symbols in the language; a for the maximal arity of the predicates in P; k for the
maximum number of distinct variables in a clause of T'; ¢ for the maximum number
of distinct terms in a clause of T'; e; for the maximum number of distinct terms in
a counterexample; m for the number of clauses of the target expression T'; m/' for
the number of clauses of the transformation of the target expression U(T).

DEFINITION 4.1. A multi-clause [s, ¢] covers a clause # (s; — b;) if there is a
mapping 6 from variables in s; U{b;} into terms in Terms(sUc) such that s;-6 C s,
ineq(s; U {b:}) - 0 C ineq(sUc) and b - 0 € Atomsp(s U c). Equivalently, we say
that # (s — by) is covered by [s,c].
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The condition ineq(s; U {b:}) - 8 C ineq(s U c) establishes that the substitution 6
is non-unifying, i.e., it does not unify terms in s; — b, in the sense that two distinct
terms in s; — b; will remain distinct after applying the substitution 6.

DEFINITION 4.2. A multi-clause [s, ¢] captures a clause # (s; — b;) if there is a
mapping 6 from variables in s; into terms in s such that # (s; — b;) is covered by
[s,c] via 6 and b, - 6 € c. Equivalently, we say that # (s; — b;) is captured by [s, c].

4.3. Brief description of the proof of correctness

It is clear that if the algorithm stops, then the returned hypothesis is correct.
Therefore the proof focuses on assuring that the algorithm finishes. To do so, a
bound is established on the length of the sequence S. That is, only a finite number
of counterexamples can be added to S and every refinement of an existing multi-
clause reduces its size, and hence termination is guaranteed.

To bound the length of the sequence S the following condition is proved. Every
element in S captures some clause of U (T') but no two distinct elements of S capture
the same clause of U(T") (Lemma 4.17). The bound on the length of S is therefore
m/', the number of clauses of the transformation U(T).

To see that every element in S captures some clause in U(T), it is shown
that all counterexamples in S are full multi-clauses w.r.t. the target expression
T (Lemma 4.7) and that any full multi-clause must capture some clause in U(T)
(Corollary 4.2).

To see that no two distinct elements of S capture the same clause of U(T'), two
important properties are established in the proof. Lemma 4.16 shows that if a coun-
terexample [s,, ;] captures some clause of U(T') which is covered by some [s;, ¢;]
then the algorithm will replace [s;, ¢;] with one of their basic pairings. Lemma 4.15
shows that a basic pairing cannot capture a clause not captured by either of the
original clauses. These properties are used in Lemma 4.17 to prove uniqueness of
captured clauses.

Once the bound on S is established, we derive our final theorem by carefully
counting the number of queries made to the oracles in every procedure. We proceed
now with the analysis in detail.

4.4. Properties of substitutions

Our proof of correctness relies partly on some basic properties of substitutions.
Here we list all of the properties used. However, they might not be explicitly
referenced in the proof.

Let 6 (and subscripted variations of it) be substitutions, S and s two sets of
atoms and 6y a non-unifying substitution (w.r.t. s — b). With a non-unifying
substitution (w.r.t. some expression ¥) we mean that if ¢,¢' are two distinct terms
in X, then the terms ¢ - 0y and t' - Oy are distinct terms as well.

LEMMA 4.3.

1. Ifbes, thenb-0€s-0.
2.Ifbeg s, thenb-0n € s-0n.
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3. Ifbe S\s, thenb-0 € S-0\s-0 unlessb-0€s-0.
4. Ifbe S\ s, thenb-Oy € S-On \s-0n.

5. If0=(0,-02) andt-0 #t' -0, thent-6, #t' - 6,.
6. IfTEs—b thenT=s-0—>0-6.

Proof. We prove some of the properties. For Property 2., suppose that b & s.
The substitution #x is non-unifying for s and b, therefore, distinct terms in b
remain distinct after applying €. Therefore we can reverse 6y, and we con-
clude that if b-0x € s-0n then b € s. Hence, b-0yx & s-0y. Property 3. is
straightforward, and with Property 2., it implies that Property 4. holds. For Prop-

erty 5., notice that if ¢-6; = t'- 61, then 6 cannot distinguish the terms ¢ and ¢'. H

4.5. Properties of full multi-clauses
The next two lemmas use properties of derivation graphs to improve over the
model construction argument given in a preliminary version of the paper [2] which
only holds for Range Restricted expressions.

LEMMA 4.4. If [s,c] is subsumed by a clause C, then [s,c] captures some clause

in U(C).

Proof. By assumption, C' = s. — b. subsumes [s,c]. That is, there is a substi-
tution € such that s, -6 C s and b, -8 € c. To see which clause in U(C) is captured
by [s, ¢] consider the partition 7 defined by the way terms in s. U {b.} are unified
by the substitution 6. More precisely, two distinct terms ¢, ¢’ appearing in s. U {b.}
fall into the same class of 7 if and only if £-60 = t'-6. The proof proceeds by arguing
that the clause Ur(C) appears in U(C) and that [s, ¢] captures U, (C).

We observe that 6 is a unifier for A, = {A(t1,....,t) | Vi:1<i<l:¢ € m}.
Thus, a mgu o, exists. Therefore, § = o - 6 for some substitution 6. The trans-
formation procedure rejects a partition 7 when some of the following conditions
hold. Either A, is not unifiable (however, we have seen it is) or the representa-
tives of two distinct classes are equal. The second condition does not hold because
T+ 0x =T - 0p (With i # j) implies m; - @ = 7; - 8, which is not true by the way 7
was constructed.

Finally, we show that [s,c] captures U(C) = (# (s; — b;)) via 6. Notice that
Sc0ox = 8¢ and b, - o = by. We need to check (1) s; -0 C s, (2) ineq(s¢ U {b:}) -
6 C ineq(sUc) and (3) by -6 € c. Condition (1) is easy: s;-0 = s, -0y -0 =
sc -8 C s by hypothesis. For (2), let ¢,t' be two different terms in s; U {b;}. It
is sufficient to check that ¢ - 6,#' - § are also different terms (i.e., § does not unify
them). Let t.,¢. be the two terms in C' such that t. -0, = ¢t and t. - o, = ¢'.
Since t # t', it follows that t.,t, belong to a different class of 7 (otherwise o,
would have unified them). Therefore, by construction, t. - 6 # ¢, - §. Equivalently,

te-op-0 #t -0, -0 and hence ¢ -0 # t' -0 as required. Condition (3) is like (1). m

LEMMA 4.5. If a multi-clause [s,c] is correct for some closed target expression
T, c# 0 and it is closed w.r.t. T, then some clause of U(T) must be captured by

[s,c].
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Proof. Fix any b € ¢. Clearly, T |= s — b (since we have assumed [s, (]
correct). Consider a minimal derivation graph G of s — b from 7. By Theo-
rem 2.1 such a graph exists. We start with atom b in the graph and consider
Pred(b), the set of atoms that have an edge ending at b. If any of the atoms
b" in Pred(b) does not appear in s, then we take b’ as our next b. Notice that
b ¢ s implies V' € ¢, since [s,c] is closed. We iterate until we find an atom
b" € ¢ such that Pred(b') C s. By construction of derivation graphs, the clause
Pred(b') — b’ must be an instance of some clause C' in T. Equivalently, C' sub-
sumes Pred(b’) — b' and therefore it also subsumes [s, ¢] because Pred(b') C s and
b € c¢. Using Lemma 4.4 we conclude that some clause in U(T) is captured by
[s,c]. W

COROLLARY 4.2. If a multi-clause [s,c] is full w.r.t. some target expression T
and ¢ # 0, then some clause of U(T) must be captured by [s,c|.

LEMMA 4.6. If [s,c] captures some clause of U(T), then rhs(s,c) # 0.

Proof. The fact that [s, ] captures some clause of U(T') implies that there is a
clause s, — b. in T and a substitution # such that s.-0 C s and b, - § € c¢. Clearly,
TE sc = b. E sc-0 — b.-6 and hence the atom b. - 8 € c survives the rhs
operation. M

COROLLARY 4.3. If[s,c] is a full multi-clause w.r.t. T andc # 0, then rhs(s,c) #
0.

4.6. Properties of minimised multi-clauses
This section includes properties of minimised multi-clauses as produced by the
minimisation procedure. Throughout the proof, we will refer to the minimised
multi-clause as [s;, ¢;].
Lemma 4.10 shows that every minimised counterexample contains a syntactic
variant of some clause in U(T'), excluding inequalities. This is an important prop-
erty and it is responsible for one of the main improvements in the bounds.

DEFINITION 4.3. A multi-clause [s,c] is a positive counterexample for some
target expression T' and some hypothesis H if T |= [s,¢], ¢ # 0 and for all atoms
bec, HlEs—b.

LEMMA 4.7. Every minimised [s,,c,] is full w.r.t. the target expression T .

Proof. 'We proceed by induction on the updates of [s,, ¢,;] during computation of
the minimisation procedure. Our base case is the first version of the counterexample
[z, c.] as produced by step 2 of the algorithm. This multi-clause is full, since it is
the output of function T'Closure that produces full multi-clauses by definition.
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To see that the final multi-clause is correct it suffices to observe that every time
the candidate multi-clause has been updated, the consequent part is computed as
the output of the procedure rhs. Therefore, it must be correct.

To see that the final multi-clause is closed, we prove first that after generalising
a term the resulting counterexample is closed. Let [sg,c;] be the multi-clause
before generalising ¢ and [s/,, ¢,] after. Let the substitution ; be {x; — t}. Then,
sl -0y = s, and ¢, = ¢, - 6, because z; is a new variable that does not appear in
[z, Cz]- By way of contradiction, suppose that some atom b € Atomsp(s,,Uc,)\ s,
such that T' = s, — b is not in ¢/,. Notice that the substitution 6; is non-unifying
w.r.t. si, U, and therefore using properties 2. and 4. in Lemma 4.3 we conclude
that b - 0, € Atomsp(sy, Ucg) \ sg and b-0; & c,. Since T |= s, — b - 0, this
contradicts our (implicit) induction hypothesis stating that [s,,c;] is closed, since
the atom b - 6; would be missing. Hence, any counterexample [s,, c¢,] after step 3 is
closed.

We will show now that after dropping some term ¢ the multi-clause still remains
closed. Again, let [s;, c;] be the multi-clause before removing ¢ and [s/,, ¢, after re-
moving it. It is clear that s/, C s, and ¢/, C ¢, since both have been obtained by only
removing atoms. By the induction hypothesis, the only atoms that could be missing
are atoms in ¢, \c,, and s, \s},. Since for the closure of [s,, ¢/,] we only consider atoms
in Atomsp (s, Uc,) and these atoms do not contain ¢ (all occurrences have been re-
moved), the removed atoms cannot be missing because they all contain ¢. Therefore,
after step 6 and as returned by the minimisation procedure, the counterexample

[$g,Cz] is closed. W

LemMA 4.8.  All counterexamples given by the equivalence query oracle are pos-
itive w.r.t. the target T and the hypothesis H.

Proof. The algorithm makes sure that all clauses in H are correct (lines 3 and 6
of Algorithm 3 and lines 2, 5 and 8 of Algorithm 4). Therefore, T = H. R

LEMMA 4.9. FEvery minimised [s,,c,] is a positive counterezample w.r.t. target
T and hypothesis H.

Proof. To prove that [s,,c,] is a positive counterexample we need to prove that
T | [Sz,Cz), ¢z # 0 and for every b € ¢, it holds that H }£ s, — b,. By Lemma 4.7,
we know that [s,,c,] is full, and hence correct. This implies that T' = [s,, c,]. It
remains to show that H does not imply any of the clauses in [s,, ¢,| and that ¢, # 0.

Let A — a be the original counterexample obtained from the equivalence oracle.
This A — aissuchthat T = A — abut H £ A = a (by Lemma 4.8), and therefore
a will not be included in the antecedent of the first [s,, ¢,;] by HClosure because it
is not implied by H. However, a is included in ¢, because a € Atomsp(A — a) and
T = A — a. Thus, ¢, # 0 after step 2 of the minimisation procedure. Moreover,
the call to the procedure HClosure guarantees that every atom implied by H will
be put into the antecedent s,, leaving no space for any atom implied by H to be put
into the consequent ¢, by T'Closure. Thus, after step 2, [s;, ¢,] is a counterexample.
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Next, we will see that after generalising some functional term ¢, the multi-clause
still remains a positive counterexample. The multi-clause [s;, ¢;] is only updated
if the consequent part is nonempty, therefore, all the multi-clauses obtained by
generalising will have a nonempty consequent. Let [s,, ¢;] be the multi-clause before
generalising ¢, and [s,, ¢,] after. Assume [s;,c,] is a positive counterexample. Let
0 be the substitution {z; — t}. Asin Lemma 4.7, s, - 6; = s, and ¢, - 0; = c,.
Suppose by way of contradiction that H = s, — ', for some o' € ¢,. Then,
HE=s, -6 - b-0,. And we get that H = s, — b' - 6;,. Note that b’ € ¢,
implies that b - 6; € c,. This contradicts our assumption stating that [s.,c,]
was a counterexample. Thus, the multi-clause [s,,c,]| after step 3 is a positive
counterexample.

Finally, we will show that after dropping some term ¢ the multi-clause still re-
mains a positive counterexample. As before, the multi-clause [s,, ¢,] is only updated
if the consequent part is nonempty, therefore, all the multi-clauses obtained by drop-
ping will have a nonempty consequent. Let [s,, c,] be the multi-clause before remov-

ing some of its atoms, and [s/,, ¢} ] after. It is the case that s}, C s, and ¢/, C ¢;. As-

T Tw
sume [s,, ¢,] is a positive counterexample. Then, for all b € ¢, : H [~ s, — b. Since
ci, C ¢y, it holds that for all b € ¢, : H [~ s, = b. Since s/, C s,, we obtain that

forall b € ¢, : H [~ si, — b. Thus, the multi-clause [s;, ¢;] after step 6 is a positive

counterexample. N

LEMMA 4.10. If a minimised [s;, c;] captures some clause # (sy — b:) of U(T),
then it must be via some substitution 6 such that 6 is a variable renaming, i.e., 0
maps distinct variables of s; into distinct variables of s, only.

Proof. [sg,c.] is capturing # (s; — b;), hence there must exist a substitution
from variables in s;U{b; } into terms in s, Uc, such that s;-0 C s, ineq(s;U{b:})-0 C
ineq(s; Uc,) and by - 0 € c,. We will show that 8 must be a variable renaming.

By way of contradiction, suppose that § maps some variable v of s; U {b;} into a
functional term ¢ of s, Uc, (i.e. v-0 =t). Consider the generalisation of the term
t in step 3 of the minimisation procedure. We will see that the term ¢ should have
been generalised and substituted by the new variable z;.

Suppose, then that [s;,c;] is the multi-clause previous to generalising ¢ and
[sh,cl] after. We generalise the term ¢ to the fresh variable x;. Consider the
substitution 0" defined as 8 \ {v — ¢t} U{v — x;}. The substitution 6’ behaves like

0 on all terms except for variable v. We will see that [s,,c.]| captures # (s; — bt)

x)x
via 0" and hence rhs(s),,c),) # 0 (Lemma 4.6). Therefore ¢ must be generalised to
the variable x;.

To see that [s,,c.] captures # (s; — by) via 6" we need to show (1) s; -6 C s!,
(2) b -0 € ¢, and (3) ineq(s¢U{b:})-0" Cineq(s,Uc,). For (1), consider any atom
b of s;. We observe the following: after substitution 6': b(...v...) = b(...z¢...), and
after substitution 6 and generalising ¢: b(...v...) = b(...t...) = b(...x¢...). The part
of the “dots” in the previous expressions is identical for both lines, since € and 6’
behave equally for terms different than v. Moreover, the fact that 8 does not unify
terms in s;U{b; } assures that the rest of terms will differ from ¢ and z; after applying
0 or 0'. Therefore, we get that b-6' € s, iff b-0 € s, and since s¢ -0 C s,, Property
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(1) follows. Property (2) is identical to Property (1). For (3), let ¢,¢' be two distinct
terms of s; U {b;}. We have to show that ¢ - 6" and t' - 6" are two different terms of
s, U, and therefore their inequality appears in ineg(s), Uc). It is easy to see that
they are terms of s’,Uc/, since by previous properties (s;U{b:}) 6" C (s, Uc,). Now,
let 6; be the substitution {x; — ¢} and notice that § = 6'-6;. Since 6 does not unify

terms in s;U{b;}, then none of 8" and 6, do. Therefore, t-0' # t'-0' as required. M

4.7. Properties of the number of terms in minimised examples

LEMMA 4.11. Let [y, ¢,] be a multi-clause as output by the minimisation proce-
dure. Let # (s — by) be a clause of U(T') captured by [sy,cz]. Then, the number
of distinct terms in [sy, cz] is equal to the number of distinct terms in # (s¢ — by).

Proof. Let n, and n; be the number of distinct terms appearing in [s;, ¢;] and
st — by, respectively. Subterms should also be counted. The multi-clause [s;, ¢;]
captures # (s; — by). Therefore there is a substitution 8 satisfying ineq(s; U {b:}) -
0 C ineq(sy Uc,). Thus, different variables in s; — b; are mapped into different
terms of s, Uc, by . By Lemma 4.10, we know also that every variable of s, b;
is mapped into a variable of s;,c,. Therefore, 8 maps distinct variables of s, b;
into distinct variables of s,.,c,. Therefore, the number of terms in s¢, b; equals
the number of terms in (s; U {b;}) - 0, since there has only been a non-unifying
renaming of variables. Also, s; -0 C s, and b - 0 € ¢,. We have to check that the
remaining atoms in (s; \ s¢-68) U (¢ \ bt - 8) do not include any term not appearing
in (St U {bt}) - 6.

Suppose there is an atom ! € (s, \s¢-0)U(c, \bt-0) containing some term, say ¢, not
appearing in (s U {b:}) - 8. Consider when in step 6 of the minimisation procedure
the term ¢ was checked as a candidate to be removed. Let [s),c,] be the clause
obtained after the removal of the atoms containing ¢. Then, s;-0 C s, and b;-0 € ¢},
because all the atoms in (s;U{b;})-6 do not contain t. Moreover, ineg(s:U{b:})-0 C
ineq(s,,Uc,). To see this, take any two terms t # t' from s; — by. The terms ¢-6 and
t'-0 appear in s/, Uc), because they contain terms in (s;Ub) -6 only (so they are not
removed). Further, since t-0 # t'-0in s, Uc, and {¢-0,t"-0} C (s, Uc) C (spUcy)
we conclude that t-6 # t'-60 in s/, Uc,. Thus, [s,, c,] still captures # (s — b¢). And
therefore, rhs(s),c,) # 0 and such a term ¢ cannot exist. We conclude that n, =
N,. N

COROLLARY 4.4. The number of terms of a counterexample as generated by the
minimisation procedure is bounded by t, the mazimum of the number of distinct
terms in the target clauses.

LEMMA 4.12. Let [s,c] be a multi-clause covering some # (s; — b). Let n and
ny be the number of distinct terms in sUc and s;U{b;}, respectively. Then, ny < n.
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Proof.  Since [s,c] covers the clause # (s; — by), there is a 6 s.t. ineg(s; U
{b:}) - 0 C ineq(s U c). Therefore, any two distinct terms of s; U {b;} appear as

distinct terms in sUc. And therefore, [s, c] has at least as many terms as sy — b;. B

COROLLARY 4.5. Let # (s — b:) be a clause of U(T) with n; distinct terms.
Let [sz,c¢z] be a multi-clause with n, distinct terms as output by the minimisation
procedure such that [s,,c,] captures the clause # (s — b). Let [s;, ¢;] be a multi-
clause with n; terms covering the clause # (s¢ — by). Then ngy < n;.

4.8. Properties of pairings

LEMMA 4.13. Let [sz,c] and [s;,¢;] be two full multi-clauses w.r.t. the target
expression T'. Let o be a basic matching between the terms in s, and s; that is not
rejected by the pairing procedure. Let [s, c] be the basic pairing of [s.,c.] and [s;, ¢i]
induced by o. Then the multi-clause [s,rhs(s,c)] is also full w.r.t. T.

Proof. To see that [s,rhs(s,c)] is full w.r.t. T, it is sufficient to show that [s, ]
is closed. That is, whenever T |= s — b and b € Atomsp(sUc) \ s, then b € c.
Suppose, then, that T' = s — b with b € Atomsp(sUc)\s. Since s = lgg|, (sz,si) C
lgg(ss,s:), we know that there exist 6, and 6; such that s-6, C s, and s-6; C s;.
T|=s— bimpliesbothT = s-0, -+ b-0, and T |=s-6; — b-6;. Let b, = b-6, and
b; = b 6;. Finally, we obtain that T |= s, — b, and T = s; — b;. By assumption,
[se,cz] and [s;, ¢;] are full, and therefore b, € s, U ¢, and b; € s; U ¢; because
by € Atomsp(s;Ucy) and b; € Atomsp(s;Uc;) (remember that b € Atomsp(sUc)).
Also, since the same lgg table is used for all lgg(-,-) we know that b = lgg(b., b;).
Therefore b must appear in one of lgg(sg, si),l99(sz,¢i),199(cs, ;) or lgg(ce,c;)-
But b € lgg(sz,s;) since b € s by assumption.

Note that all terms and subterms in b appear in s Uc, because b € Atomsp(sUc).
We know that o is basic and hence legal, and therefore it contains all subterms
of terms appearing in s U c. Thus, by restricting any of the Igg(-,-) to lgg, (:,),
we will not get rid of b, since it is built up from terms that appear in s U ¢ and
hence in o. Therefore, b € lgg|, (sz,ci) Ulgg),(ce,s8:) Ulgg, (cs,ci) = c as re-
quired. W

LEMMA 4.14. Let[s,c| be a pairing of two multi-clauses [s,, c,| and [s;, ¢;]. Then,
it is the case that |s| <|s;| and |sU¢| < |s; U ¢l.

Proof. It is sufficient to observe that in s there is at most one copy of ev-
ery atom in s;. This is true since the matching used to include atoms in s is
1 to 1 and therefore a term can only be combined with a unique term and no

duplication of atoms occurs. The same idea applies to the second inequality. M

LEMMA 4.15. Let [s1,c1] and [s2, ca] be two full multi-clauses w.r.t. some Horn
expression T'. Let [s,c] be any legal pairing between them. The following holds:

1. If [s, c] covers a clause # (s — b;) in U(T'), then both [s1, c1] and [s2, ca] cover
;é (St — bt)
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2. If [s,c] captures a clause # (s¢ — by) in U(T'), then at least one of [s1,¢1] or
[s2,¢2] captures # (s — by).

Proof. Condition 1. By assumption, # (s; — b;) is covered by [s, c|, i.e., there is
a 0 such that s; -0 C s, ineq(s; U {b:}) -8 Cineg(sUc) and b; -0 € Atomsp(sUc).
This implies that if ¢,¢" are two distinct terms of s; U {b;}, then ¢ -8 and t' - § are
distinct terms appearing in s U c. Let o be the 1-1 legal matching inducing the
pairing. The antecedent s is defined to be lgg|, (s1,52), and therefore there exist
substitutions #; and 62 such that s-6; C s; and s- 62 C so. We claim that [s1,¢]
and [s2, ca] cover # (s — b;) via 0-60; and 8- 62, respectively. We will prove this for
[s1,c1] only, the proof for [sa,co] is identical. Notice that s; -6 C s, and therefore
s¢-60-0; Cs-60;. Since s-60; C s, we obtain s; - 6 - 61 C s;. We show now that
ineq(s; U{b}) -6 61 Cineq(s; Ucy). Observe that all top-level terms appearing in
s Uc also appear as one entry of the matching o, because otherwise they could not
have survived the restriction imposed by o. Further, since ¢ is legal, all subterms of
terms of sUc also appear as an entry in o. Let ¢,t’ be two distinct terms appearing
in s; U{b:}. Since (s U{b:}) -6 C sUc and o includes all terms appearing in s Uc¢,
the distinct terms ¢ - 6 and ' - @ appear as the lgg of distinct entries in o. These
entries have the form [¢-0-0, - t-0-0> => t-60], since lgg(t-0-61,t-0-62) =¢-6.
Since o is 1-1, we know that ¢t -0 -6; # t' -6 -6;. Finally, we need to show that
by -0 -6, € Atomsp(s; U c¢1). Notice that s-60; C s; and ¢- 61 C (s1 U cy).
Therefore, s; U{b;} -8 C sUc implies s; U{b;}-0-61 C (sUc)-0; C s1 Ucy. Thus,
by -0 -6, € Atomsp(s; Ucy) as required.

Condition 2. By hypothesis, b; - € ¢ and c is defined to be lgg), (s1,c2) U
lgg), (c1,52) Ulgg), (c1,c2). Observe that all these [ggs share the same table, so
the same pairs of terms will be mapped into the same expressions. Observe also
that the substitutions #; and 6, are defined according to this table, so that if
any atom [ € lgg, (c1,-), then [ -6, € ¢;. Equivalently, if I € lgg|,(-,¢2), then
[ -0, € c2. Therefore we get that if b, - 6 € lgg| (c1,-), then b -8 -6, € c;
and if b, - 0 € lgg),(-,c2), then b, -0 -6, € c2. Now, observe that in any of
the three possibilities for ¢, one of ¢; or ¢y is included in the lgg,,. Thus it
is the case that either b, -6 -6, € ¢ or by - 6 - 02 € co. Since both [s1,c]

and [sa, c2] cover # (s; — by), one of [s1,¢1] or [sa, co] captures # (s¢ — b;). M

It is crucial for Lemma 4.15 that the pairing involved is legal. It is indeed possible
for a non-legal pairing to capture some clause that is not even covered by some of
its originating multi-clauses, as the next example illustrates.

ExAMPLE 4.3. In this example we present two multi-clauses [s1,¢1] and [s2, ca],
a non-legal matching o and a clause # (s; — b) such that the non-legal pairing
induced by o captures # (s; — b;) but none of [s1,c1] and [s2, 2] do.

* [s1,c1i] = [p(ffa,9f fa) = q(fa)] with terms {a, fa, ffa,gf fa}
ineq(s1) = (a # fa # ffa# gf fa).
o [s2,ca] = [p(fb,g9f fc) = q(b)] with terms {b,c, fb, fe, ffc,gf fc}
e The matching o is [a - ¢ => X]
[fa - b => Y]
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[ffa - fb => fY]
[gffa - gffc => gffX]
o [s,c] =[p(fY,9ffX) = q(Y)].
o (@ fuF [fe#gffeFy# [y),p(fy,9ffx) = q(y).

~—

ineq(st) St by
ef={z—» X,y Y}
e ={X—aYwr fa}.
e 0-0, ={z—a,y— fa}.

The multi-clause [s, c] captures # (sy — by) viad = {z — X,y — Y'}. But [s1, 1]
does not cover # (s; — by) because the condition ineq(s;) -8 -60; C ineq(s;) fails to
hold:

(a#[fa]#[fa] # gf fa #[fa| £[Ba]) € (a # fa# ffa # 9] fa)

'

(w£fatf faFgf faty#fy)-0-01 ineq(s1)

COROLLARY 4.6. Let [s1,c1],[s2,c2],[s3,¢3], -, [Sk,Ck], ... De a sequence of full
multi-clauses such that every multi-clause [si11,cit1] is a legal pairing between the
previous multi-clause [s;, ¢;] in the sequence and some other full multi-clause [s}, c}],
fori > 1. Suppose some [sy,ci| in the sequence covers a clause # (sy — b). Then,
all previous [s;, ¢;] in the sequence (where i < k), must cover the clause # (st — b),

too.

4.9. Properties of the sequence S

COROLLARY 4.7. Every element [s,c| appearing in the sequence S is full w.r.t.
the target expression T .

Proof. The sequence S is constructed by appending minimised counterexam-
ples or by refining existing elements with a pairing with another minimised coun-
terexample. Lemma 4.7 guarantees that all minimised counterexamples are full

and, by Lemma 4.13, any basic pairing between full multi-clauses is also full. =

LEMMA 4.16. Let S be the sequence [[s1,c1],[s2, 2], -, [Sk,ck]]- If @ minimised
counterezample [s,, c;] is produced such that it captures some clause # (s; — by) in
U(T) covered by some [s;,¢;] of S, then some multi-clause [s;,c;] will be replaced
by a basic pairing of [sg, ;] and [s;,c;], where j <.

Proof. We will show that if no element [s;,c;] where j < ¢ is replaced, then
the element [s;, ¢;] will be replaced. We have to prove that there is a basic pairing
[s,c] of [ss,c.] and [s;, ¢;] with the following two properties: (1)rhs(s,c) # 0 and
(2)size(s) < size(s;) or (size(s) = size(s;) and size(c) < size(c;)).

We have assumed that there is some clause # (s; = b;) € U(T') captured by
[se,Cz] and covered by [s;, ¢;]. Let 6, be the substitution showing that # (s; — b¢)
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is captured by [sz,c;] and 6} the substitution showing that # (s; — b;) is covered
by [si, ¢;]. Thus the following properties hold:

.58, Cs,

o ineq(si U {bi}) -0, C ineq(s, Ucy)
o b -0, €cy

o by -0 € Atomsp(sy Ucy)

o500, Csi

e ineq(s; U {b:}) - 0} Cineq(s; U ;)
o b -0, € Atomsp(s;Uc;)

We construct a matching o that includes all entries
[t-0 - t-0, => lgg(t-0,,t-6))]
such that ¢ is a term appearing in s; U {b;} (one entry for every distinct term).

ExampLE 4.4. Counsider the following:

e 5o ={pg(0),z, f(y),2)}-
With terms ¢, g(c), z,y, f(y) and z.
(

e sz = {p(g(c), «', f(y'), 2),p(g(c), g(c), f(y"), ) }-

With terms ¢, g(c),z’,y', f(y') and z.
e si = {p(g(c), F(1), F(f(2),2)}-

With terms ¢, g(c), 1, f(1),2, £(2), f(f(2)) and =.
e The substitution 0!, ={z—2',y—y',z+— z} and it is a variable renaming.
e The substitution 8} = {z — f(1),y — f(2),z — z}.

e The lgg(sa, i) is {p(g(c), X, f(Y),2),p(g(c), Z, f(Y),V)} and it produces the
following lgg table.

[c - ¢ =>c] [glc) - glc) => g(c)]
[x? - £(1) => X] [y’ - £(2) => Y]
[f(y?) - £(£(2)) => £(V)] [z - z => z]

[glc) - £(1) => 7] [c -z =>V]

e The extended matching o is

¢c = [c-c=c]
glc) = [glc) - glc) => g(c))
r => [x’ - f(1) => X]
y = [y - 12 =>1Y]
fly) = [£@7) - £(£(2)) => £(N]
z = [z -2z =>2z]

e The pairing induced by o is lgg|, (sz,s:) = {p(g(c), X, f(Y), 2)}.
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Claim.  The matching o as described above is 1-1 and the number of entries
equals the minimum of the number of distinct terms in s, U ¢, and s; U ¢;.

Proof. All the entries of ¢ have the form [¢-0, - ¢80, => lgg(t-6,,t-6})].
For o to be 1-1 it is sufficient to see that there are no two terms ¢,t' of s; U {b;}
generating the following entries in o

(t-6, - t-0, => lgg(t-0.,,t-6)]
(-0, - -6, => lgg(t'-0,,t-6})]

such that ¢t -8, = ¢ -0, or ¢t-6; =t'-6}. But this is clear since [s;,c,;] and [s;, ¢;]
are covering # (s; — b;) via 6], and 8}, respectively. Therefore ineg(s, U{b;}) -8}, C
ineq(sg Ucy) and ineq(s; U {b:}) - 8] C ineq(s; U c¢;). And therefore ¢ - 6], and t' - 0.,
appear as different terms in s, Uc,. Also, t -6} and ¢’ - 0 appear as different terms
in s; Uc;. Thus o is 1-1.

By construction, the number of entries equals the number of distinct terms in
st U {b:}, that by Lemma 4.11 is the number of distinct terms in s, U c¢,. And by
Lemma 4.12, [s;, ¢;] contains at least as many terms as s;U{b; }. Therefore, the num-
ber of entries in o coincides with the minimum of the number of distinct terms in s, U

¢ and s;Uc;. M

Claim.  The matching o is legal.

Proof. A matching is legal if the subterms of any term appearing as the lgg of
the matching, also appear in some other entries of the matching. We will prove it
by induction on the structure of the terms. We prove that if ¢ is a term in sy U {b;},
then the term lgg(t-0.,,t-6%) and all its subterms appear somewhere in the extension
of o.

Base case. When t = a, with a being some constant. The entry in o for it is [a -
a => al, since a -6 = a, for any substitution 6 if a is a constant and lgg(a,a) = a.
The term a has no subterms, and therefore all its subterms trivially appear as
entries in o.

Base case. When ¢ = v, where v is any variable in s, U {b;}. The entry for it in o
is [v-0, - v-8, => lgg(v-0.,v-6})]. [s4,c,] is minimised and by Lemma 4.10 v -6,
must be a variable. Therefore, its [gg with anything else must also be a variable.
Hence, all its subterms appear trivially since there are no subterms.

Step case. When t = f(t1,...,t;), where f is a function symbol of arity [ and
ty,...,t; its arguments. The entry for it in o is

Cf (oo tt) B = Flt1,eent) -0 = 1gg(f(tr,rt1) -0, (b1, 1) - 6))]

e

Flgg(ty-0},t1-07),....099(ti-07 ,t1-07))

The entries [t; - 67, - t; - 0 => lgg(t; - 0,¢t; - 6,)]1, with 1 < j < [, are also
included in o, since all ¢; are terms of s; U{b:}. By the induction hypothesis, all the
subterms of every lgg(t;-0,,t;-0,) are included in o, and therefore, all the subterms
of lgg(f(t1,....,t;) - 05, f(t1,....t;) - 0,) are also included in o and the step case

holds. m
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Claim.  The matching o is basic.

Proof. A basic matching is defined only for two multi-clauses [s;, ¢;] and [s;, ¢;]
such that the number of terms in s, U ¢, is less or equal than the number of terms
in s; Uc;. Corollary 4.5 shows that this is indeed the case. Following the definition,
it should be also 1-1 and legal. The claims above show that it is 1-1 and that it is
also legal. It is only left to see that it is basic: if entry f(¢y,...,t,) —t is in o, then
t=f(r1,...,mn) and t; —r, €o foralll=1,...,n.

Suppose, then, that f(t1,...,t,) —¢ is in 0. By construction of o all entries
are of the form ¢ -6/, — ¢ - 0., where # is a term in s; U {b;}. Thus, assume £ -
0" = f(ty,...t,) and - 0, = t. We also know that 6, is a variable renaming,
therefore, the term # - 8, is a variant of #. Therefore, the terms f(ty,...,t,) and £
are variants. That is, ¢ itself has the form f(t/,...," ), where every t’ is a variant
of t; and ¢} - 8, = t;, where j = 1,...,n. Therefore, t = t-0 = f(r, =t -
Ois ..yt = t;, - 07) as required. We have seen that t; =t} -0, and r; =t} - 6;. By
construction, o includes the entries t; — r;, for any j = 1,...,n and our claim
holds. m

The claims above show that the matching ¢ is a good matching in the sense that
it will be one of the matchings constructed by the algorithm. Now we consider the
pairing of [s;,c;] and [s;, ¢;] induced by o. Notice that this pairing (call it [s, ¢])
will not be discarded by our algorithm. The discarded pairings are those that do
not agree with the lgg of s, and s;, but this does not happen in this case, since o
has been constructed precisely using the lgg of some terms in [s;, ¢;] and [s;, ¢;].

It is left to show that conditions for replacement in the algorithm hold. The
following two claims show that this is indeed the case.

Claim.  rhs(s,c) # 0.

Proof.  Let 0, and 6; be defined as follows. An entry in o [£-60), - ¢-6] =>
lgg(t-0.,,t-0;)] such that lgg(t-0.,t-0;) is a variable will generate the mapping
lgg(t-0.,t-0)) — t-0" in 6, and lgg(t-6,,t-6)) — t-0;in 6;. That is, 6, =
{lgg(t-0,,t-0)) — t-0.} and 0; = {lgg(t-0,,t-0%) — t-0}, whenever lgg(t-6.,,t-0))
is a variable and ¢ is a term in s; U {b:}.

In our example, 8, = {X —» 2')Y — ¢,z — z} and 6, = {X — f(1),Y —
f(2),z— z}.

e s-0, Cs,. Let ] be an atom in s, [ has been obtained by taking the lgg of
two atoms [, and l; in s, and s;, respectively. That is, I = lgg(l,,[;). Moreover,
[ only contains terms in the extension of o, otherwise it would have been removed
when restricting the lgg. The substitution 6, is such that [ -6, = [, because it
“undoes” what the lgg does for the atoms with terms in 0. And [, € s,, therefore,
the inclusion s - 6, C s, holds.

e s-6; Cs;. Similar to previous.

Let 6 be the substitution that maps all variables in s;U{b:} to their corresponding
expression assigned in the extension of o. That is, # maps any variable v of sy U{b;}
to the term lgg(v - 6.,,v - 0}). In our example, § = {z — X,y = Y,z — z}.
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The proof that rhs(s,c) # () consists in showing that # (s; — b;) is captured by
[s,¢] via 6. Then we apply Lemma 4.6 and conclude that rhs(s,c) # 0.
The following properties hold:

0.0, =0 Let v be a variable in s, U {b;}. The substitution # maps v into
lgg(v-8),,v-6;). This is a variable, say V, since we know ¢/, is a variable renaming.
The substitution @, contains the mapping

lgg(v-0.,v-6}) —v-6..
—_—

|4

And v is mapped into v - 8, by € -6,.
In our example: 0! = {x — 2’y — y',z— 2z}, and
0-0,={e—»X,ynY,zrz} {X =2\ Y >y, ,z—z}
e 0.0, =0,. Asin previous property.

To see how # (s; — bt) is captured by [s, ¢] via 6:

e 5.0 Cs =lgg,(sg5:). Let I be an atom in s;. We show that [ -6 is in
lgg(sz,s;) and that it is not removed by the restriction to o. Let ¢ be a term
appearing in [. The matching o contains the entry

[t-0, - t-0; => lgg(t-0,,t-6))],

since ¢ appears in s;. The substitution 6 contains {v — lgg(v - 0,,v - 6})} for
every variable v appearing in s; U {b;} (and thus for every variable in s;), therefore
t-0 =1gg(t-0,,t-6,). Indeed, lgg(t-0.,,t-0;) appears in o. The atom ! - § appears
in lgg(se - 0., s¢ - 0;) and therefore in lgg(sg, s;) since s¢ - 0!, C s,, s¢ - 0] C s; and
0 ={vrlgg(v-0,,v-0;)|vis a variable of s;}. Also, [ -0 appears in lgg|, (s, i)
since we have seen that any term in [ - 6 appears in o.

In our example the only | we have in s;-0 is p(g(c), x, f(y), z)-0 = p(g(c), X, f(Y), z).
And lgg|, (s¢,sy) is precisely {p(g(c), X, f(Y), 2)}.

e ineq(s; U {bs}) - 0 C ineq(s Uc). We have to show that for any two distinct
terms ¢,t of s¢ U {bs}, the terms ¢ - 6§ and ¢’ - § are also different terms in s U ¢,
and therefore the inequality ¢ - @ # ¢’ - 6 appears in ineq(s U ¢). By hypothesis,
ineq(sy U{b:}) 0., C ineq(syUcg). Since 6, = 6 -0,, we get ineq(s;U{b}) 66, C
ineq(sy Ucy) and so t -6 -6, and t' - 6 - 0, are different terms of s, U c,. From
Property 5. in Lemma, 4.3 it follows that t -0 # ¢’ - 6 € ineq(s U ¢).

e b -0 € c. By hypothesis, b; - 0., € ¢,. Also, b - 8} € Atomsp(s; U ¢;) implies
(because [s;, ¢;] is full), that b; - 0 € s; Uc;. Notice that b, -0 = lgg,, (b - 0},,b; - 0})
by construction. Therefore b, - 0 € ¢ = lgg), (52, i) Ulgg), (ce,s:) Ulgg), (ce,ci) as
required.
|

Claim.  size(s) < size(s;) or (size(s) = size(s;) and size(c) < size(c;)).

Proof. By Lemma 4.14, we know that |s| < |s;|, therefore size(s) < size(s;)
since the lgg never substitutes a term by one of greater weight. Notice that the
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lgg substitutes variables for functional terms. According to our definition of size,
variables weigh less than functional terms, therefore the size of a generalisation will
be at most the size of the instance that has been generalised. We cover all possible
cases: if size(s) < size(s;), then the condition is true. If size(s) = size(s;), then
we know by Lemma 4.14 that |sU¢| < |s; U¢l. Since |s| = |s;|, we conclude that
le| < lei|, and hence size(c) < size(c;) by the same argument as above. Thus,
s-0; =s; and s; -0, = s. Again, we split the proof into two cases. The case when
size(c) < size(c;) satisfies the condition. For the case when size(c) = size(c;), we
have that the multi-clauses [s, ¢] and [s;, ¢;] are equal up to variable renaming. We
will elaborate this case a little more and will arrive to a contradiction, finishing our
proof. The following facts hold:

e Since [s, ¢] and [s;, ¢;] are variable renamings, ¢-6; = ¢; and ¢; -0{1 =c.

e By the previous claim, it holds that b; -0 € ¢ and therefore there exists a b; s.t.
b =0b;-0-0; €c;.

e The substitutions 6; and @/, are variable renamings, and (by previous claim)
0! =6 -0,, therefore the substitution 6 = 0;1 -0, is well defined and is a variable
renaming.

e It follows that s; -0 C s, and b; -0 = bt-9-0i-0;1 0, =0b-0-0, =b.-0, €c,
(by assumption). '

Therefore, H |=s; = b; = s;-0 — b;-0 = sy = by (where b, = b;-0!, € ¢;) contra-

dicting the fact that [sz, ;] is a counterexample. M

This completes the proof for the lemma. H

COROLLARY 4.8. If a counterezample [sz, ;] is appended to S, it is because there
is no element in S capturing a clause in U(T) that is also captured by [sg, Cz]-

LEMMA 4.17. Every time the algorithm is about to make an equivalence query,
it is the case that every multi-clause in S captures at least one of the clauses of
U(T) and every clause of U(T) is captured by at most one multi-clause in S.

Proof. All multi-clauses included in S are full by Corollary 4.7. By construction,
their consequents are non-empty so that we can apply Corollary 4.2, and conclude
that all counterexamples in S capture some clause of U(T).

An induction on the number of iterations of the main loop in line 2 of the learning
algorithm shows that no two different multi-clauses in S capture the same clause of
U(T). In the first loop the lemma holds trivially (there are no elements in S). By
the induction hypothesis we assume that the lemma holds before a new iteration of
the loop. We will see that after completion of that iteration of the loop the lemma
must also hold. Two cases arise.

The minimised counterexample [s,,c,] is appended to S. By Corollary 4.8, we
know that [s;,c.] does not capture any clause in U(T') also captured by some
element [s;,¢;] in S. This, together with the induction hypothesis, assures that the
lemma is satisfied in this case.
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Some [s;,¢;] is replaced in S. We denote the updated sequence by S’ and the
updated element in S’ by [s}, ¢{]. The induction hypothesis claims that the lemma
holds for S. We have to prove that it also holds for S’ as updated by the algorithm.
Assume it does not. The only possibility is that the new element [s}, ¢}] captures
some clause of U(T'), say # (s; — b) also captured by some other element [s;, ¢;]
of S', with j # i. The multi-clause [s}, c}] is a basic pairing of [s;, ;] and [s;, ¢i],
and hence it is also legal. Applying Lemma 4.15 we conclude that one of [s,, ¢,] or
[si,ci] captures # (s¢ — by).

Suppose [s;, ¢;] captures # (s — b;). This contradicts the induction hypothesis,
since both [s;, ¢;] and [sj,¢;] appear in S and capture # (s — b;) in U(T).

Suppose [s;,c;] captures # (s; — by). If j < i, then [s;,c,] would have re-
fined [sj,c;] instead of [s;,c¢;] (Lemma 4.16). Therefore, j > i. But then we
are in a situation where [sj,c;] captures a clause also covered by [s;,¢;]. By
Corollary 4.6, all multi-clauses in position i cover # (s; — b;) during the his-
tory of S. Consider the iteration in which [sj,c;] first captured # (s¢ — by).
This could have happened by appending the counterexample [s;, ¢;], which contra-
dicts Lemma 4.16 since [s;, ¢;] or an ancestor of it was covering # (s¢ — b;) but
was not replaced. Or it could have happened by refining [s;,c;] with a pairing
of a counterexample capturing # (s; — b;). But then, by Lemma 4.16 again,

the element in position i should have been refined, instead of refining [s;,c;]. ™

4.10. Deriving the complexity bounds
Recall that m' stands for the number of clauses in the transformation U(T") and
that by Lemma 4.1, m' < mt*, where t (k, resp.) is the maximum number of terms
(variables, resp.) in any clause in 7. By Lemma 4.17 the number of clauses in
U(T) bounds the number of elements in S, and therefore:

COROLLARY 4.9. The number of elements in S is bounded by m'.

What follows is a detailed account of the number of queries made in every pro-
cedure.

LeEMMA 4.18. If [sg,cz] is a minimised counterezample, then, |s;| + |cz| < st®.

Proof. By Corollary 4.4, there are a maximum of ¢ terms in a minimised coun-

terexample. There are a maximum of st* different atoms built up from ¢ terms. H

LEMMA 4.19. The algorithm makes O(m'st®*) equivalence queries.

Proof. Notice that any set of atoms containing ¢ distinct terms can be generalised
at most t times. This is because after generalising a term into a variable, it cannot
be further generalised. The sequence S has at most m' elements. The following
actions can happen after refining a multi-clause in S (possibly combined): either
(1) one atom is dropped from the antecedent, or (2) an atom moves from antecedent
to consequent, or (3) an atom is dropped from the consequent, or (4) some term
is generalised. This can happen m'st* times for (1), m'st* times for (2), m'st®
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times for (3), and m/'t times for (4), that is m/(¢t + 3st®) in total. We need m' extra
calls to add all the counterexamples. In total m/(1+¢+ 3st®), that is O(m/'st*). W

LEMMA 4.20. The algorithm makes O(sef™) membership queries during the
minimisation procedure.

Proof. To compute the first version of the full multi-clause we need to test the
sef possible atoms built up from e; distinct terms appearing in s,. Therefore, we
make sef initial calls. Next, we note that the first version of ¢, has at most sef
atoms. The first loop (generalisation of terms) is executed at most e; times, one for
every term appearing in the first version of s,. In every execution, at most |c,| < sef
membership calls are made. In this loop there are a total of se,@”‘1 calls. The second
loop of the minimisation procedure is also executed at most e; times, one for every
term in s,. Again, since at most sef calls are made in the body on this second loop,

the total number of calls is bounded by sef**. This makes a total of sef + 2sef™

that is O(seft). =

LEMMA 4.21. Given a matching, the algorithm makes at most st® membership
queries during the computation of a basic pairing.

Proof. The number of atoms in the consequent ¢ of a pairing of [s,,c,] and
[si,ci] is bounded by the number of atoms in s, plus the number of atoms in ¢,. By

Lemma 4.18, this is bounded by st*. ®

LEMMA 4.22. The algorithm makes O(m's*t%ett + m'*s2429tk) membership
queries.

Proof. The main loop is executed as many times as equivalence queries are
made. In every loop, the minimisation procedure is executed once and for every
element in S, a maximum of t* pairings are made.

This is:
2
sm/t®  x{sefT™t +.m/ - tF . st% } = O(m Pt +m/T st 2R,
—— . , N~ ~—~—~ —~—
#iterations minim. |S|  #pairings pairing

| ]
We arrive to our main result.

THEOREM 4.1. The algorithm exactly identifies every closed Horn expression
making O(m'st*) equivalence queries and O(m's*t% +m'>s26290%) membership

queries. Furthermore, the running time is polynomial in m'® 4+ s2 +th 4o 4 ef.

We conclude that the classes RRHE, COHE and RRCOHFE are learnable using
our algorithm. Since by Lemma 4.1 we know that m’ < mt*, we obtain:

COROLLARY 4.10. The algorithm exactly identifies every closed Horn expression
making O(mst®t*) equivalence queries and O(ms?t*+ ettt 1 m?2s2120+38) member-
ship queries. Furthermore, the running time is polynomial in m? + s* +t* +t% + €.
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5. FULLY INEQUATED CLOSED HORN EXPRESSIONS

Clauses in this class can contain a new type of atom, that we call inequation or
inequality and has the form ¢ # t', where both ¢ and ¢’ are terms. Inequated clauses
may contain any number of inequalities in its antecedent. Let s be a conjunction
of atoms and inequations. Then, sP denotes the conjunction of atoms in s and s7
the conjunction of inequalities in s. That is s = s? A s7. We say s is completely
inequated if s* contains all possible inequations between distinct terms in s?, i.e.,
if s7 = ineq(s?). A clause s — b is completely inequated if s = ineq(s? U {b}) A sP.
No inequalities are allowed in the consequent. Similarly, a multi-clause [s,] is
completely inequated if s = ineg(s? U c) A sP. A fully inequated Closed Horn
expression is a conjunction of fully inequated closed Horn clauses.

Looking at the way the transformation U(T") described in Section 4.1 is used
in the proof of correctness, the natural question of what happens when the target
expression is already fully inequated (and T' = U(T')) arises. As an example, take
the clause human(father(x)) A human(mother(z)) — human(z). The intended
meaning is clearly that  # faher(z) # mother(z), and hence this clause is fully
inequated. We will see that the learning algorithm described in Section 3 has to be
slightly modified in order to achieve learnability of this class.

The first modification is in the minimisation procedure. It can be the case that
after generalising or dropping some terms (as done in the two stages of the min-
imisation procedure), the result of the operation is not fully inequated. More pre-
cisely, there may be superfluous inequalities that involve terms not appearing in
the atoms of the counterexample’s antecedent. These should be eliminated from
the counterexample, yielding a fully inequated minimised counterexample.

The second (and last) modification is in the pairing procedure. Given a matching
o and two multi-clauses [s;, ¢,] and [s;, ¢;], its pairing [s, ¢] is computed in the new
algorithm as:

1. sP = lgg‘g(s’;,sf)

2. c=1gg|,(s%,¢;) Ulgg, (cz, 57) Ulgg, (cos i)
3. s =ineq(sP Uc) U sP

Notice that inequations in the original multi-clauses [s,,c,| and [s;, ¢;] are ig-
nored. The pairing is computed only for the atomic information, and finally the
fully inequated pairing is constructed by adding all the inequations needed. This
can be done safely because the algorithm only deals with fully inequated clauses.
The proof of correctness is very similar to the one presented here. Complete details
and proof for the case of Range Restricted Horn Expressions can be found in [1].

THEOREM 5.1.  The modified algorithm identifies fully inequated closed Horn
expressions making O(mst®) calls to the equivalence oracle and O(ms*t®ef™ +
m?s%t29tk) to the membership oracle. Furthermore, the running time is polyno-
mial in m? + 52 + tF +t7 + €.

Let the class FIRRHE be the class of fully inequated range restricted Horn
expressions, FICOHE the class of fully inequated constrained Horn expressions
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and FIRRCOH E their union. We conclude that the classes FIRRHE, FICOHE
and FIRRCOHE are learnable using the modified algorithm.

6. CONCLUSIONS

The paper introduced a new algorithm for learning closed Horn expressions
(CHE) and established the learnability of fully inequated closed Horn expressions
(FICHE). The structure of the algorithm is similar to previous ones, but it uses
carefully chosen operations that take advantage of the structure of functional terms
in examples. This in turn leads to an improvement of worst case bounds on the
number of queries required, which is one of the main contributions of the paper.
The following table contains the results obtained in [11] for range restricted Horn
Expressions (RRHE) and in this paper for Closed Horn Expressions. This paper
extends [2] where similar bounds were obtained for RRHE.

Class EntEQ EntMQ@Q
Result in [11] RRHE O(msttt®) O(ms?ti+aeft! 4 p2s2¢3tt2a)
Our result CHE O(msth+a) O(ms?thtaeitt 4 2 g23h+2a)
Our result FICHE O(mnst®) O(ms?t%ef™ + m?s2tht2e)

Notice that we significantly improve previous results by removing the exponential
dependence of the number of queries on the number of terms. However, we still
remain exponential on the number of variables. The bounds are further improved for
the case of FIC'HE. This may be significant as in many cases, while inequalities are
not explicitly written, the intention is that different terms denote different objects.

The reduction in the number of queries goes beyond worst case bounds. The
restriction that pairings are both basic and agree with the lgg table is quite strong
and reduces the number of pairings and hence queries. This is not reflected in
our analysis but we believe it will make a difference in practice. Similarly, the
bound m' < mt* on |U(T)| is quite loose, as a large proportion of partitions will
be discarded if 7" includes functional structure.

Another important difference is that the proof in [11] assumes that the number
of function symbols is finite. Our proof holds even when the set of function symbols
is infinite or unknown, as long as examples have finite descriptions.

It is interesting to compare this result to other similar efforts in [9, 21, 3, 20, 19].
The results in [9, 21] rely on the fact that no chaining or self-resolution is possible
between rules. Thus subsumption and implication are the same and it is easy
to know which examples to combine in the generalisation process. The results
in [3, 20] allow recursion and chaining but assume the expressions are acyclic in
terms of chaining order, and that an additional query is allowed which indicates
this order; in addition [3] assumes constrained expressions and [20] assumes range
restricted expressions. So both results are covered by our algorithm as special cases.
On the other hand their complexity is lower than in our case. In particular they
are polynomial in the number of variables whereas our algorithm is exponential.
It would be interesting to find out whether such reduced complexity is possible
without the use of additional query types. One way to explore this question is to
study the query complexity of the problem (ignoring computational complexity) by
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using the notion of certificates [8, 7]. The result in [19] goes beyond constrained

cl

auses by allowing additional length bounded terms in clause bodies, but uses

“subsumption-queries” to decide how to combine examples. If we allow such terms
in our setting we must include them in the intermediate term set currently captured
by the set Atomsp([s,c]). Unfortunately, several crucial steps in our proof require
that this set does not use additional terms. It remains to be seen whether such a
generalisation is possible.
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