
A New Data Model�

Persistent Attribute�Centric Objects�

Ricardo A� Baeza�Yates

Dept� of Computer Science
University of Chile

Blanco Encalada ����
Santiago �������� Chile

rbaeza�dcc�uchile�cl

Terry Jones

Distributed Cognition 	 HCI Lab
Cognitive Science Dept�

Univ� of California
San Diego� La Jolla

CA 
��
������� USA
terry�cli
s�ucsd�edu

Gregory J� E� Rawlins

Dept� of Computer Science
Indiana University

Bloomington
IN ������ USA

rawlins�cs�indiana�edu

June ��� �




Abstract

Trying to �nd information on the Web is like trying to �nd something at a jumble sale� it�s
fun� and you can make serendipitous discoveries� but for directed search it�s better to go to a
department store� there� someone has already done most of the arranging for you� Unfortunately�
the Web�s continuing explosion in size� its enormous diversity of topics� and its great volatility�
make unaided human indexing impossible�

This problem is just a special case of the general problem of organizing information to create
knowledge� A similar problem arises on the desktop when dealing with �le systems� where users
must search by name� and often they do not remember the �le�s name or location� File names
are artifacts of current operating systems� but human understanding neither requires objects
to be named� nor does it have problems with multiple objects sharing properties�names� for
instance�

The limitations mentioned above result because today�s computer systems do not analyze
the �les they are asked to store� Instead they note only simple attributes like creation date and
�le type and leave the bulk of organizing� naming� annotating� and �nding those �les to their
users� This may have made sense in the ��	
s when computers were slow and expensive� but it
makes no sense today�

We argue for a new data model to information representation based on the use of persis�
tent objects with dynamic attributes and search operations over them� This representation is

�The work of the �rst author was supported by Chile Fondecyt Grant ��������� and the second author by DARPA

Contract �N�����	�
C	���� and by a grant from Intel�

�



organization�neutral� thereby giving a �exible substrate for anyone to build multiple simultane�
ous organizations� In addition� it is uniform� allows easy sharing of objects� and can be simply
extended to the Web� We present an initial prototype of this idea 
AVS�� and to show its po�
tential� two system prototypes that have as their main goal to organize personal information�
DomainView and KnownSpace�

� Introduction

Storing and organizing information is the kernel of any computer application� The widespread use
and exponential growth of the World Wide Web� as well as other data sources� has had a crucial
impact on the problem of managing personal information� Currently� the abstraction of �les and
folders is ubiquitous as the main way to organize and store documents� This abstraction� however�
arose when computer resources were expensive� which is not true nowadays�

The real limitations of any information system are not storage space or computing power� They
are the narrow communication pipelines between the computer and the human user �typically
through a screen�� and between the user�s eyes and brain� In that sense� any information system
should not depend on the abilities of the user� it should try to represent information as closely
as possible to the user�s model of it� and any internal representation should be transparent to the
user� However� the paradigms that are used today� do not satisfy any of these goals� Why� One
main reason is that the historical development of software has forced the user to be aware of many
unnecessary things�

The question is how to organize personal information and how to present it to the user in a
meaningful way through a simple but e�ective user interface� Any system for managing information�
implemented either on top of a �le system or a database� is limited by the underlying data model
of the storage mechanism� On the other hand� if we write down as the goals of the system what
functionality the underlying data model should provide� we do not necessarily obtain a known data
model�

We can think of information as organized data which has to be comprehended and managed�
So� there are two main problems to be solved	 how to organize data� and how to communicate to
a person that data through a user interface� In this paper we present a new approach for the �rst
problem	 a new model of the storage� representation� and organization of information based on
what we call persistent attribute�centric objects �PACO�� PACO is based on	

� storing data in objects having attributes and values in a uniform way� each having a dynamic
structure�

� being able to organize objects in collections which are also dynamic and independent of the
storage mechanism� through powerful search capabilities�

We present our vision of how to manage information relative to our data model in 
��� That paper
also discusses a few user interfaces�

This paper is organized as follows� We �rst present some of the motivations behind this paper�
which are the basic functions needed to build e�cient user interfaces for managing information
together with a list of the main limitations of today�s �le systems and databases� Next� we present
the main concepts behind the new data model and how they can be used to manage information�






clearly separating the storage� representation� and organization layers of the data being handled�
We also compare our data model with previous work and discuss some of the main di�erences and
consequences of it� Next� we show a speci�c generic prototype of this datamodel� AVS� the Attribute
Value System 
���� which maintains a collection of objects composed solely of attribute�value pairs�
and which provides facilities for creating� altering� and locating these objects� This simple substrate
provides �exibility in the representation of information� emphasizes the role of search� generalizes
hierarchical �le systems� provides for the dynamic construction of arbitrary data structures and
inter�object relationships� emphasizes the distinction between informational objects and structures
that contain and organize them� facilitates multiple views of the same information� and provides a
novel form of object ownership�

To show the potential of our model we summarize the functionality of two systems to manage
personal information	 DomainView 

� and KnownSpace 
���� Although they were developed with�
out using the data model proposed� their essence is based on it� In fact� the main ideas of this
data model were developed independently by the three authors and later were uni�ed into a single
view� We �nish by presenting work in progress of the authors� and the consequences of our vision
of organizing information with respect to programming� user interfaces� and the Web� Since we
change basic assumptions� we have to start from basic principles and levels� which may seem naive
for some readers or very radical for others�

� Motivation� Organizing Information

Web search engine queries now often return millions of irrelevant pages� Those pages are not
spatially arranged� collected by topic� or distinguished in any way other than by their titles� so
we have no idea of the relevance of any page before reading it� The same is true for mail and
news� After we save webpages� mail messages� news articles� ftp pages� or any pages produced
with an editor or any other application� those pages then become lost on our desktops� They are
not analyzed in any way� grouped according to our interests� or laid out spatially to show their
similarities to other pages already there�

Even after we organize the pages on our desktops by hand there is no automation to help us
reorganize them� search them� navigate through them� or �nd more pages like them� In short� our
computers don�t help us manage our own data� and� as we discuss in the next section� we must do
that task ourselves by organizing information in a �le system�

Hierarchical �le systems are valid as an internal storage mechanism for operating systems� but
the user need not be aware of them� Many users do not even understand this concept and typically
use applications that each put all their �les in one directory �a �at hierarchy�� Not all information
can be classi�ed as a tree� there are many other ways to classify a group of objects� and many
hierarchical ways to classify the same information�

Let us start over� without assuming anything about computer resources� What might be the
right way to store and organize information� Which functionality should a data model provide to
best help users manage their information� We give one possible answer to this question�

To help make our claims concrete we present them in the context of aiding the development of
two prototypes that organize personal information� They are DomainView �DV� and KnownSpace
�KS�� DomainView 

� is a desktop user interface that organizes information in domains chosen by

�



the user using a uniform and simple interface� The interface is based on retrieval of documents by
attribute values� including the content� in a �at and dynamic universe of domains� The desktop
is tailored to and by a user� who creates his or her own document�driven and knowledge�domain
world� KnownSpace 
��� is an adaptive� visual� and autonomous information manager of all of a
user�s information� whether that information is data or programs� and whether it originates on the
Web� via mail� news� ftp� an editor� or any other application� It is not a search engine� browser�
desktop� or operating system� although it shares elements of all four programs�

Both prototypes manage information using collections of objects� each object having attributes
with values� In our systems� objects are also called entities� pages� or documents� and collections
are also called clusters or domains� In both DV and KS the basic data relationship is the collection
of objects� While interacting with the DV or KS interface� the user may want to do any of the
following	

�� navigate through a space of objects�


� search for various kinds of objects�

�� organize objects into groups and regroup objects already in groups�

�� markup various objects� either singly or in groups� and edit or delete markups� and

�� browse� create� and delete objects�

Note that these groupings are not mutually exclusive� A single object can be in several dozen� or
more� di�erent groupings of objects� simultaneously� The user may choose to view any of these
groupings at any time�

To support these actions� the interface needs to be able to pose the following queries to objects
of the underlying data model	

� do you have attribute X� do your attributes satisfy property X�

� are you an attribute of any object� which objects are you an attribute of�

� what collections do you belong to� do you belong to collection X�

� what are your readable�modi�able attributes�

� are you locked at the moment� is your attribute X locked at the moment�

� can I read�write your attribute X� can I add�delete your attribute X�

and the following requests	

� give me read�append�modify access to all the objects with property X

� tell me the value of your attribute X

� change the value of your attribute X to Y

� add attribute X to yourself

�



� delete your attribute X

� tell me when your attribute X changes

� tell me when your attributes no longer satisfy property X

� attach the following �new or old� object to yourself

� delete object X from yourself

� give me a list of all the objects attached to you whose attributes satisfy property X

� delete all objects attached to you whose attributes satisfy property X

Note that we don�t really need all these requests�some can be expressed in terms of others�
The only way we have found to support all of these abilities is to use the �exible data model

outlined in this paper� Any object may have any other object �of whatever type� as an attribute�
Further� those attributes may in turn have yet more attributes of their own� and so on recursively�
This underlying data model gives both DV and KS the ability to do arbitrarily sophisticated things
in their interfaces �each of which may be replaced by another at runtime�� However� presently this
comes at great cost� since to maintain maximum �exibility� our current implementation is quite
slow� This is the single biggest issue to be worked on next and by formalizing the model� we make
one more step on that direction� In the next section we discuss why current data models does not
allow easy implementation of the capabilities above�

� What is Wrong with File Systems and Databases

File systems and databases have the same �nal goal	 to store and organize information� However�
in both cases� they trade �exibility of data organization for access speed and reduced space used�
Although more recent database models �object oriented� multimedia� are more generic� they still
have limitations� For example� typically� object structure is static� and cannot change at run�
time� Other limitations are the lack of a standard query language �for example� SQL in relational
databases� and the power of the query language itself� File systems� on the other hand� are even
more rigid and we will concentrate on this issue� as our proposal aims to replace both �le systems
and databases� which in fact should be the same thing� In fact� the �nal goal should be to have the
capabilities of �le systems as well as all database models� without the current problems arising when
we use di�erent data types or if we try to integrate two di�erent database models� In particular�
we would like to have at the same time all the good things of relational databases and of full�text
databases�

A collection of named �les of information located in a hierarchical �le system �HFS� is perhaps
the most ubiquitous feature of modern operating systems� Virtually everyone who sits in front of
a computer stores information in �les and places these �les within a HFS� As well as explicitly
storing information in �les� we store information in the hierarchical structure itself�mainly in �le
names�and rely on our memory to maintain information about what we create� Our applications
also operate within this framework� often encoding information in speci�c formats within �les�

�



This working environment is so widespread that it is easy to forget that computational systems
were once without the luxury of convenient information containers ��les� and a structure in which to
place them �directories�� It has become hard to imagine an operating system without the familiar
backdrop of �les and folders� However� although there are occasions when it makes good sense
to store information in a hierarchy of named �les� being obliged to do so is a burden when the
information being stored does not �t this paradigm� or has little or no relevance to the rest of the
hierarchic structure�

The semantics of a document��le depends on its use� It could depend on information about
its creation and de�nition� a speci�c context� associations� structure� and� of course� its content�
Some proposals� like semantic �le systems� try to cover all these views using several approaches 
�
��
A subtle assumption is that a document has content as well as metadata �that is� attributes with
values�which are data related to the content�� This asymmetry is based on our physical abstraction
of a document� but it is not necessary for the storage mechanism� A document could be just a set
of attributes and values� only one of them being the content� For di�erent applications� di�erent
attributes will be more important than others� but intrinsically there is no reason to separate data
and metadata�

There are several studies about how users organize and retrieve documents in a desktop metaphor�
Retrieval is usually based on location �that is� where the document is on the screen�� content �by
using a �le searching tool�� history �which �le was being used before in an application�this is
known as reminding�� and in most cases by name� that is� where it is stored in the HFS �known
as archiving� 
��� In all cases we are relying on the user�s memory of past events� positions� and
names� There is no real model for the user�s actions�

Although searching by content is closer to a semantic search� it too can return non�relevant doc�
uments because in a di�erent context the same search keywords are valid �these are problems with
polysemy and synonymy�� This problem can be partially solved by adding additional information�
for example� if we know that the document is not too old and is small� However� this kind of fuzzy
information usually cannot be used� and even when it can� there is a lack of good systems that
integrate search by content �text databases� and search by attribute values �relational databases��
Part of the problem is due to the asymmetry mentioned before�

Users accept HFS�s because they are not hard to understand� they resemble physical archiving�
and�mainly�because there is no alternative� However� HFS�s have several disadvantages� First�
they try to simultaneously solve di�erent problems	 storing� representing� and organizing infor�
mation� Second� they rely on the user�s memory because every �le and folder has to be named
�and named consistently�� Third� the only semantic information about a �le is given by the name
path to it� which could have been named by another person or without enforcing a speci�c naming
strategy� Fourth� naming is not easily scalable �typically there are limitations on how long names
can be and what symbols can be used as well�� Fifth� many �les could conceptually belong to more
than one folder� and although feasible in some systems using symbolic links �or their equivalent��
it is too awkward to be done routinely by most users� In summary� we often have problems �nding
a speci�c �le because we do not remember where it is and what it is named�

Speci�c problems with the HFS usually include the following	

� Files can only live in one HFS� Although UNIX symbolic links and roughly equivalent mech�
anisms in other operating systems can be used to point at objects in another �le system� �les

�



actually live in a single �le system� These mechanisms are really just stopgap attempts to �x
a fundamental problem� They create problems of their own since they essentially maintain a
copy of a name of a �le that is elsewhere� Problems arise when the destination �le disappears
or moves� and attempts to deal with these issues are expensive� Not dealing with these issues
�as in some types of UNIX�� leaves dangling symbolic links� another problem�

� A HFS is the only organizational structure in which a �le can appear� and every �le must
be in a HFS� It is not possible to natively maintain a set of �les in �for example� a priority
queue� or a linked list or other organizational structure� Of course this illusion can be created
with external programs and interfaces� but the underlying storage is still a HFS� A �le cannot
be on disk but not in a HFS� Thus there is no native provision for the organization of �les�
other than in a hierarchical tree�

� Files cannot be annotated without being disturbed� File formats and �le and directory
permissions often make it impossible to annotate existing �les� Permissions will typically
prevent a users from modifying another user�s �les� and speci�c �le formats often make it
impossible to read or alter an existing �le using anything but a single application �which may
not be available or even known to a user wanting to annotate a �le��

� A single organization of �les into directories must be chosen� The problem with choosing the
directory structure ahead of time is that very often one�s �rst choice of organization will not be
the best� Once made� the directory structure in use can be awkward to change� Reorganizing
large collections of �les and directories into an alternate organization is not a well�supported
activity and is fraught with dangers� Once done� there is no support for reverting to the
former organization�

� It can be di�cult to �nd �les� either by name or content� or �especially� both� UNIX� for
example� stores �le information in three locations	 i�nodes �permissions� size� dates� etc���
directory �les ��le name�� and the �les themselves �content�� This organization makes it
awkward to� for example� simultaneously search for �les by name and content as di�erent
tools to read these di�erent sources of informationmust be invoked and their results somehow
combined� While this at least can be done� it is very awkward�

� The hierarchical structure can only contain �les� A hierarchical organization structure can be
appropriate for many tasks� but a HFS only makes this structure available for the organization
of �les� It is not possible to maintain a hierarchy of desktops or databases� unless information
representing these complex objects is somehow encoded into and decoded from �les� The HFS
does not separate the logical organization of �les into a hierarchy from the objects ��les� that
it organizes into this structure� With a separation between these two� hierarchies of other
objects could be supported�

� The use and organization of an HFS relies heavily on our brains� People typically maintain a
tremendous amount of information about a HFS in their heads� For example� we know what
kinds of names we tend to use for �les and that email correspondence can be found in a top
level directory called �mail�� Users are often forced to deal with �le name extensions� whose
meaning the are expected to remember� Users are expected to remember the structure of

�



the hierarchies they create� as well as aspects of the underlying system hierarchy� and� often�
equally idiosyncratic hierarchies created by other users�

� File names must be chosen and remembered� A big part of working with a HFS requires users
to constantly be choosing and remembering �le names� Conventions arise and must also be
remembered�

� File locations must be chosen and remembered� As well as remembering names and naming
conventions� users must remember positional information about the placement within the tree
of �les and directories�

� Further symptoms of the problems with the hierarchical structure found in today�s operating
systems are the very presence of symbolic links� magic numbers used to indicate �le content
type� so�called �invisible� �les that follow a naming convention that applications can be
separately written to optionally ignore� and the very frequent encoding of information about
�le content in �le names� All of these mechanisms were afterthoughts designed to get around
problems inherent in the original underlying organizational design�

Note that some of these problems are also valid for databases�
Adding to the restrictions inherent in the HFS� today�s applications and user interfaces provide

almost nothing to help the user deal with these problems� There is typically little or no support for
deducing potential names or locations of �les� for retrieval based on content rather than name� for
categorizing existing �les into more useful organizational structures� for navigation other than the
one�dimensional up and then down walk through a hierarchy� for helping to re�organize hierarchical
structures or to support multiple simultaneous organizations� or for anything but the most primitive
notions of history of user behavior�

In short� being forced to operate on �les with coarse ownership� often holding data in �xed
formats� all organized within a single hierarchical tree presents a wide range of problems� Making
matters worse� applications and user interface software typically o�er virtually nothing to help
alleviate these problems�

� A New Data Model

We can distinguish three di�erent layers in a data model	 data storage �physical�� data represen�
tation �logical�� and data relationships �organizational�� In most data models used today� such as
a data structure implemented in a programming language� a HFS� or a relational database� those
three layers are closely bound together for di�erent reasons �e�ciency� consistency� etc��� We believe
that this binding restricts the way programmers� designers� and users can manipulate data� and it
forces early design decisions that a�ect whole systems� and even� as we�ve seen� user interfaces�

Our data model explicitly separates these three layers� First� we do not impose any condition
on how objects should be stored as that depends on technology� We only want our objects to
be persistent� In fact� AVS uses a relational database to store objects� DV uses a HFS to store
documents� and KS uses Java objects to store entities� Moreover� our model allows objects to be
distributed� and it makes that transparent to the programmer and to the user�

�



The second layer of our data model� the representation layer� is crucial� for it is that which
presents	 objects with dynamic attributes and values� In normal programming� objects have a �xed
number of attributes and dynamic values� In most OO programming languages� objects with more
attributes can be created through inheritance or delegation� In our case we go one step further	 we
can add and delete attributes to an existing object at run�time� as in prototyping languages like
Self 
��� This means that we can also add and delete attributes to a collection of objects� Formally�
an object in our model is	

� A set of attribute instances� which may be empty�

� Each attribute instance is a value and an object� either or both of which may be empty�

� A value can be any prede�ned atomic data type or it can be a reference to an object�

Hence� our objects have identity as in OO programming� attributes have names� and values are
typed� An attribute may contain an object because we want to have attributes of attributes� and
so on� As attributes are dynamic� ownership and permissions should be on attribute instances and
not on objects� The same is true for concurrency� and locking is also done on attribute instances�

This representation choice has some fundamental consequences on the relationship layer� In
particular� it does not restrict the relationships to compile time� or to tables in a database� etc�
By adding attributes we can create any and many relationships between di�erent groups of objects
at any time� For example� the same data can simultaneously appear in a search tree and a hash
table simply by manipulating attributes� This is di�cult to do in a normal programming language�
To stress this idea� we allow search capabilities on attributes and their values� such that we can
dynamically create a set of objects satisfying any given attribute�value query� Consequently� the
representation layer gives power and �exibility to the relationship layer�

Formally� we want support for the following type of queries and operations on objects	

� Search for objects having a given attribute or with an attribute value satisfying a certain
property� The property will depend on the value type and could be a range if it is a number�
or a regular expression if it is a string� and so on� We do not impose any restriction on what
this property can be�

� Same as before� but with any level of recursion� such that we can query on sub�attributes and
so on�

� Operations on sets of objects	 union� intersection� and subtraction�

� The addition or removal of attributes �or sets of them� to sets of objects�

Although a PACO system might use a back�end relational database as a storage tool� it is
not itself a database� The data model we advocate prescribes only object structure �attributes
and values�� It is independent of object content and says nothing about information organization�
A relational database does just the opposite� The design of a set of database tables is heavily
dependent on a priori knowledge of content� Given this knowledge of content� a database implements
a single organization of the data� The prior conditions and the result are quite di�erent� Our
data model contains no a priori view of how information should be organized� and permits many

�



simultaneous organizations� but a database is an explicit implementation of a single view of the
organization of given information� This is notwithstanding database research on materialized views�
since� for the most part� they are merely subsets of the database� and not truly new extensions of
the data� However� recent work on adapting traditional relational databases to the exigencies of
the web is increasing along the lines of evolvable materialized views 
����

An important part of our data model is that objects have no special piece of content to which
attributes are attached� Although this has been done in the past �see the discussion of related
work�� it seems to be a move that has been ignored by more recent work� We believe this is an
important step because	

� It allows objects that have no content �but other useful attributes�� Such objects might� for
example� hold attributes that serve to organize other objects�

� Objects may have many pieces of content� For example� di�erent translations of the same
document� all equally important� or various versions of a document or program�

� Attributes may exist before the content does� For example� notes by various people regarding
a meeting may collect as attributes of an object before the minutes of the meeting �the main
content� is available and added to the object �as the value of yet another attribute��

� Attributes may exist after the content goes away� Attributes may summarize a large object
such as an image or book� It should be possible to remove the original content and not have
all attributes suddenly vanish too�

� The focus of an object may change� The content which provokes the creation of a new object
may� over time� become less important than some other attribute in the same object� By not
treating the original material in a special fashion� there is no problem with changing focus�

� It increases uniformity of storage and access� Special content does not have to be stored or
accessed di�erently from other information in the object� This means that awkward situations
requiring the use and combination of multiple tools to access the same conceptual object do
not arise�

� It is in accord with our general aims of providing more freedom to people who end up using
our system�

While it is true that some of these problems can be avoided in a system that adds attributes to a
special content object by simply leaving that object empty� that approach is less attractive� Under
that approach� everyone using the system must deal with the decision to always have a special
content object around which attributes aggregate� Instead� with no special content� systems that
require all objects to have such content can simply add it as an attribute and treat it specially�
Systems that do not require this do not inherit the obligation to deal with this irrelevant �to them�
content object�

��



� Comparison with Related Work

Using attributes as a mechanism of avoiding the di�culties of �les or simply as a �exible storage
layer is an approach that has been taken in several earlier projects� We can classify the majority
of related work by the characteristics described in the following sections�

��� Object Persistence

Persistent objects are not new� They are the core of object oriented databases� which tipically
are implemented over the standard �le system� Another related topic is persistent programming
languages� where everything persist from one run to the next� storing the state of a program in
secondary memory� The main di�erence of our proposal to standard object oriented databases is
that objects have dynamic attributes� That changes completely how they should be stored and also
how the database can be queried� This di�erence also applies to persistent programming languages�
In addition� our proposal replaces both� a database and a �le system layer� It is a diiferent paradigm
to access information�

��� Adding Attributes to Existing Objects

The addition of attributes to special objects	 Placeless Documents �documents� 
��� Tapestry �mail
messages� news articles� 
���� Semantic File Systems ��les� 
�
� ���� SHORE ��les� 
��� the BeOS
File System ��les� 
���� the Synopses File System ��les� 
���

Our data model does not treat as special any pre�existing object� such as a document or �le
or other content� This approach was taken earlier in work on Entities 
��� and Self 
��� but is a
departure from more recent work in which attributes were added to special objects� as mentioned
above� A discussion on this can be found in the section on our data model�

Our objects could be implemented using associative arrays as in AWK or perl� or string hashing
tables in Java� However� in these contexts� implementing the search capabilities of our model would
be extremely ine�cient� On the other hand� object persistence is related to persistent programming
languages and object oriented databases�

Our work is closely related in spirit to the Placeless Documents project at Xerox PARC 
��
��� That project has a wide range of aims for building document management systems based on
attributes and search�

��� Emphasis on Automated Processes

Some related work on attributes emphasizes automated processes which are used to gather infor�
mation and incorporate it into the system as attributes � either from outside sources or by looking
at local objects �mainly �les�	 Semantic File Systems 
�
�� Harvest 
���

As well as allowing for the automated addition of attributes to objects� especially in KnownSpace�
our work also explicitly emphasizes the importance of ad hoc addition of attributes to objects� par�
ticularly by normal users interacting with information through graphical interfaces� In this it has
similarities with the Presto�s Vista browser 
��� with a distinct focus on enabling the end user to
interact in a �exible fashion with information by means of attributes�

��



��� Applications Versus Platforms

Very often� the move to use attributes is made as a means to an end	 building a single application�
It is clear that information processing via attributes is a �exible and powerful approach� but it
has not resulted in the separation into an attribute�based information system that may be used to
build multiple applications� Exceptions to this rule are Entities 
��� and the BeOS �le system 
����

We believe it is time that the power and �exibility of the attribute�based approach was separated
from any given application and taken down to a more fundamental level in computational systems�
In this way� the advantages of the approach will be available to any application that cares to build
on this foundation� This seems to have been an aim in the BeOS �le system �BFS� 
���� the NT
�le system� and others� The AVS system described in this paper will eventually aim for a low�
level implementation� such as that taken with the BFS� though the aims of the BFS implementers
seem to have been less broad	 directed mainly towards allowing attributes for a small number of
applications �e�g�� a mail reader� using a small number of attributes� An important di�erence is
our move away from monolithic �le objects with coarse ownership to which attributes are attached�
Instead� we use PACO�s� persistent objects composed solely of attributes and values�

��� Tuples

Our work has similarities with Linda 
��� and its derivatives �Java Spaces from SUN and T Spaces

����� Both present a �exible persistent forum for communications amongst applications� and the
objects involved have a uniform representation that is not based on any pre�existing content� The
focus of these tuple systems is centered on communication� probably re�ecting the initial focus of
Linda� The AVS system described in this paper also provides a persistent forum for this kind of
inter�application communication� though that is not its main focus� We are more concerned with
�exible persistent information representation and organization�

� An Instance of Our Model� Attribute Value Systems

AVS is a prototype implementation of the above data model� Its explicit aim is to provide a
convenient and �exible storage substrate� and hence computational environment� Many of the
problems that AVS seeks to address stem from the di�culties inherent in a HFS discussed earlier�
A traditional HFS provides just one organizational structure for information� and modern operating
systems insist that we use it as a basis for storage� The object storage ��les� and organization �a
hierarchy� are tightly bound� While it is clearly possible to use this base for many things� there are
important common operations that are very awkward� AVS is designed to make these operations
simple�

��� Conceptual Model

AVS attempts to provide a �exible information management environment for programmers� users�
groups of user� and applications running on their behalf� It does this by providing a very general
form of object to hold information and a �exible attribute�based method of creating relationships
between these objects� AVS is based on	 �� Objects composed solely of attribute�value pairs� 
�

�




Editing of these attributes and values� and �� Object relationships built via assigning attributes to
objects and discovered via subsequent search� These mechanisms generalize the HFS and provide
a natural basis for dealing with information�

There is no a priori set of attributes that objects contain� Objects� by virtue of their attributes�
may exist in many organizational structures �e�g�� on graphs� on spreadsheets� on a desktop� in
hierarchies�� simultaneously� and exist there for real �not just as a copy of the name of an object in
a distant structure which then has to be used to fetch the actual object�supposing it still exists��
The search system provides access to attribute names and values equally� allowing searches for
objects based on their properties� Objects may be annotated by the addition of attributes� without
disturbing the original content�

The remainder of this section presents a broad outline of a systemwhich provides an environment
in which all these objectives are satis�ed in a natural fashion�

����� Attribute Value Objects

In AVS� objects are collections of named attributes and their corresponding values� There are no
special attributes� and there is no separate entity to which the attributes are attached� An object
corresponding to what we call a �le will have an attribute �perhaps named content� whose value
contains the content of the �le� It will likely have other attributes to hold information such as
name� size� date� etc�

Any user or application may attach attribute�value pairs to any object they are able to �nd�
This allows the addition of information to the object without disturbing the existing content�
Content in a proprietary format can be augmented by attributes containing comments� annotations�
summaries� questions� additional content� etc� The addition of these attributes does not require
tools �which may not be known� available� or usable� to edit the existing attribute values�

Attribute names exist within namespaces� Namespaces allow applications to use simple attribute
names� AVS always contains a namespace called public with common attributes that applications
might want to attach to objects and share �e�g�� text� creation�date��

There are a small number of basic operations in AVS� These are the addition and removal of
attributes to�from objects� the altering of attribute names and values� and search� This simplicity
means that implementations can be small and easily written� and increases the potential for code
re�use� Operations such as moving an object within a �le system� changing the name of an object�
adding comments to an object� causing the object to appear in an application� all reduce to these
operations�

����� Search

In AVS� search based on attribute names and values is fundamental and ubiquitous� Applications
use search to locate objects and collections of objects� Objects are assigned attributes that cause
them to be found in later searches� A hierarchy manager will add attributes to an object to cause
that object to appear at some location in the hierarchy� An application putting objects onto a
graph gives the objects attributes whose values store the coordinates of the object� These will later
be retrieved� via search� by the application that displays the graph� A desktop manager will add
attributes that cause an object to appear on a desktop� at a given location� All these attributes

��



may be completely independent of one another� or they may be shared by various applications� In
each case� the object is as much a member of the hierarchy� graph� desktop� etc�� as it is of any
other structure�

Information about searches need not be discarded� Objects may contain �� a search query
�allowing a later identical or similar search�� 
� a copy of search results� or �� references to found
objects� Search and its results are treated as important members of the information system� There
is low level support to ensure that saving search information is a natural operation�

In AVS� all actions reduce to attribute editing and search� All applications and users wishing
to operate on objects within the system must �rst �nd the objects they wish to act on �though
references to previously found objects may also be used�� Search does not discriminate amongst
attribute names or values� There are no special attributes� Finding a �le with content matching a
regular expression and whose name has a certain su�x is di�cult in an HFS� because the content
and name are stored separately� and treated di�erently by the �le system� In AVS� such distinctions
�and thus problems� simply do not exist�

����� Objects are not Owned� Attributes Are

The objects in AVS are not owned� They are composed of owned attributes� Objects may frequently
be composed of attribute�value pairs added by several users or applications� The original attributes
may be later deleted� but the object continues to exist� The object remains even if all its attributes
are deleted� Such an empty object might be used for later communication between applications� as
a place to announce events� etc�

This arrangement re�ects the aggregation of information into and around objects in the real
world� Memories� opinions� comments� and various other attributes exist regarding objects� and
the fact that some attributes may disappear �or never appear� does not alter the fact that there is
still an ownerless conceptual ball of information concerning the original material�

����� Ubiquity of Attribute Editing Operations

There are a small number of basic operations in AVS� These are the addition and removal of
attributes to�from objects� the altering of attribute names and values� and search� This extreme
conceptual simplicity means that implementations can be small and easily written� and increases
the potential for code re�use� Operations such as moving an object within a �le system� changing the
name of an object� adding comments to an object� causing the object to appear in an application�
all reduce to these simple operations�

����� An Interpreted Object Language

The AVS will provide an interpreted language allowing operations on objects and attributes� This
language will be used by applications to specify operations to be executed upon speci�ed events
�attribute assignment or deletion� object found in a search� etc��� The language may also serve as
an extension language for applications�

��



����� Permissions

The permissions model of AVS places restrictions on attribute names and their values� A user or
application that creates an attribute controls whether other users and applications can	 �� see the
new attribute name �i�e�� that the attribute exists� and�or that an object has an instance of the
attribute�� 
� create or delete instances of the new attribute� and �� read or write the value of
attribute instances�

This allows users to assign private attributes to objects� A user may build objects composed
entirely of attributes that cannot be seen by other users or applications� This o�ers a form of
privacy	 In AVS if you cannot �nd an object by search� you cannot view or alter it� Objects may
thus be inaccessible �no attributes visible�� partly accessible �some attributes visible� alterable� etc���
or fully accessible �all attributes visible� according to the permissions on its individual attributes�

Attribute permissions exist independent of any instance of an attribute� and serve to implement
a permissions policy for future instances of the attribute� In addition� attribute instances may carry
permissions information relevant to the instance in the object that is associated with each attribute�
In the absence of these instance�speci�c permissions� the permissions for an attribute instance are
inherited from those of its attribute�

In order to prevent normal users from altering permissions on arbitrary attributes or attribute
instances� the system initially creates various important attributes and gives itself the permission
to add� delete� and alter these in objects� Various system properties that exist in normal PACO
objects are protected in this way with attributes that are owned by the system� It is envisaged
that tools such as compilers will have attributes �such as �executable�� that only the compiler may
attach to objects�

����� Attribute Managers

Applications in AVS will usually implement an Attribute Manager component� A standard task
for an application will be to manage a set of attributes which it routinely attaches to and manages
in objects that are or become relevant to the application� A hierarchy manager might add a
name attribute whose value encodes the location of the object in the hierarchy� Although no
other attributes are necessary to maintain a hierarchy� such a manager might also manage other
attributes� such as dates and access history� or may split the name into a path attribute and a name
attribute� etc� Other applications will manage sets of attributes in a similar fashion� For example� a
desktop application might manage a set of attributes desk�x� desk�y� desk�icon which it attaches
to objects that should appear on its desktop� and an annotation application might manage a set of
comment� offset� date and author attributes�

��� Data Relationships via Attributes and Search

In AVS� as relationships between objects arise they are made real by the addition of attributes
linking the objects involved� These objects and their relationships are dynamic� and are later
discovered via search rather than through formal prede�ned data structures or following pointers�
There are no a priori assumptions about data structures� Multiple relationships between objects
can exist simultaneously� allowing multiple views of the same objects� no one more important than
any other�

��



An object with a collection of attributes and corresponding values is an instance of some data
structure �recall that data structures in programming languages are composed of �elds and values��
However� unlike data structures as they are used in programming languages� in AVS no�one need
anticipate the relationships that may exist amongst objects or the �elds �attributes� that might
comprise an object� Similarly� building relationships via the addition of attributes is quite di�erent
from building the same relationships through the design of object�oriented class hierarchies�

Predetermined data structures and class hierarchies are of limited use in a world full of un�
expected relationships between objects� programmers� and users with widely di�ering brains� per�
spectives� and needs� By using attributes and search in place of formal data structures� classes and
pointers� AVS eliminates the need to anticipate relationships or to support a �xed number of them�
Similar comments apply to the restrictions imposed by traditional databases�

� Applications of the Model

In this section we brie�y present two prototypes of systems that use the proposed data model to
manage personal information�

��� DomainView

DomainView 

� is a desktop metaphor which tries to address the user interface problems mentioned
in Section 
� Although the initial motivation for DomainView was to use retrieval by content in
a smarter way and to present a simpler interface for the user� we later realized that a di�erent
conceptual frameworkwas needed to organize information and store documents� We now summarize
how the proposed data model is used in DV�

An object is a document which has a dynamic number of attributes� Naming an object is
optional �its name is just one of the possible attributes of a document�� Attributes can be poten�
tially added by the user or by applications� Some initial attributes are creation time and creating
application� size� and content� User documents are organized in collections� each one de�ning an
information or application domain� Domains have a �at organization� That is� there is no hierar�
chy associated with them� Nevertheless� domains can naturally nest or overlap� However� they are
dynamic� so those set relationships are not �xed� Hence� a document may belong to more than one
domain�

Domains can be prede�ned and�or created by the user and are dynamic� Each domain has
associated a set of words which de�nes it� chosen from a global thesaurus� Prede�ned domains could
depend on speci�c user tasks or applications� As documents� domains may have a name� but this
is optional� The thesaurus can be initially de�ned by a system manager� extracted automatically
from a subset of documents� or created by the user� In all cases� the thesaurus is dynamic and is
modi�ed by user actions� Documents or a set of documents can be retrieved by using a set of words
which will be searched on all attributes and�or speci�c values in speci�c document attributes such
as date� size� etc� Queries are stored and their result can de�ne a new domain� Notice that there
is no notion of a HFS and a document can only be retrieved using the value �or a range of values�
of one or more attributes�

Documents can only be used through the desktop interface� That means that the concept of
an application opening a document does not exist �moreover� it is forbidden as was the original

��



intent of one of the Apple Macintosh designers 
����� Applications are associated with domains
and executed by documents� and not the other way around� To create a new document� there
is a generic new document with no attributes� which can call any application or the applications
associated to the document domain� if any�

The user interface allows the following capabilities	

� Visualizing domains� that is� sets of objects� In particular their intersection�

� Visualizing a given domain or the result of a search� that is� a set of documents�

� Retrieving sets of documents by searching on document attributes �by ranges in numerical
attributes or by full�text retrieval operations in strings��

Clearly� all these capabilities are easily implemented in our data model� Our user interface prototype
has been implemented in Java� and has almost all the functionality already described�

Our desktop can be seen as a simple interface to a di�erent operating system where there is
no HFS� but a uniform universe of objects �in our case called documents�� We think that this
metaphor is closer to reality and does not rely so much on the user of the memory� although we
expect normal users to name all domains� However� the number of domains will be in general small�
so this organization is much more scalable than a HFS� On the other hand� a user can have just
one domain �his�her universe� and retrieve everything by content� That should be the �nal goal�

��� KnownSpace

Data within KnownSpace is stored in Entities with Attributes� Entities may be anything �emails�
webpages� desktop documents� or more abstract things like Persons� Organizations� and Websites��
Attributes may also be arbitrary �date added� phones numbers contained in� website pointed to by�
and so on��

As with DomainView� a typical KnownSpace interface presents a universe of entities� each
of which may represent a document�a webpage� an email message� and so on� but it may also
present entities representing more abstract things that seemingly have nothing whatsoever to do
with documents in the traditional sense�like a Person� A Person however� if a powerful organizing
principle in daily life� A Person sends email� a Person has a phone number �and that phone number
may be stored in an email form yet another Person�� A Person has an address� and so on� All these
pieces of information can be hung on one entity inside KnownSpace� These users can browse� not
just traditional �documents�� but also any arbitrary collection of pieces of information the interface
chooses to support�

Further� interfaces in KnownSpace are not tied to the system in the sense that most other
interfaces are tied to their systems� KnownSpace has many faces� It already has �ve interfaces�
and more are on the way� Each user can �potentially� have a unique interface� since part of what
KnownSpace supports is the ability to build new interfaces inside KnownSpace �this work is not yet
complete�� Consequently� users may even have one KnownSpace interface they use when they�re at
work� and at home use a completely di�erent one �although perhaps carrying over the same set of
icons for each entity��

Within a particular interface� users may browse� delete� create� edit� or markup any entity� How�
ever� KnownSpace itself further marks up those entities� and any entities it fetches autonomously

��



for presentation to the user� KnownSpace uses all that markup �all those attributes� to cluster the
entities in many di�erent ways� each of which is available to any KnownSpace interface� It is up
to the interface designer to choose which particular views of the data space it will emphasize to its
users�

To make all of this �exibility possible KnownSpace depends heavily on the �exible object�
attribute model we presented earlier�

� Concluding Remarks

Arguments for our data model include its underlying simplicity and �exibility� the removal of a
priori assumptions about data structures and relationships between information objects� ease of use
and implementation� its natural representation of real world information� the support for multiple
views of the same information� and the fact that it generalizes the current structural imperative
�the hierarchical �le system��

The new data model should make it simpler for users� programmers� and applications to work
with information	 to accumulate it� share it� add to it� delete it� and to organize� retrieve� and view
it in many ways� This data model is intended to replace or supplement the traditional HFS with
a substrate that better re�ects the types of operations on information that we hope to perform in
many modern computational environments�

Our model can also easily be extended to the Web� For example� all Web objects could be
wrapped in XML� where we have attributes and values independent of the type of object �HTML�
image� etc�� To maintain the XML philosophy� binaries would be converted to visible ASCII with
no distinction between data and metadata� although for complex objects it would be better to use
a link to them and maintain them in their native format� We think that this is a very uniform
and portable object model for the Web� Consequently� searching the Web with agents would be
much easier and any search engine index would be much more powerful because attributes give
semantics to the data� which is also one of the goals of XML� All of our systems add richer layers
of markup�interpretation to data which may �or may not� already be in some XML format�

Future work for AVS will revolve around evaluating how programmers �nd the task of designing
applications using the data model that we propose� Based on our experience with DV and KS�
having AVS would have greatly simpli�ed the development of those prototypes� Another important
evaluation is how e�ciently this model can be implemented� either from scratch or on top of a HFS
or a relational data model� although the later imposes many restrictions that are already mentioned�
Finally� our model leaves open many problems that we have not being able to address �yet��

References


�� Ricardo Baeza�Yates� Terry Jones� and Gregory Rawlins� New Approaches to Managing
Information	 Attribute�Centric Data Systems� Submitted� �����



� Ricardo Baeza�Yates and Claudio Mecoli� DomainView	 A Desktop Metaphor based on
User De�ned Domains� Dept� of Computer Science� Univ� of Chile� �����

��




�� Deborah Barreau� and Bonnie A� Nardi� Finding and Reminding	 File Organization from
the Desktop� SIGCHI Newsletter� Vol� 
� No� �� July �����


�� Mic Bowman and Ranjit John� The Synopsis File System	 From Files to File Objects�
Position paper for the Joint W�C�OMG Workshop on Distributed Objects and Mobile
Code� June �����


�� C� Mic Bowman� Peter B� Danzig� Darren R� Hardy� Udi Manber� and Michael F�
Schwartz� The Harvest information discovery and access system� In Proc� �nd Int� WWW

Conf�� pages �������� October �����


�� Carey� M�� DeWitt� D�� Naughton� J�� Solomon� M�� et al�� Shoring Up Persistent Appli�
cations� Proc� of the ���� ACM SIGMOD Conference� Minneapolis� MN� May �����


�� Craig Chambers� David Ungar� Bay�Wei Chang� and Urs H�olzle� Parents are Shared Parts	
Inheritance and Encapsulation in Self� In Lisp and Symbolic Computation ����� Kluwer
Academic Publishers� June� �����


�� Paul Dourish� W� Keith Edwards� Anthony LaMarca� John lamping� Karin Petersen�
Michael Salisbury� Douglas B� Terry and james Thornton� Extending Document Manage�
ment Systems with User�Speci�c Active Properties� Xerox PARC Working Paper� �����


�� Paul Dourish� W� Keith Edwards� Anthony LaMarca� and Michael Salisbury� Presto	 An
Experimental Architecture for Fluid Interactive Document Spaces� Xerox PARC Working
Paper� �����


��� Dominic Giampaolo� Practical File System Design with the Be File System� Morgan Kauf�
mann� �����


��� David Gelernter� Generative communication in Linda� ACM Transactions on Program�
ming Languages and Systems� 
���	�����
� January �����


�
� David K� Gi�ord� Pierre Jouvelot� Mark Sheldon� and James O�Toole� Semantic �le sys�
tems� In ��th ACM Symposium on Principles of Programming Languages� October �����


��� David Goldberg� David Nichols� Brian M� Oki and Douglas Terry� Using Collaborative
Filtering to Weave an Information Tapestry� Communications of the ACM� v� ����
� pp�
������ December ���
�


��� Terry Jones� Attribute Value Systems	 An Overview� Dept� of Cognitive Science� Univ� of
California at San Diego� �����


��� Gregory J� Rawlins� KnownSpace� http���www�knownspace�org��� �����


��� Elke A� Rundensteiner� Andreas Koeller� Xin Zhang� Amy J� Lee� and Anisoara Nica�
Evolvable View Environment �EVE�	 Non�Equivalent View Maintenance under Schema
Changes� SIGMOD���� Software system demonstration� Philadelphia� USA� May �����


��� Bruce Tognazzini� Tog on Software Design� Addison Wesley� �����

��




��� Andrew John Wilkes� Workstation Design for Distributed Computing �see Chapter ��
Entities�� Ph�D� Dissertation� University of Cambridge� ����� Reproduced as Hewlett
Packard Technical Report ACS�����
� April �����


��� P� Wycko�� S� W� McLaughry� T� J� Lehman and D� A� Ford� T Spaces� IBM Systems
Journal� v� ��� No� � � Java Technology� Aug �����


�


