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Abstract

In the message-passing model of communication, there
are k players each with their own private input, who
try to compute or approximate a function of their
inputs by sending messages to one another over private
channels. We consider the setting in which each player
holds a subset Si of elements of a universe of size n,
and their goal is to output a (1 + ε)-approximation
to the total number of distinct elements in the union
of the sets Si with constant probability, which can
be amplified by independent repetition. This problem
has applications in data mining, sensor networks, and
network monitoring. We resolve the communication
complexity of this problem up to a constant factor, for
all settings of n, k and ε, by showing a lower bound
of Ω(k · min(n, 1/ε2) + k log n) bits. This improves
upon previous results, which either had non-trivial
restrictions on the relationships between the values of
n, k, and ε, or were suboptimal by logarithmic factors,
or both.

1 Introduction

Estimating the number F0 of distinct elements of the
union of datasets held by different servers is a funda-
mental problem in distributed streaming with appli-
cations to monitoring network traffic, detecting denial
of service attacks, designing query response strategies,
OLAP, data warehousing, and data integration.

The problem is well-studied in the streaming model,
in which there is a stream i1, . . . , im of indices ij ∈
[n], and F0 =: |{i1, . . . , im}|. Since computing F0

exactly requires linear space even with randomization
[1], one usually allows the algorithm to output an
approximation F̃0 ∈ [F0, (1 + ε)F0] with probability at
least 2/3, where 0 < ε < 1 is an input parameter. We
refer to F̃0 as a (1 + ε)-approximation. This probability
can then be amplified with independent repetition. The
problem was introduced in the theory community by
Flajolet and Martin [16], and revived by Alon, Matias,
and Szegedy [1]. Since then there has been a large
body of work on understanding its space complexity

[8, 3, 13, 14, 4, 19].
While these works resolve the complexity of esti-

mating F0 on a single stream, they are not entirely re-
alistic in practice since data is often shared across mul-
tiple servers each with their own stream. This may oc-
cur in networks for which routers with limited memory
share network traffic information, or in sensor networks
in which low-end devices collect data which is then ag-
gregated by a centralized server.

These scenarios motivate the distributed functional
monitoring model of Cormode, Muthukrishnan, and Yi
[9]. In this model there are k players, also known
as sites, P1, . . . , Pk, each holding a set S1, . . . , Sk ⊆
[n], respectively. The players want to design a low-
communication protocol so that one of the players
obtains a (1 + ε)-approximation to F0(S1, . . . , Sk) =:
|∪ki=1Si| with constant probability. The communication
is point-to-point, meaning that each pair of players
has a private communication channel and messages
sent between the two players are not seen by other
players. This is also referred to as the message-passing
model [12, 24, 25, 27, 6, 18]. One of the main goals
is to minimize the total number of bits exchanged
between the players, i.e., the communication complexity
of accomplishing this task.

In some settings the network, instead of having a
connection between all pairs of players, has an arbi-
trary graph topology and so communication is more re-
stricted. In this paper we focus on the coordinator model
[12] in which the players communicate with a central-
ized coordinator by sending and receiving messages on
private inputs. Lower bounds in the coordinator model
imply lower bounds for the message-passing model in
which every node can directly communicate with every
other node, as the coordinator model is the most basic
topology in which we only assume that every pair of
players is connected.

Since there is a streaming algorithm with
O(min(n, 1/ε2) + log n) bits of space for obtaining
a (1 + ε)-approximation F̃0 [19], this implies an
O(kmin(n, 1/ε2) + k log n) bit communication proto-



col in which the players consecutively run the stream-
ing algorithm on their input and pass the state of
the algorithm to the next player. Cormode, Muthukr-
ishnan and Yi [9] showed an Ω(k) lower bound for
this problem via a non-trivial argument, while work of
Arackaparambil, Brody and Chakrabarti [2] combined
with work of Chakrabarti and Regev [7] showed an
Ω(1/ε2) lower bound. These bounds were improved to
Ω(k/(ε2 log(ε2k))) under the assumption that the num-
ber k of players exceeds 1/ε2 [25].1

The starting point of our work is that it is difficult
to make assumptions on what n, k, and ε ought to be in
practice. For instance, in some applications 1/ε2 may
be quite large if say ε = .01 approximation is desired.
It may therefore be unreasonable to assume that the
number k of players is larger than 1/ε2 = 10000, as
is done in [25]. Thus, for this regime the best known
lower bound remains Ω(k+ 1/ε2) [2, 9, 7]. On the other
hand, if ε is a large constant, then the lower bound is
Ω(k + log n) [9], while one could hope for Ω(k · log n).
Thus, already for both extremes of settings of ε, it is
unclear what the right bound should be.

Our Results: We resolve the communication
complexity of approximating the number of distinct
elements in the message-passing model up to a constant
factor. The following is our main theorem.

Theorem 1.1. For any setting of n, k, 1/ε = Ω(1), any
private-coin randomized protocol in the message-passing
model for estimating F0 up to a factor of 1 + ε with
probability at least 2/3 requires Ω(k · min(n, 1/ε2) +
k log n) bits of communication.

Given the upper bound above, our lower bound is
simultaneously optimal, up to a constant factor, in all
parameters n, k, and ε.

As a number of problems reduce to estimating
F0, we also obtain tight communication lower bounds
for, e.g., estimating rarity [11] or the Klee’s measure
problem [23] in the message-passing model.

As a corollary of our techniques, we improve
the direct sum theorem for randomized public-
coin complexity for computing the OR in the
message-passing model. Formally, for an arbitrary
2-player function f : {0, 1}n × {0, 1}n → {0, 1},
in the k-OR-f problem the i-th site has a vec-
tor xi ∈ {0, 1}n and the coordinator has a vector
y ∈ {0, 1}n. The goal is to compute

∨
i∈[k] f(xi, y).

Philips, Verbin, and Zhang [24] showed that

1The conference version of this paper also requires k > 1/ε2

and claims an Ω(k/ε2) bound, but in working out the proof in
that paper the actual bound obtained is Ω(k/(ε2 log(ε2k))).

R1/20,pub(k-OR-f) = Ω(k · R1/3,pub(f)/ log2 k), which
was improved by the authors to R1/20,pub(k-OR-f) =
Ω(k · R1/3,pub(f)/ log k) [27]. Here we show that
R1/20,pub(k-OR-f) = Ω(k · R1/3,pub(f)), which is op-
timal. This implies optimal bounds for cycle-freeness,
connectivity, counting the number of connected
components, testing bipartiteness, and testing triangle-
freeness; see [27] where plugging in our direct sum
theorem improves the previous lower bound for these
problems by a log k factor.

Technique for the Ω(k log n) Bound: As noted
by Philips, Verbin, and Zhang [24], there are only
a few techniques for proving lower bounds in the
message-passing model. Perhaps surprisingly, they
provably cannot be applied to the following communi-
cation problem k-OR-NEQ, in which the coordinator
C has a string y ∈ {0, 1}n, each player Pi has a string
xi ∈ {0, 1}n, and their goal is to decide if there exists
an i for which xi 6= y. We prove an Ω(k log n) lower
bound for the k-OR-NEQ problem. Via a standard
reduction, this already improves the Ω(k) lower bound
for F0 shown in Theorem 5.2 of [10].

The reason this bound cannot be shown using
existing techniques is that they either require proving
a distributional communication lower bound [24], or
they prove a lower bound on the information cost
[6]. For the 2-player 2-NEQ problem of deciding
whether two strings are not equal, for any distribution
µ there is an upper bound of O(log 1/δ), where δ is the
error probability over inputs drawn from µ [21]. This
implies an O(k log k) communication protocol for any
distribution on inputs for k-OR-NEQ. Similarly, under
any distribution there is a protocol for 2-NEQ with zero-
error and information cost O(1) [5], implying a protocol
for k-OR-NEQ with O(k) information cost. These gaps
essentially arise because the hard direction of Yao’s
minimax principle holds only for public-coin protocols.
While for 2 players this only amounts to an additive
difference of O(log n) in communication, we show for k
players it results in an O(k log n) difference.

The idea of our proof is to take a k-player protocol
and look only at inputs for which k-OR-NEQ evaluates
to 0, that is, all players have the same input. We
would then like to find a player Pi for which the
communication with the coordinator C is typically
small, over a random such input, and build a protocol
for 2-NEQ between Pi and C, using that the output
of k-OR-NEQ is determined by the output of 2-NEQ
between Pi and C. However, we have no bound on the
communication between C and Pi when their inputs
are not equal. What we can do, though, is terminate
the protocol if the communication between C and Pi



becomes too large. In this case we either know their
inputs are unequal, or their inputs are one of the few
inputs causing the communication between C and Pi
to be large. For a randomized protocol, though, the
induced 2-player protocol must succeed with constant
probability on all inputs, not only a large fraction.
We use the self-reducibility of 2-NEQ, that we can
injectively map instances of 2-NEQ on (n − 1)-bit
strings into inputs on n-bit strings, and remove the
inputs causing large communication between C and Pi.

Technique for the Ω(kε−2) Bound: We recall
the approach in [26] for achieving an Ω(kε−2/ log(ε2k))
bound under the assumption that k > 1/ε2, and
argue there is an inherent reason this assumption was
necessary. The coordinator C was given y ∈ {0, 1}r,
and each player Pi was given xi ∈ {0, 1}r, where
r = Θ(ε−2). Each (xi, y) pair was chosen from a hard
distribution µ for the 2-player disjointness problem
2-DISJ, in which 2-DISJ(xi, y) = 1 iff there exists a j
for which xi,j = yj = 1. Notice that the same input y
is used in all k 2-player 2-DISJ instances, though the
choice of xi is drawn independently for different i from
the marginal distribution conditioned on y. Distribu-
tion µ was such that Pr[2-DISJ(xi, y) = 1] = ε−2/k.
Further, the reduction to F0 was designed so that
the F0 value was equal to the number of i for which
2-DISJ(xi, y) = 1. The Ω(kε−2/ log(ε2k)) lower bound
came from the fact that a correct k-player protocol for
F0 must effectively solve many of the 2-player 2-DISJ
instances, each requiring Ω(ε−2) communication.

This approach requires k > ε−2 since ε−2/k is
the probability that 2-DISJ(xi, y) = 1, which must
be at most one. Moreover, we need Θ(ε−2) of the 2-
player 2-DISJ instances to evaluate to 1, since then
by anticoncentration of the binomial distribution (the
sum of the output bits of the 2-DISJ instances to the k
players) this number will deviate from its expectation
by Θ(ε−1), which is why a (1 + ε)-approximation to
F0 can detect this deviation. To handle k < ε−2 we
instead consider a 2-player problem 2-SUM in which
each player holds inputs to t = ε−2/k independent 2-
DISJ instances on sets of size k, in which the output
of each instance is 0 or 1 with probability 1/2. The
goal is to decide if at least t/2 + Ω(

√
t) instances are

equal to 1, or at most t/2 − O(
√
t) instances are equal

to 1. Note that this is a promise problem, and can be
viewed as a 2-player problem of solving the majority
of t 2-DISJ instances, given that there is a gap. Such
a problem may be easier than solving all t of the 2-
DISJ instances, which is hard by standard direct sum
theorems. We show a reduction to previous work by
the authors [26, 25] in the context of estimating F2 in

the blackboard model, showing 2-SUM has randomized
communication complexity Ω(tk) = Ω(ε−2). We note
that when k = ε−2, this problem reduces to that in [26],
while if k = 1 it can be seen as the Gap-Thresh(AND)
problem, in which given two strings x, y ∈ {0, 1}r, is the
problem of deciding if the number of coordinates j for
which xj∧yj = 1 is at least r/2+

√
r, or at most r/2−

√
r

(this is equivalent to the Gap-Hamming problem [7]).
To prove our k-player lower bound, the coordinator

C holds an input (y1, . . . , yt) to 2-SUM, where each yi

is an input to a 2-DISJ instance. Each of the players
Pi holds an input (x1

i , . . . , x
t
i) to 2-SUM chosen from a

marginal distribution conditioned on (y1, . . . , yt). While
the reduction to F0 is similar to that in [26, 25], we need
a new argument which shows why, from the transcript
of the protocol for F0, one can solve the 2-SUM instance
between C and Pi for many i. This requires new
arguments since solving a 2-SUM instance only reveals
information about the majority of t bits, provided there
is a gap, and one needs to argue that if most of these
majorities were not learned very well, the sum of them
across the k players would not be concentrated well
enough to approximate F0.

Finally, for k > ε−2 we improve the
Ω(kε−2/ log(ε2k)) lower bound of [26, 25] by a
more careful reduction of a k-player problem to a
2-player problem. Usually, one first chooses C’s input y
to some 2-player problem (e.g., 2-DISJ or 2-SUM), and
then one independently samples the inputs xi, . . . , xk to
the players from the marginal distribution conditioned
on y. Hence, each (xi, y) is chosen from some distri-
bution µ for the 2-player problem. One argues that
typically the transcript for the k-player protocol reveals
information about the answer to the 2-player problem
for some player for which the communication cost is
roughly a 1/k fraction of the overall communication.
This contradicts a lower bound for the 2-player problem
under distribution µ. We instead randomly choose a
player Pi and plant an instance (xi, y) to the 2-player
problem under a different distribution µ′ between C
and Pi. The distribution of (xj , y) for j 6= i is still µ (so
it is important the marginal distributions µ and µ′ of
the 2-player problem are the same). We argue that the
k-player protocol cannot tell we have done this, and so
it solves the 2-player problem with low communication
under µ′. We can thus choose µ′ to obtain a stronger
lower bound.

2 Preliminaries

The computational models. We will work in
the coordinator model, where we have k players (we
call sites, to be consistent with the literature on the
coordinator model) P1, . . . , Pk and one coordinator.



Each site Pi has an input xi, and the coordinator has
no input. They want to jointly compute some function
f(x1, . . . , xk) defined on the union of their inputs. There
is a two-way communication channel between each site
and the coordinator (which is not seen by other sites),
and each site can only talk to the coordinator. The goal
is to minimize the communication cost.

We can view the computation in terms of rounds.
At each round the coordinator picks a site Pi to commu-
nicate, by sending Pi a message based on all the previous
messages received from the k sites, and then Pi replies
with a message based on its input xi and all previous
messages received from the coordinator.

We note that in the proofs, for reduction purposes
we will introduce intermediate problems in which the
coordinator will be given an input, but for the original
problem, that is, the F0 problem, the input for the
coordinator is always an empty set.

Communication complexity. In the two-party
communication complexity model, we have two parties,
Alice and Bob. Alice has an input x and Bob an input y,
and they want to jointly compute a function f(x, y) by
communicating with each other according to a protocol
Π. Let Π(x, y) be the transcript of the protocol running
on the input (x, y) ∈ X × Y.

1. The deterministic communication complexity (we
will abbreviate communication complexity as CC)
of a function f , denoted by D(f), is defined to
be minΠ max{|Π(x, y)| | (x, y) ∈ X × Y}, where
Π(x, y) = f(x, y) for all (x, y) ∈ X × Y.

2. The δ-error randomized CC of f , denoted by Rδ(f),
is defined to be minΠ max{|Π(x, y)| | (x, y) ∈ X ×
Y}, where Pr[Π(x, y) = f(x, y)] ≥ 1 − δ for all
(x, y) ∈ X × Y. Let Rδ,pub(f) be the public coin
δ-error randomized CC where players are allowed
to use public coins.

3. The δ-error µ-distributional CC of f ,
denoted by Dδ

µ(f), is defined to be
minΠ max{|Π(x, y)| | (x, y) ∈ X × Y}, where
Pr[Π(X,Y ) = f(X,Y )] ≥ 1− δ when (X,Y ) ∼ µ.

4. The expected δ-error µ-distributional CC of f ,
denoted by EDδµ(f), is minΠ E(X,Y )∼µ |Π(X,Y )|,
where Pr[Π(X,Y ) = f(X,Y )] ≥ 1 − δ when
(X,Y ) ∼ µ.

These definitions readily generalize from the two-party
communication setting to the multi-party setting.

Lemma 2.1. (Yao’s Lemma [28]) In the k-party com-
munication game, for any function f , any input distri-
bution µ, and any δ > 0, it holds that Rδ(f) ≥ Dδ

µ(f).

Moreover, when k = 2, there exists an input distribution
τ for which Rδ,pub(f) = Dδ

τ (f).

When k = 2, the lemma was proved in [28]. We can
easily extend the first part of the lemma to the general
k-party communication game, see, e.g., [27]. We have
included a proof in Appendix A for completeness.

Conventions. Let [n] = {1, 2, . . . , n}. All loga-
rithms are base 2. We often identify sets with their
corresponding characteristic vectors when there is no
confusion. All bounds are in terms of bits.

3 An Ω(k log n) Lower Bound

In this section we prove an Ω(k log n) communication
lower bound for F0 in the coordinator model. We first
introduce a problem called k-OR-NEQ and analyze its
randomized communication complexity, and then prove
a lower bound for F0 by a reduction. At the end, using
similar techniques we will also show a general result for
k-OR-f for any 2-player problem f .

3.1 The 2-NEQ Problem In the 2-NEQn problem,
we have Alice and Bob. Alice has an input x ∈ {0, 1}n
and Bob has an input y ∈ {0, 1}n. They output 1 if
x 6= y, and 0 otherwise. The superscript n on 2-NEQ
denotes the size of the input, which we will need to keep
track of. The following theorem can be found in [21],
Chapter 3.2.

Theorem 3.1. R1/3(2-NEQn) = cE · log n, for an
absolute constant cE.

3.2 The k-OR-NEQ Problem The k-OR-NEQ
problem is defined in the coordinator model. The i-
th site has a vector xi ∈ {0, 1}n, and the coordina-
tor has a vector y ∈ {0, 1}n. The goal is to compute∨
i∈[k] 2-NEQn(xi, y).

Theorem 3.2. R1/20(k-OR-NEQ) = Ω(k log n).

Proof. First consider NO instances of k-OR-NEQ: such
an instance has the form that each of the k sites together
with the coordinator has the same input vector u, for
some u ∈ {0, 1}n. We identify the NO instance with the
vector u.

We prove the theorem by contradiction. Suppose
that there is a randomized protocol P ′ with communi-
cation cost o(k log n) for k-OR-NEQ. Then by a Markov
inequality, there exists a site PI (I ∈ [k]) for which for
at least a 1/2 fraction of NO instances u, at least a
99/100 fraction of random strings r have the property
that the communication between the coordinator and
PI on u with random string r is at most α log n, for an
arbitrary small constant α > 0. Since P ′ succeeds on



each input u with probability at least 19/20, by a union
bound, we have that for at least a 1/2 fraction of NO
instances u, a 99/100− 1/20 > 9/10 fraction of random
strings r have the property that the communication be-
tween the coordinator and PI on u with random string
r is at most α log n, and P ′ outputs the correct answer.
Let S ⊆ {0, 1}n be this set of NO instances u.

We perform a reduction from 2-NEQn−1 to k-OR-
NEQ. Let g be an arbitrary injection between {0, 1}n−1

and S. In 2-NEQn−1, let x ∈ {0, 1}n−1 be Alice’s
input, and y ∈ {0, 1}n−1 be Bob’s input. Alice and Bob
construct a protocol P for 2-NEQn−1 using the protocol
P ′ for k-OR-NEQ as follows.

1. Alice simulates the site PI with input g(x).

2. Bob simulates the remaining k − 1 sites and the
coordinator by assigning all of them the input g(y).

3. They run P ′ on the resulting input, denoted by z,
for k-OR-NEQ.

Note that Bob can simulate any communication be-
tween Pi (i 6= I) and the coordinator without any ac-
tual communication, and the communication between
Alice and Bob is equal to the communication between
PI and the coordinator. During the run of P ′, if the to-
tal communication between the coordinator and PI ex-
ceeds α log n, they early-terminate the protocol, mean-
ing they stop the protocol once its communication ex-
ceeds α log n (otherwise we say the protocol normally-
terminates). They run P ′ on z a total of cR times for a
large enough constant cR, which can be chosen indepen-
dently of α, using independent private randomness each
time. At the end, if more than a 1/10 fraction of the
runs are early-terminated, then they output “x 6= y”.
Otherwise, they output the majority of the outcomes
of the runs of P ′, without counting those that early-
terminate.

Now we show that the resulting protocol P com-
putes 2-NEQn−1 correctly with probability at least 2/3.

First, if x = y, then g(x) = g(y), that is, the
resulting input z for k-OR-NEQ is a NO instance.
Notice that by our choice of PI , with probability 99/100
over the randomness of P ′, the communication between
PI and the coordinator is at most α log n, that is, the
protocol will normally-terminate. By a Chernoff bound,
for a large enough constant cR, with probability at
least 99/100, less than a 1/10 fraction of the cR runs
will early-terminate. Moreover, P ′ computes k-OR-
NEQ correctly with error probability at most 1/10 on
a run which is normally-terminated (by our choice of
site PI). The process of running the protocol cR times
and then taking the majority of the outcomes, without
counting those that early-terminate, will only increase

the latter success probability. Therefore, protocol P
computes 2-NEQn−1 correctly with probability at least
1− 1/100− 1/10 > 2/3.

Second, if x 6= y, then g(x) 6= g(y), that is, the
resulting input z for k-OR-NEQ is not a NO instance.
We analyze two cases.

1. If for at least a 4/5 fraction of random strings of
P ′, the communication between the coordinator
and PI on z is at most α log n, then for each run,
P ′ normally-terminates and outputs correctly with
probability at least 4/5 − 1/20 > 2/3. Running
the protocol cR times and taking the majority of
the outcomes, without counting those that early-
terminate, only increases the success probability.

2. If for at least a 1/5 fraction of random strings of P ′,
the communication between the coordinator and
PI on z exceeds α log n, then for a large enough
number cR of repetitions of P ′, where cR is a
constant chosen independently of α, we have that
by a Chernoff bound, with probability at least
99/100 > 2/3, at least a 1/10 fraction of the runs
will early-terminate. Alice and Bob can detect such
an event and declare that x 6= y.

Finally, since α is unconstrained, by choosing α =
cE/(2cR), the communication cost of P for 2-NEQn−1

is at most cR · α · log n = cE log n/2 < cE log(n − 1) =
R1/3(2-NEQn−1) (Theorem 3.1). We have therefore
reached a contradiction.

3.3 A Lower Bound of F0 There is a simple re-
duction from k-OR-NEQ to approximating F0 up to a
constant factor (a (1+ε)-approximation with 1+ε < 3/2
suffices). By results in coding theory (c.f. [1], Sec-
tion 3.3), there exists a family G consisting of t = 2n

subsets of [n/ι] (for a constant ι), each of cardinality
n/(4ι), such that for any two a, b ∈ G, it holds that
|a ∩ b| ≤ n/(8ι).

Now given an input (x1, . . . , xk, y) ∈ {0, 1}n ×
· · · × {0, 1}n for k-OR-NEQ, we construct an input
for F0. Let h be an arbitrary bijection between
{0, 1}n and elements in G. The k sites and the co-
ordinator run a (1 + ε)-approximation protocol for
F0, for 1 + ε < 3/2, on input (h(x1), . . . , h(xk)).
Note that if k-OR-NEQ(x1, . . . , xk, y) = 1, then
we have F0(h(x1), . . . , h(xk)) ≥ n/(4ι) + n/(8ι);
and if k-OR-NEQ(x1, . . . , xk, y) = 0, then we have
F0(h(x1), . . . , h(xk)) = n/(4ι). Therefore we can use
a (1 + ε)-approximation to F0 to solve k-OR-NEQ. The
following theorem is a direct consequence of this reduc-
tion and Theorem 3.2.



Theorem 3.3. For 1+ε < 3/2, it holds that R1/20((1+
ε)-approximate F0) = Ω(k log n).

3.4 The k-OR-f Problem In this section we gen-
eralize Theorem 3.2 to k-OR-f for an arbitrary 2-player
function f : {0, 1}n × {0, 1}n → {0, 1}. The k-OR-
f problem is defined in the coordinator model. The
i-th site has a vector xi ∈ {0, 1}n, and the coordina-
tor has a vector y ∈ {0, 1}n. The goal is to compute∨
i∈[k] f(xi, y). We have the following theorem.

Theorem 3.4. R1/20,pub(k-OR-f) = Ω(k·R1/3,pub(f)).

Remark 1. Note that in Theorem 3.4, we use the pub-
lic coin communication complexity, thus this theorem
cannot be directly applied to f = 2-NEQ for proving an
Ω(k log n) lower bound, since R1/3,pub(2-NEQ) = O(1)
(see, e.g., [21], Chapter 3.2). But this theorem is suffi-
cient for proving an Ω(nk) lower bound for k-OR-DISJ
(f = 2-DISJ, see its definition in Section 4.1), which
has applications to many basic statistic and graph prob-
lems [27], e.g., `∞, graph connectivity, bipartiteness,
etc.

Proof. (of Theorem 3.4) Let τ be an input distribution

for f such that D
1/3
τ (f) = R1/3,pub(f). By Yao’s

Lemma (Lemma 2.1) such a distribution always exists.
Let τ1, τ0 be the induced distributions of τ on YES
instances and NO instances, respectively. We can write
τ = λτ0 + (1− λ)τ1 for some 0 ≤ λ ≤ 1.

We prove by contradiction. Assume that
R1/20,pub(k-OR-f) = o(k · R1/3,pub(f)) = o(k ·
D

1/3
τ (f)), and let P ′ be such a protocol realizing

R1/20,pub(k-OR-f). Note that P ′ succeeds on every in-
put with probability at least 19/20, over its randomness.
We will show that we can get a deterministic protocol
P for f on input distribution τ with distributional com-

munication cost less than D
1/3
τ (f), resulting in a con-

tradiction.
First, note that if the input (X1, . . . , Xk, Y ) for k-

OR-f is distributed so that (Xi, Y ) ∼ τ0 for all i ∈ [k]
(that is, a distribution on the NO instances of k-OR-f ,

denoted by τ
(k)
0 ), then by a Markov inequality, there

must be a site Pi (i ∈ [k]) for which with probability

99/100 over the distribution τ
(k)
0 and the randomness of

P ′, the communication between Pi and the coordinator

is at most α·D1/3
τ (f) (for some arbitrarily small constant

α > 0). Let PI denote such a site.
The reduction consists of two steps, during which

we allow Alice and Bob to use randomness, which we
will fix at the end.

Input reduction. Given an input (A,B) ∼ τ , Alice
and Bob construct an input (X1, . . . , Xk, Y ) for k-OR-f .

1. Alice assigns the site PI the input XI = A.

2. Bob assigns inputs for the remaining k−1 sites and
the coordinator: He assigns the coordinator with
an input Y = B, and then independently samples
X1, . . . , XI−1, XI+1, . . . , Xk from the marginal dis-
tribution τ0|Y , and assigns them to the remaining
k − 1 sites.

Note that we have k-OR-f(X1, . . . , Xk, Y ) = f(A,B).
Constructing a protocol P for f using a protocol P ′

for k-OR-f . Alice and Bob run P ′ on (X1, . . . , Xk, Y )
for k-OR-f a total of cR times for a large enough con-
stant cR using independent private randomness each
time, where cR is chosen independently of α. Dur-
ing each run of P ′, Alice simulates PI , and Bob sim-
ulates the remaining k − 1 sites and the coordinator.
Note that Bob can simulate any communication be-
tween Pi (i 6= I) and the coordinator without any actual
communication, and the communication between Alice
and Bob is equal to the communication between PI and
the coordinator. In each of the cR runs, if the total com-

munication between Alice and Bob exceeds αD
1/3
τ (f),

then they early-terminate that run (otherwise we again
say the run normally-terminates). At the end, if more
than a 1/10 fraction of runs early-terminate, they out-
put YES, otherwise they output the majority of the out-
comes of the runs (without counting those that early-
terminate).

Now we show that P succeeds on input (A,B) ∼ τ
for f with error probability at most 1/12.

First, it succeeds on the distribution τ0 (on NO
instances) with error probability at most 1/12. This
is because in each run, P ′ normally-terminates with

probability 99/100 over the input distribution τ
(k)
0 and

the randomness of the protocol, by our choice of PI .
Moreover, since P ′ is correct with error probability
at most 1/20 on each input, by a union bound, with
error probability at most 1/20 + 1/100 < 1/12 over

the input distribution τ
(k)
0 and the randomness of

P ′, P ′ normally-terminates and outputs the correct
answer. Running the protocol cR times and then
taking the majority of the outcomes ,without counting
those that early-terminate, will not decrease the success
probability.

We next consider the distribution τ1 (on YES
instances). First, P ′ succeeds on every input with
probability at least 19/20 over its randomness, and
therefore this holds for every input created for P ′ using
(A,B) in the support of τ1 to assign to PI and the
coordinator. The only case we have to take care of is
the early-termination of a run. Fix an input created for
P ′ using (A,B) in the support of τ1. Suppose that P ′
early-terminates with probability at most 1/5 over the



randomness of the protocol. Then by a union bound,
with probability (1 − 1/20) − 1/5 > 2/3, P ′ outputs a
correct answer on each run. We can run the protocol cR
times (for a large enough constant cR) and then take the
majority of the outcomes, without counting those that
early-terminate, to reduce the error probability to 1/12.
Otherwise, if P ′ early-terminates with probability more
than 1/5 over the randomness of the protocol, then after
running P ′ a total of cR times, for a sufficiently large
constant cR, by a Chernoff bound, with error probability
at most 1/100 < 1/12, at least a 1/10 fraction of the
runs will early-terminate. Alice and Bob can detect such
an event and output YES.

Since τ is a linear combination of τ0 and τ1, P suc-
ceeds on input (A,B) ∼ τ with error probability at
most 1/12. The communication cost of the protocol

P is at most cR · α · D1/3
τ (f) < D

1/3
τ (f)/4 (by choos-

ing α = 1/(8cR), which we can do since cR is chosen
independently of α). Finally, we use two Markov in-
equalities to fix all the randomness used in the reduc-
tion, such that the resulting deterministic protocol P
succeeds with error probability 4 · 1/12 = 1/3 on input
distribution ν, and its communication cost is less than

4 ·D1/3
τ (f)/4 = D

1/3
τ (f). We have reached a contradic-

tion.

4 An Ω(k ·min{n, 1/ε2}) Lower Bound

In this section we prove an Ω(k/ε2) lower bound for
F0. We will focus on Ω(1) ≤ k ≤ O(1/ε2), since an
Ω(k/(ε2 log(ε2k))) lower bound for k ≥ Ω(1/ε2) was
already shown in [25]. In Section 4.5 we note that in
fact, we can also achieve Ω(k/ε2) for the case when
k ≥ Ω(1/ε2), by a better embedding argument.

For the case when Ω(1) ≤ k ≤ O(1/ε2), we start
with a problem called 2-SUM, whose expected distribu-
tional communication complexity can be obtained by a
reduction from another problem called 2-BTX (stands
for k-BLOCK-THRESH-XOR). Next, we use a reduc-
tion from 2-SUM to prove a distributional communi-
cation complexity lower bound for a problem called k-
SUM. Finally, we prove a lower bound for F0 by a re-
duction from k-SUM.

We will set the universe size in this proof to be
n = Θ(1/ε2), and prove an Ω(k/ε2) lower bound. If
n = ω(1/ε2), then we can simply use a subset of the
universe of size Θ(1/ε2). If n = o(1/ε2), then we can still
use the same proof with an approximation parameter
ε′ = 1/

√
n > ε (that is, we can prove the lower bound for

an even larger error), and obtain an Ω(k/(ε′)2) = Ω(kn)
lower bound.

We fix β , 1/4 in this section.

4.1 The 2-DISJ Problem In the 2-DISJ problem,
Alice has an input X = (X1, . . . , XL) ∈ {0, 1}L, and
Bob has an input Y = (Y1, . . . , YL) ∈ {0, 1}L. The
output 2-DISJ(X,Y ) = 0 if

∑
`∈[L]X` ∧ Y` = 0, and

2-DISJ(X,Y ) = 1 if
∑
`∈[L]X` ∧ Y` ≥ 1. We define an

input distribution µ for 2-DISJ:

µ : For each ` ∈ [L], choose D` ∈ {0, 1} uniformly
at random. If D` = 0, then set X` = 0, and
choose Y` ∈ {0, 1} uniformly at random. Otherwise
if D` = 1, then set Y` = 0, and choose X` ∈ {0, 1}
uniformly at random. The choices for different
` ∈ [L] are independent. Finally, pick a special
coordinate M ∈ [L] uniformly at random, and reset
(XM , YM ) ∈ {0, 1}2 uniformly at random.

Note that when (X,Y ) ∼ µ, we have
Pr[2-DISJ(X,Y ) = 1] = 1/4 = β.

4.2 The 2-SUM Problem In the 2-SUM problem,
Alice and Bob have inputs X = (X1, . . . , Xt) and
Y = (Y 1, . . . , Y t), respectively. They want to approx-
imate 2-SUM(X,Y ) =

∑
j∈[t] 2-DISJ(Xj , Y j) up to an

additive error of
√
βt. We define an input distribution

ν for 2-SUM.

ν: For each j ∈ [t], we independently pick (Xj , Y j) ∼
µ.

In [25], Section 4.4, a similar problem called k-BTX
problem was considered. When k = 2, 2-BTX can
be stated as follows: There are two parties Alice and
Bob. Alice has an input X = (X1, . . . , Xt) and Bob
has an input Y = (Y 1, . . . , Y t). Independently for each
j, (Xj , Y j) ∼ µ. Thus (X,Y ) ∼ ν. Let M j be the index
of the special coordinate when sampling (Xj , Y j) from
µ. The problem 2-BTX is:

2-BTX(X,Y ) =


1, if

∣∣∣∑j∈[t]X
j

Mj ⊕ Y jMj − t
2

∣∣∣ ≥ 4
√
βt,

0, if
∣∣∣∑j∈[t]X

j

Mj ⊕ Y jMj − t
2

∣∣∣ ≤ 2
√
βt,

∗, otherwise,

where ∗ means that the output can be arbitrary.
The following theorem for 2-BTX is an easy conse-

quence of Corollary 1 in [25]. 2

Theorem 4.1. EDδ1ν (2-BTX) = Ω(tL), for a suffi-
ciently small constant δ1.

2Corollary 1 in [25] states that any randomized protocol that

computes 2-BTX on input distribution ν with error probability δ
for a sufficiently small constant δ has communication complexity

Ω(tL). We can replace the randomized protocol with any
deterministic protocol. We can also terminate the deterministic
protocol when the communication exceeds C ·EDδν(2-BTX) for an

arbitrarily large constant C, which only introduces an additional

(arbitrarily small) error of 1/C. Thus if EDδν(2-BTX) = o(tL),

then we also have D
δ+1/C
ν (2-BTX) = o(tL).



The following theorem can be shown by a simple
reduction from 2-BTX to 2-SUM.

Theorem 4.2. EDδ2ν (2-SUM) = Ω(tL), for a suffi-
ciently small constant δ2.

Proof. To show the desired communication cost, we just
need to show that if we have a protocol P for 2-SUM on
input distribution ν with error probability δ2 = δ1/2,
then by running P twice we can solve 2-BTX on input
distribution ν with error probability δ1.

To see that this can be done, Alice and Bob first
run protocol P on (X,Y ), obtaining a value W1, which
approximates

∑
j∈[t] AND(Xj

Mj , Y
j
Mj ) up to an additive

error
√
βt. Next, Alice and Bob flip all bits of X and

Y , obtaining X̄, Ȳ , respectively, and then they run P
on (X̄, Ȳ ), obtaining a value W2, which approximates∑
j∈[t] AND(X̄j

Mj , Ȳ
j
Mj ) up to an additive error

√
βt.

Finally, t− (W1 +W2) approximates
∑
j∈[t]X

j
Mj ⊕Y jMj

up to an additive error
√
βt+
√
βt = 2

√
βt, and therefore

solves 2-BTX.

4.3 The k-SUM Problem The k-SUM problem is
defined in the coordinator model. Each site Pi (i ∈
[k]) has an input Xi, and the coordinator has an
input Y . The k + 1 parties want to approximate∑
i∈[k] 2-SUM(Xi, Y ) up to an additive error

√
βkt. We

define an input distribution ψ for k-SUM.

ψ: We first choose (X1, Y ) ∼ ν, and then indepen-
dently choose X2, . . . , Xk ∼ ν|Y (the distribution
of A conditioned on B = Y , when (A,B) ∼ ν).

We show that any protocol that computes k-SUM well
must effectively compute many of the 2-SUM(Xi, Y )
values well, and then prove a lower bound for k-SUM
using a reduction from 2-SUM. If not otherwise speci-
fied, probabilities, expectations and variances below are
taken over the input distribution ψ to k-SUM.

Let Xi = (X1
i , . . . , X

t
i ) and Y = (Y 1, . . . , Y t).

By definition of distribution ν, we have (Xj
i , Y

j) ∼
µ for each pair (i, j), and these are independent for
different values of j. Let Zji = 2-DISJ(Xj

i , Y
j) ∼

Bernoulli(β), and let Zi =
∑
j∈[t] Z

j
i . We have the

following observation, based on the rectangle-property
of communication, whose proof can be found in [25]: 3

Observation 1. Conditioned on Π, Z1, . . . , Zk are in-
dependent.

The following definition characterizes the usefulness
of a protocol transcript Π = π.

3In [25], Zi’s are bits, but the proof also works for general
random variables Zi, as long as they are independent.

Definition 1. We say a transcript π is weak if∑
i∈[k] Var(Zi | Π = π) ≥ βkt/c0 where c0 = 200/δ2

2,
and strong otherwise.

Lemma 4.1. Let Π be the transcript of any determinis-
tic protocol that computes k-SUM on input distribution
ψ with error probability δ3 for a sufficiently small con-
stant δ3. Then Pr[Π is strong] ≥ 1− δ2/10.

The proof in the high level is similar to Lemma 3 of
[25]. The differences are (1) Z1, . . . , Zk are integers
rather than bits, and (2) we also have a different
setting of parameters. In particular, we cannot use
the anti-concentration result (Fact 1 in [25]) directly.
We instead use the Berry-Esseen theorem together with
some additional conditions.

Let κ =
√
cκ log k for a sufficiently large constant

cκ. Let ξi be the indicator variable of the event that
|Zi − βt| ≤ κ

√
t. Let ξ = ξ1 ∧ ξ2 ∧ . . .∧ ξk. We have the

following simple claim.

Claim 1. Pr[ξ = 1] ≥ 0.99.

Proof. For each i ∈ [k], note that Zi =
∑
j∈[t] Z

j
i and

Zji ∼ Bernoulli(β). We apply the Chernoff-Hoeffding

bound for each i ∈ [k] and get Pr[ξi = 1] ≥ 1−e−κ2/3 ≥
1− e−cκ/3·log k. The claim follows by a union bound on
ξi (i ∈ [k]), by choosing a large enough constant cκ.

We need two more definitions and an auxiliary
lemma.

Definition 2. We say a transcript π is rare+ if Π = π,
E[Zi | Π = π] ≥ 4βt and rare− if E[Zi | Π = π] ≤ βt/4.
In both cases we say π is rare. Otherwise we say it is
normal.

Definition 3. We say Z = {Z1, Z2, . . . , Zk} is a
joker+ if

∑
i∈[k] Zi ≥ 2βtk, and a joker− if

∑
i∈[k] Zi ≤

βtk/2. In both cases we say Z is a joker.

The following lemma is similar to Lemma 2 in [25].
We include a proof for completeness.

Lemma 4.2. Let Π be the transcript of any determinis-
tic protocol that computes k-SUM on input distribution
ψ with error probability δ3 for a sufficiently small con-
stant δ3, then Pr[Π is normal] ≥ 1− δ2/20.

Proof. First,
∑
i∈[k] Zi =

∑
i∈[k]

∑
j∈[t] Z

j
i , and Zji ∼

Bernoulli(β) for all i ∈ [k], j ∈ [t]. Applying a Chernoff
bound on random variables Zji ’s, we have

Pr[Z is a joker+] = Pr

∑
i∈[k]

Zi ≥ 2βtk

 ≤ e−Ω(tk).



We next use Observation 1, and apply another Chernoff
bound on Zi | Π = π. Note that (Zi | Π = π) ∈ [0, t] for

all i ∈ [k]. Let Z̄ = E
[∑

i∈[k] Zi

∣∣∣ Π = π
]
.

Pr[Z is a joker+ | Π is rare+]

≥
∑
π

Pr
[
Π = π | Π is rare+

]
×Pr

[
Z is a joker+ | Π = π,Π is rare+

]
=

∑
π

Pr
[
Π = π | Π is rare+

]
×Pr

∑
i∈[k]

Zi ≥ 2βtk

∣∣∣∣∣∣ Z̄ ≥ 4βtk,Π = π


≥

∑
π

Pr
[
Π = π | Π is rare+

] (
1− e−Ω(k)

)
=

(
1− e−Ω(k)

)
.

Finally by Bayes’ theorem, we have

Pr[Π is rare+]

=
Pr[Z is a joker+] ·Pr[Π is rare+ | Z is a joker+]

Pr[Z is a joker+ | Π is rare+]

≤ e−Ω(tk)

1− e−Ω(k)
≤ e−Ω(tk).

Similarly, we can also show that Pr[Π is rare−] ≤
e−Ω(tk). Therefore Pr[Π is rare] ≤ e−Ω(tk) ≤ δ2/20.

Now we prove Lemma 4.1.

Proof. Let Z̄ = E
[∑

i∈[k] Zi

∣∣∣ Π
]
. We first show there

exists a constant δ` = δ`(c`) such that
(4.1)

Pr

∑
i∈[k]

Zi ≤ Z̄ + 2
√
βtk

∣∣∣∣∣∣ Π is normal & weak

 ≥ δ`,
(4.2)

Pr

∑
i∈[k]

Zi ≥ Z̄ + 4
√
βtk

∣∣∣∣∣∣ Π is normal & weak

 ≥ δ`.
The first inequality is a simple application of Chernoff-

Hoeffding. Recall E
[∑

i∈[k] Zi

∣∣∣ Π is normal
]
≤ 4βtk.

Using Observation 1, we have

Pr

∑
i∈[k]

Zi ≤ Z̄ + 2
√
βtk

∣∣∣∣∣∣ Π is normal


≥ 1−Pr

∑
i∈[k]

Zi ≥ Z̄ + 2
√
βtk

∣∣∣∣∣∣ Π is normal


≥ 1− e−

8
√
βtk2

Z̄ ≥ 1− e−2

≥ δ`. (for a sufficiently small constant δ`)

Now we prove the second inequality. We will need
the following version of the Berry-Esseen theorem.

Theorem 4.3. (Berry-Esseen) Let X1, X2, . . . , Xk

be independent random variables with E[Xi] =

0,E[X2
i ] = σ2

i , and E[|Xi|3] = ρi < ∞. Also, let
Sk =

∑
i∈[k]Xi/

√∑
i σ

2
i be the normalized sum. De-

note Fk the cumulative distribution function of Sk, and
Φ the cumulative distribution function of the standard
normal distribution. Then there exists an absolute con-
stant c such that

sup
x∈R
|Fk(x)− Φ(x)| ≤ c ·

∑
i∈[k]

ρi

/∑
i∈[k]

σ2
i

3/2

.

In our application, we define Xi = (Zi|Π, ξ =
1)−E[Zi|Π, ξ = 1]. Thus E[Xi] = 0, and for all i ∈ [k],

(4.3) ρi ≤ |Xi|3 ≤ (2κ
√
t)3,

by the definition of ξ.
Let σ2 =

∑
i∈[k] σ

2
i = Var[

∑
i∈[k]Xi] =

Var
[∑

i∈[k] Zi | Π, ξ = 1
]
. For a weak Π, we have

Var

∑
i∈[k]

Zi | Π is weak


=

∑
i∈[k]

Var [Zi | Π is weak] (by Observation 1)

≥ βtk/c0. (by definition of a weak Π)

We next bound Var
[∑

i∈[k] Zi | Π is weak, ξ = 1
]

using Var
[∑

i∈[k] Zi | Π is weak
]
. We first define a

few events. Let η be the minimum value for which
Zi ∈ [βt − η ·

√
t, βt + η ·

√
t] for all i ∈ [k]. By

Chernoff-Hoeffding and the union bound, this holds
with probability at least 1 − k · e−η2/3. Define Fy to
be the event that η ∈ [y, 2y]. We have



Var

∑
i∈[k]

Zi | Π is weak

(4.4)

= E

∑
i∈[k]

Zi − Z̄

2

| Π is weak, ξ = 1

 ·Pr[ξ = 1]

+

∞∑
j=log κ

E

∑
i∈[k]

Zi − Z̄

2

| Π is weak, ξ = 0, F2j


·Pr[F2j ](4.5)

≤ E

∑
i∈[k]

Zi − Z̄

2

| Π is weak, ξ = 1


+

∞∑
j=log κ

(k · 16 · 4j · t) · (k · e−4j/3)(4.6)

≤ Var

∑
i∈[k]

Zi | Π is weak, ξ = 1


+t/poly(k),(4.7)

where

1. (4.4)→ (4.5) is due to the law of total expectation.

2. (4.5) → (4.6) since (1) F2j holds with probability

at most k · e−4j/3 by a Chernoff bound and a union
bound over all i ∈ [k]; (2) conditioned on F2j ,∑
i∈[k] Zi−Z̄ is bounded by the maximum deviation

of
∑
i∈[k] Zi, which is at most 2 · 2 · 2j ·

√
t, where

one of the 2’s comes from the definition of Fy, that
is, η ≤ 2y.

3. (4.6) → (4.7) holds if we choose constant cκ (recall
that κ =

√
cκ log k) large enough. This is because

∞∑
j=log κ

(k · 16 · 4j · t) · (k · e−4j/3)

≤
∞∑

j=log κ

t · 16k2 · e−4j/4

≤ 2 · t · 16k2 · e−2log κ2
/4

≤ 2 · t · 16k2 · e−cκ/4·log k ≤ t/poly(k).

We therefore have

σ2 =
∑
i∈[k]

σ2
i

= Var

∑
i∈[k]

Zi | Π is weak, ξ = 1


≥ Var

∑
i∈[k]

Zi | Π is weak

− t/poly(k)

≥ βtk/(2c0).(4.8)

Conditioned on ξ = 1 and weak Π, by Theorem 4.3,
using (4.3) and (4.8) we get

sup
x∈R
|Fk(x)− Φ(x)| ≤ c ·

∑
i∈[k]

ρi

/∑
i∈[k]

σ2
i

3/2

≤ c ·
∑
i∈[k](2κ

√
t)3

(βtk/(2c0))3/2

= 8c/(β/(2c0))3/2 · κ3/
√
k

≤ cB ,(4.9)

for an arbitrarily small constant cB , given k ≥ c′Bκ
6 =

c′B · c3κ log3 k for a large enough constant c′B .
Using (4.9), and the fact that for a standard normal

random variable x, Pr[x ≥ cσ] ≥ cN (cσ) for any
constant cσ, where cN (cσ) is a constant depending on
cσ, we have

Pr

∑
i∈[k]

Xi ≥ 4
√
c0 · σ | Π is weak

 ≥ δ′`,

for a sufficiently small constant δ′`. Consequently,

Pr

∑
i∈[k]

Zi ≥ Z̄ + 4
√
βtk | Π is weak


≥ Pr

∑
i∈[k]

Zi ≥ Z̄ + 4
√
βtk | Π is weak, ξ = 1


×Pr[ξ = 1]

≥ 0.99δ′` ≥ δ`,

for a sufficiently small constant δ`. In the last equality
we have used Claim 1.

By (4.1) and (4.2), it is easy to see that given that Π
is normal, it cannot be weak with probability more than
δ2/20, since otherwise by Lemma 4.2 and the analysis
above, the error probability of the protocol will be at
least (1− δ2/20) · δ2/20 · δ` > δ, for a sufficiently small



constant error δ, violating the success guarantee of the
lemma. Therefore,

Pr[Π is normal]

≥ Pr[Π is normal and strong]

≥ Pr[Π is normal] Pr[Π is strong | Π is normal]

≥ (1− δ2/20) · (1− δ2/20)

≥ (1− δ2/10).

Now we perform a reduction from 2-SUM to k-SUM.

Lemma 4.3. Suppose there exists a deterministic pro-
tocol P ′ which computes k-SUM on input distribution
ψ with error probability δ3, for a sufficiently small con-
stant δ3, and communication o(C). Then there exists
a deterministic protocol P that computes 2-SUM on in-
put distribution ν with error probability δ2 and expected
communication o(C/k).

Proof. Given protocol P ′, Alice and Bob can solve 2-
SUM on input (A,B) ∼ ν as follows. They first
construct an input (X1, . . . , Xk, Y ) ∼ ψ for k-SUM
using (A,B). We call this step input reduction. They
then run protocol P ′ on (X1, . . . , Xk, Y ). Finally, they
use the resulting protocol transcript to solve 2-SUM on
input (A,B). In the input reduction, for convenience,
we allow Alice and Bob to use both public and private
randomness. We will fix all the randomness at the end
of the argument.

Input reduction.

1. Alice and Bob pick a random player PI (I ∈ [k])
using public randomness.

2. Alice simulates PI . She assigns PI the input XI =
A.

3. Bob simulates and constructs inputs for the
remaining (k − 1) players and the coordina-
tor. He assigns the coordinator the input
Y = B. Next, he uses private randomness
to generate X1, . . . , XI−1, XI+1, . . . , Xk indepen-
dently according to ν|Y , and assigns them to
P1, . . . , PI−1, PI+1, . . . , Pk, respectively.

The resulting (X1, . . . , Xk, Y ) is distributed according
to ψ.

Next, Alice and Bob run P ′ on (X1, . . . , Xk, Y ).
By Lemma 4.1, with probability 1 − δ2/10, we obtain
a strong Π = π. For a strong Π = π, by a Markov
inequality, for at least a (1 − δ2/10) fraction of i ∈ [k],
it holds that Var[Zi | Π = π] ≤ βt/c1, where c1 =
(δ2/10) · c0 = 20/δ2. Let Gπ be the collection of such
i. For a strong Π = π, and an i ∈ Gπ, by Chebyshev’s
inequality, we have

Pr
[
|Zi −E[Zi | Π = π]| ≤

√
c1 ·

√
βt/c1

∣∣∣ Π = π
]
≥ 1−1/c1.

Since I is chosen randomly from [k], by a union bound,
with probability 1−δ2/10−δ2/10−1/c1 = 1−δ2/4 over
the input distribution ν and the randomness used in the
input reduction, we get a strong Π = π and I ∈ Gπ

is such that |ZI −E[Zi | Π = π]| ≤
√
βt. That is, we

approximate ZI = 2-SUM(A,B) up to an additive error√
βt.

We next analyze the communication cost. Since
I is chosen randomly from [k], and conditioned on Y ,
Xi (i ∈ [k]) are independent and identically distributed,
the expected communication between player PI and the
coordinator (or equivalently, the expected communica-
tion between Alice and Bob in the simulation) is equal
to the total communication among the k players and the
coordinator divided by a factor of k, which is o(C/k),
where the expectation is taken over the input distribu-
tion ν and the choice of I.

Finally we use two Markov inequalities to fix all the
randomness used in the reduction, such that the result-
ing deterministic protocol P succeeds with probability
1 − δ2 on input distribution ν, and the expected com-
munication cost is o(C/(4k)) = o(C/k).

Combining Lemma 4.3 and Theorem 4.2, we have
the following theorem for k-SUM.

Theorem 4.4. Dδ3
ψ (k-SUM) = Ω(ktL), for a suffi-

ciently small constant δ3.

4.4 A Lower Bound for F0 when Ω(1) ≤ k ≤
O(1/ε2) In this section we set δ = δ3/2, cL = 1000/δ,
L = cLk, γ = 1/(12cL), and t = 1/(ε2k). We define an
input distribution ζ for the F0 problem.

ζ: We choose (X1, . . . , Xk, Y ) ∼ ψ, and write Xi =
(X1

i , . . . , X
t
i ) where Xj

i ∈ {0, 1}L. Next, for each
i ∈ [k], j ∈ [t] and ` ∈ [L], we assign an item
(j − 1)L+ ` to site Pi if Xj

i,` = 1.

Note that the size of the universe of items is n = tL =
1/(ε2k) · cLk = Θ(1/ε2).

Theorem 4.5. Suppose that Ω(1) ≤ k ≤ O(1/ε2).
Then R1/3((1 + ε)-approximate F0) = Ω(k/ε2).

We first show a reduction from k-SUM to F0.

Lemma 4.4. Any deterministic protocol P which com-
putes a (1 + γε)-approximation to F0, for a sufficiently
small constant γ > 0, on the above input distribution
ζ with error probability δ and communication C can be
used to compute k-SUM on input distribution ν with er-
ror probability 2δ(= δ3) and communication C.

Let B ∼ ζ. Let M j
i (i ∈ [k], j ∈ [t]) be the index

of the special coordinate when sampling (Xj
i , Y

j) from



µ. We prove the lemma by establishing a relationship
between F0(B) and

k-SUM(X1, . . . , Xk, Y )

=
∑
j∈[t]

∑
i∈[k]

2-DISJ(Xj
i , Y

j)


=

∑
j∈[t]

∑
i∈[k]

AND(Xj

i,Mj
i

, Y j
i,Mj

i

)

 .

Let N j = {i | AND(Xj

i,Mj
i

, Y j
i,Mj

i

) = 1}. Let

U j =
∣∣N j

∣∣, and let U =
∑
j∈[t] U

j . Thus U =

k-SUM(X1, . . . , Xk, Y ). Let Rj =
∣∣∣{M j

i | i ∈ N j}
∣∣∣, and

let R =
∑
j∈[t]R

j . Let Qj =
∣∣∣{∪i∈[k]X

j
i

∖
Y j ]}

∣∣∣, and let

Q =
∑
j∈[t]Q

j . For convenience, in the remainder of

the paper when we write E[Q] and E[R], we actually
mean E[Q | Y = y] and E[R | Y = y] given a fixed
Y = y (the input of the coordinator).

We start by proving a technical lemma. Roughly
speaking, it shows that F0(B) is tightly concentrated
around E[Q] + E[R], and E[R] has a fixed relationship
with U = k-SUM(X1, . . . , Xk, Y ).

Lemma 4.5. With probability 1 − 2δ, it holds that
F0(B) = E[Q]+E[R]+κ1 = E[Q]+(1−λ)U+κ1, where
|κ1| ≤ 1/(4ε), and λ is a fixed constant in [0, 5/(4cL)].

We prove this lemma by two claims. Please see
the paragraph below Lemma 4.4 for the definitions of
relevant notations (Q,R,U , etc.), and the values of
parameters (cL, L, etc.) at the beginning of Section 4.4.

Claim 2. With probability 1 − e−Ω(k), it holds that
F0(B) = E[Q] +R+ κ0, where |κ0| ≤ 1/(8ε).

Proof. We first consider j = 1. Recall in the input
distribution ψ, we have (X1

i , Y
1) ∼ µ for all i ∈ [k]. Let

D1
i,` (i ∈ [k], ` ∈ [L]) be the random variable which is

chosen from {0, 1} uniformly at random when sampling
(X1

i , Y
1) from µ: If D1

i,` = 0, then X1
i,` = 0 and Y 1

` is

chosen from {0, 1} uniformly at random; and if D1
i,` = 1,

then Y 1
` = 0 and X1

i,` is chosen from {0, 1} uniformly at
random.

For any i ∈ [k] and ` ∈ [L], we consider the

probability that X1
i,` = 1 conditioned on Y 1

` = 0.

Pr[X1
i,` = 1 | Y 1

` = 0]

= Pr[D1
i,` = 0] ·Pr[X1

i,` = 1 | Y 1
` = 0, D1

i,` = 0]

+Pr[D1
i,` = 1] ·Pr[X1

i,` = 1 | Y 1
` = 0, D1

i,` = 1]

≥ 1/2 ·Pr[X1
i,` = 1 | Y 1

` = 0, D1
i,` = 1]

≥ 1/2 ·Pr[` 6= M1
i ] ·Pr[X1

i,` = 1 | D1
i,` = 1, ` 6= M1

i ]

−1/2 ·Pr[` = M1
i ]

= 1/4 · (1− 1/L)− 1/(2L)

≥ 1/5.

By a Chernoff bound, for an ` such that Y 1
` = 0,∑

i∈[k]X
1
i,` ≥ 1 with probability 1− e−Ω(k).

Similarly, we can show that, for each j, for each
` ∈ [L] such that Y j` = 0, it holds that

∑
i∈[k]X

j
i,` ≥ 1

with probability at least 1− e−Ω(k). Therefore, we have

Var[Q] ≤
∑
j∈[t]

∑
`∈[L]

(1− e−Ω(k)) · e−Ω(k) ≤ cLkte−Ω(k).

By Chebyshev’s inequality, it holds that

Pr[|Q−E[Q]| >
√
kt/8]

≤ Var[Q]

kt/64
<
cLkte

−Ω(k)

kt/64
≤ e−Ω(k).

Note that items corresponding to
⋃
i∈[k]X

j
i are

different from those corresponding to
⋃
i∈[k]X

j′

i (j′ 6=
j), we thus have

F0(B) =
∑
j∈[t]

F0(Xj
1 , . . . , X

j
k)

=
∑
j∈[t]

(∣∣∣{∪i∈[k]X
j
i

∖
Y j ]}

∣∣∣+
∣∣∣{∪i∈[k]X

j
i

⋂
Y j ]}

∣∣∣)
= Q+R

= (E[Q] + κ0) +R,

where |κ0| ≤
√
kt/8 = 1/(8ε) with probability 1 −

e−Ω(k).

We next analyze the value R.

Claim 3. With probability 1 − δ/2, we have
|R−E[R]| ≤

√
βkt/4, where E[R] = (1 − λ)U

for a fixed constant 0 ≤ λ ≤ 5/(4cL).

Proof. For a vector V ∈ {0, 1}L, let wt1(V ) = {` | V` =
1}.

We first consider j = 1. For a fixed Y 1 = y, for each
i ∈ [k], we consider the probability Pr[M1

i = ` | Y 1 = y]



for an ` ∈ [L]. By Bayes’ theorem,

Pr[M1
i = ` | Y 1 = y]

=
Pr[Y 1 = y | M1

i = `] ·Pr[M1
i = `]

Pr[Y 1 = y]
.

Let s` =
∣∣{`′ | Y 1

`′ = 1, `′ 6= `}
∣∣. Then

Pr[Y 1 = y | M1
i = `] =

1

2
·
(

1

4

)s`
·
(

3

4

)L−1−s`
.

Now we can write

Pr[M1
i = ` | Y 1 = y]

=
1
2 ·
(

1
4

)s` · ( 3
4

)L−1−s` · 1
L∑

`′∈[L]

(
1
L ·

1
2 ·
(

1
4

)s`′ · ( 3
4

)L−1−s`′
) .(4.10)

Let s` = s if y` = 1. Then s` = s + 1 if y` = 0.
Thus we can write (4.10) as
(4.11)

Pr[M1
i = ` | y` = 1] =

1

wt1(y) + (L− wt1(y))/3
,

which is a fixed value for a fixed Y 1 = y.
We can view the value of R1 as a result of a bin-ball

game: we view {M1
i | i ∈ N1} as the balls and {` | Y 1

` =
1} as the bins. We throw balls to bins uniformly at
random, and the result of the game is the number of
non-empty bins at the end. We can think balls are
thrown to bins uniformly at random, since given a fixed
Y 1 = y, Pr[M1

i = ` | y` = 1] is fixed for all i ∈ [k] by
Equation (4.11), and Pr[` ∈ N1 |M1

i = `, y` = 1] = 1/2
for all i ∈ [k] by our choice of the input distribution.

Let U1 =
∣∣N1

∣∣ be the number of balls, and V 1 =
wt1(Y 1) be the number of bins. By Chernoff bounds,
with probability 1−e−Ω(L)−e−Ω(k) = 1−e−Ω(k) (recall
that we have set L = cLk for a constant cL), we have
V 1 ≥ L/4 − 0.01L ≥ L/5 and U1 ≤ 2βk = k/2 (recall
that we have set β = 1/4). By Fact 1 and Lemma 1 in
[20], we have

1. E[R1] = V 1(1−(1−1/V 1)U
1

) = (1−λ)U1 for some
fixed constant 0 ≤ λ ≤ U1/(2V 1) ≤ 5/(4cL).

2. Var[R1] < 4(U1)2/V 1 · (1− e−Ω(k)) + k2 · e−Ω(k) ≤
5k/cL + k2 · e−Ω(k) ≤ 6k/cL.

By the same argument we can show that E[Rj ] =
(1 − λ)U j and Var[Rj ] < 6k/cL for all j ∈ [t].
Using the fact that R1, . . . , Rt are independent by
our choice of the input distribution, we get E[R] =∑
j∈[t] E[Rj ] = (1 − λ)

∑
j∈[t] U

j = (1 − λ)U , and

Var[R] =
∑
j∈[t] Var[Rj ] < 6kt/cL. By Chebyshev’s

inequality, we have (recall we set cL = 1000/δ)

Pr[|R−E[R]| >
√
βkt/4] ≤ Var[R]

βkt/16
<

6kt/cL
kt/64

≤ δ/2.

Therefore with probability 1− δ/2, the claim holds.

By Claim 2, Claim 3, and the fact that P computes
F0 correctly with error probability δ, we have that with
probability 1− e−Ω(k) − δ/2− δ ≥ 1− 2δ,

F0(B) = E[Q] + (1− λ)U + κ1,

where |κ1| ≤
√
βkt/4 + |κ0| ≤ 1/(8ε) + 1/(8ε) = 1/(4ε).

Proof. (of Lemma 4.4) Given a W which is a (1 + γε)-
approximation to F0(B), by Lemma 4.5, with probabil-
ity 1 − 2δ it holds that W = E[Q] + (1 − λ)U + κ2,
where

|κ2| ≤ γε · F0(B) + |κ1| ≤ γεtL+ |κ1| ≤ 1/(3ε)

(for a small enough constant γ). Now the coordinator

who holds Y can approximate U using W : U = W−E[Q]
1−λ .

The additive error of this approximation is at most
|κ2|/(1 − λ) < 1/(2ε) =

√
βkt. Thus P can be used

to compute k-SUM correctly with probability at least
1− 2δ.

Finally, Theorem 4.5 follows immediately from
Lemma 4.4, Theorem 4.4, Lemma 2.1, and the fact that
R1/3(f) = Θ(Rδ(f)) for any constant δ ≤ 1/3. By our
choices of t and L, Ω(ktL) = Ω(k/ε2).

4.5 An Improved Lower Bound for F0 when
k ≥ Ω(1/ε2) As mentioned, in [25] a lower bound of
Ω(k/(ε2 log(ε2k))) was shown for F0 when k ≥ Ω(1/ε2).
Here we make an observation that we actually can
improve it to Ω(k/ε2), by a better embedding argument.

In [25], a problem called k-APPROX-SUM is de-
fined in the coordinator model. This problem is sim-
ilar to a degenerate case (when t = 1) of the k-SUM
problem defined in Section 4.3, but with a different in-
put distribution. In k-APPROX-SUM, the coordina-
tor has input Y and each site Pi has input Xi. We
choose (X1, Y ) ∼ τη, and then independently choose
X2, . . . , Xk ∼ τη|Y . Here τη is an input distribution for
2-DISJ, defined as follows.

τη: Let n = Θ(1/ε2). Let ` = (n + 1)/4. With
probability η, x and y are random subsets of [n]
such that |x| = |y| = ` and |x ∩ y| = 1. And with
probability 1−η, x and y are random subsets of [n]
such that |x| = |y| = ` and x ∩ y = ∅.

Let ðη be this input distribution for k-APPROX-SUM.
Let Zi = 2-DISJ(Xi, Y ). The goal of k-APPROX-SUM
is to approximate

∑
i∈[k] Zi up to an additive error of√

ηk.
The following reduction from 2-DISJ to k-

APPROX-SUM was established in [25]. The lower



bound for F0 follows by another reduction from k-
APPROX-SUM (Lemma 8 in [25]), and a lower bound

for 2-DISJ: for any η ≤ 1/4, EDη/100
τη (2-DISJ) = Ω(n).

We refer readers to [25] for details.
For convenience, we set ρ , 1/(ε2k) in the remain-

ing of the section.

Lemma 4.6. ([25], Lemma 9) 4 Suppose that there ex-
ists a deterministic protocol P ′ which computes k-
APPROX-SUM on input distribution ðρ with error
probability δ (for a sufficiently small constant δ) and
communication C, then there exists a deterministic pro-
tocol P that computes 2-DISJ on input distribution τρ
with error probability ρ/100 and expected communica-
tion O(log(ε2k) · C/k), where the expectation is taken
over the input distribution τρ.

In this paper we improve this lemma to the follow-
ing.

Lemma 4.7. Suppose that there exists a deterministic
protocol P ′ which computes k-APPROX-SUM on input
distribution ðρ with error probability δ (for a sufficiently
small constant δ) and communication C, then there
exists a deterministic protocol P that computes 2-DISJ
on input distribution τ1/4 with error probability 1/400
and communication O(C/k).

Note that we have shaved a log(ε2k) factor in
the communication in the reduction. This is how
we manage to improve the lower bound of F0 when
k ≥ Ω(1/ε2) by a log(ε2k) factor. The improvement
comes from the observation that we do not need a
totally symmetric distribution of X1, . . . , Xk. We have
also replaced “expected communication” by “(worst-
case) communication” in the last sentence of the lemma,
which only helps since the worst-case communication
cost is always at least the expected communication cost.

For completeness, in the proof of Lemma 4.7 we
first repeat part of the proof for Lemma 4.6 in [25], and
then address the modifications. We need the following
definition and theorem from [25] for k-APPROX-SUM.
Let δ1 > 0 be a sufficiently small constant. In k-
APPROX-SUM, for a fixed transcript Π = π, let qπi =
Pr[Zi = 1 | Π = π].

Definition 4. ([25]) Given an input (x1, . . . , xk, y)
for k-APPROX-SUM and a transcript Π = π, let
zi = 2-DISJ(xi, y) and z = {z1, . . . , zk}. Define Π(z) ,
Π(x1, . . . , xk, y). Let c0 be a large enough constant. We
say π is good for z if Π(z) = π, and for at least a 1−δ1
fraction of {i ∈ [k] | zi = 1}, it holds that qπi > ρ/c0;

4The original Lemma 9 in [25] is in fact a combination of this
lemma and Lemma 8 in [25].

and for at least 1 − δ1 fraction of {i ∈ [k] | zi = 0}, it
holds that qπi < ρ/c0.

Theorem 4.6. ([25]) Let Π be the transcript of any
deterministic protocol for k-APPROX-SUM on input
distribution ðρ with error probability δ for some suffi-
ciently small constant δ, then Prðρ [Π is good] ≥ 1− δ1.

Proof. (of Lemma 4.7) In 2-DISJ, Alice has A and Bob
has B, where (A,B) ∼ τρ. The reduction again consists
of two phases. During the reduction, for convenience,
we will use public and private randomness, which we
will fix at the end.

Input reduction phase. Alice and Bob construct an
input for k-APPROX-SUM using A and B. They pick
a random site PI (I ∈ [k]) using public randomness.
Alice assigns PI the input XI = A; Bob assigns the
coordinator with input Y = B, and constructs inputs
for the remaining k − 1 sites as follows: for each
i ∈ [k]\I, Bob samples an Xi according to τρ|Y using
independent private randomness, and assigns it to Pi.
Let Zi = 2-DISJ(Xi, Y ). Note that {X1, . . . , Xk, Y } ∼
ðρ. Intuitively speaking, we “embed” the input (A,B)
for 2-DISJ between PI and the coordinator in the k-
APPROX-SUM.

Simulation phase. Alice simulates PI , and Bob
simulates the remaining k−1 sites and the coordinator.
They run protocol P ′ on {X1, . . . , Xk, Y } ∼ ðρ to
compute k-APPROX-SUM with error probability δ. By
Theorem 4.6, for a 1−δ1 fraction of Z = z over the input
distribution ðρ and π = Π(z), it holds that for a 1− δ1
fraction of {i ∈ [k] | zi = 0}, qπi < ρ/c0, and a 1 − δ1
fraction of {i ∈ [k] | zi = 1}, qπi > ρ/c0. Now they
output 1 if qπI > ρ/c0, and 0 otherwise.

Now we show the correctness of the protocol and
analyze the communication cost. Since PI is chosen
randomly among the k sites, and conditioned on Y , all
Xi (i ∈ [k]) are independent and identically distributed,
P ′ computes ZI = 2-DISJ(X,Y ) on input distribution
τρ correctly with error probability at most δ1 + δ1 ≤
2δ1, and the expected communication between PI and
the coordinator is C/k. Both the probability and the
expectation are taken over the input distribution τρ.
By a Markov inequality, with error probability at most
2δ1 + δ2 (for an arbitrarilyy small constant δ2) over
the input distribution, it holds that the communication
between PI and the coordinator is at most κ3C/k
for a large enough constant κ3. Finally, using two
Markov inequalities, we can fix all the randomness
used in the reduction, and the resulting deterministic
protocol P ′′ for 2-DISJ under input distribution τρ
has communication cost 4κ3C/k and error probability
4(2δ1 + δ2).

We next modify the embedding. We change the



input distribution for Alice and Bob from (A,B) ∼
τρ to (A,B) ∼ τ1/4. Let Z ′I = 2-DISJ(A,B) ∼
Bernoulli(1/4). We still perform the same input reduc-
tion and simulation as P ′′. The only modification on
P ′′ to obtain the final protocol P is that in the sim-
ulation phase, when the communication between Alice
and Bob (equivalently, between PI and the coordina-
tor) exceeds 4κ3C/k, we early-terminate the protocol
and output “error”.

Obviously, the communication cost of P is always
bounded by 4κ3C/k = O(C/k). Now we analyze the
error probability of P. Let TV(ζ, ζ ′) be the total vari-
ation distance between distributions ζ and ζ ′, which
is defined to be maxA⊆X |ζ(A)− ζ ′(A)|, where X is
the union of supports of distributions ζ, ζ ′. The ob-
servation is that if we change ZI ∼ Bernoulli(ρ) to
Z ′I ∼ Bernoulli(1/4), the total variation distance be-
tween (Z1, . . . , ZI , . . . , Zk) (all Zi ∼ Bernoulli(ρ)) and
(Z1, . . . , Z

′
I , . . . , Zk) is at most

max{TV(Binomial(k, η),Binomial(k − 1, η)),

TV(Binomial(k, η),Binomial(k − 1, η) + 1)},

which can be bounded by O(1/
√
ηk) = O(ε) (see,

e.g., Fact 2.4 of [17]). Therefore, under the input
distribution τ1/4, Pr[P early-terminates] ≤ O(ε), and
Pr[P is correct | Pnormally-terminates] ≤ 4(2δ1 +δ2)+
O(ε). Thus the total error probability can be bounded
by (4(2δ1 + δ2) +O(ε)) < 1/400, by choosing constants
δ1, δ2 sufficiently small.
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[22] J. Matousek and J. Vondrák. The probabilistic method.
Lecture Notes, 2008.

[23] A. McGregor, A. Pavan, S. Tirthapura, and D. P.
Woodruff. Space-efficient estimation of statistics over
sub-sampled streams. In PODS, pages 273–282, 2012.

[24] J. M. Phillips, E. Verbin, and Q. Zhang. Lower bounds
for number-in-hand multiparty communication com-
plexity, made easy. In Proc. ACM-SIAM Symposium
on Discrete Algorithms, 2012.



[25] D. P. Woodruff and Q. Zhang. Tight bounds for dis-
tributed functional monitoring. CoRR, abs/1112.5153,
2011.

[26] D. P. Woodruff and Q. Zhang. Tight bounds for
distributed functional monitoring. In Proceedings of
the 44th symposium on Theory of Computing, STOC
’12, pages 941–960, New York, NY, USA, 2012. ACM.

[27] D. P. Woodruff and Q. Zhang. When distributed
computation is communication expensive. In DISC,
to appear, 2013.

[28] A. C. Yao. Probabilistic computations: Towards
a unified measure of complexity. In Proc. IEEE
Symposium on Foundations of Computer Science, 1977.

A Proof for Lemma 2.1

Proof. If Π is a δ-error protocol then for all possible in-
puts x1, . . . , xk to the k players, let R be the randomness
used by the k players,

PrR[Π(x1, . . . , xk) = f(x1, . . . , xk)] ≥ 1− δ,

which implies for any distribution µ on (x1, . . . , xk) that

PrR,(x1,...,xk)∼µ[Π(x1, . . . , xk) = f(x1, . . . , xk)] ≥ 1− δ,

which implies there is a fixing of the randomness of the
players so that

Pr(x1,...,xk)∼µ[Π(x1, . . . , xk) = f(x1, . . . , xk)] ≥ 1− δ,

which implies Dδ
µ(f) is at most Rδ(f).


