
Computing Approximate Graph Edit Distance
via Optimal Transport

QIHAO CHENG∗†, Tsinghua University, China
DA YAN∗, Indiana University Bloomington, USA
TIANHAO WU∗, Tsinghua University, China
ZHONGYI HUANG, Tsinghua University, China
QIN ZHANG, Indiana University Bloomington, USA

Given a graph pair (𝐺1,𝐺2), graph edit distance (GED) is defined as the minimum number of edit operations
converting 𝐺1 to 𝐺2. GED is a fundamental operation widely used in many applications, but its exact com-
putation is NP-hard, so the approximation of GED has gained a lot of attention. Data-driven learning-based
methods have been found to provide superior results compared to classical approximate algorithms, but they
directly fit the coupling relationship between a pair of vertices from their vertex features. We argue that
while pairwise vertex features can capture the coupling cost (discrepancy) of a pair of vertices, the vertex
coupling matrix should be derived from the vertex-pair cost matrix through a more well-established method
that is aware of the global context of the graph pair, such as optimal transport. In this paper, we propose
an ensemble approach that integrates a supervised learning-based method and an unsupervised method,
both based on optimal transport. Our learning method, GEDIOT, is based on inverse optimal transport that
leverages a learnable Sinkhorn algorithm to generate the coupling matrix. Our unsupervised method, GEDGW,
models GED computation as a linear combination of optimal transport and its variant, Gromov-Wasserstein
discrepancy, for node and edge operations, respectively, which can be solved efficiently without needing
the ground truth. Our ensemble method, GEDHOT, combines GEDIOT and GEDGW to further boost the
performance. Extensive experiments demonstrate that our methods significantly outperform the existing
methods in terms of the performance of GED computation, edit path generation, and model generalizability.

CCS Concepts: • Mathematics of computing→ Graph algorithms; • Information systems→ Informa-
tion systems applications.

Additional Key Words and Phrases: Graph edit distance, Optimal transport, Graph neural network

ACM Reference Format:
Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, and Qin Zhang. 2025. Computing Approximate Graph
Edit Distance via Optimal Transport. Proc. ACM Manag. Data 3, 1 (SIGMOD), Article 23 (February 2025),
26 pages. https://doi.org/10.1145/3709673

1 Introduction
Graph edit distance (GED) is one of the most widely used graph similarity metrics, which is defined
as the minimum number of edit operations that transform one graph to the other. GED has wide
∗The first three authors contributed equally to this work.
†Corresponding author.

Authors’ Contact Information: Qihao Cheng, cqh22@mails.tsinghua.edu.cn, Tsinghua University, China; Da Yan, yanda@
iu.edu, Indiana University Bloomington, USA; Tianhao Wu, wuth20@mails.tsinghua.edu.cn, Tsinghua University, China;
Zhongyi Huang, zhongyih@tsinghua.edu.cn, Tsinghua University, China; Qin Zhang, qzhangcs@iu.edu, Indiana University
Bloomington, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2836-6573/2025/2-ART23
https://doi.org/10.1145/3709673

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

HTTPS://ORCID.ORG/0009-0009-5228-3835
HTTPS://ORCID.ORG/0000-0002-4653-0408
HTTPS://ORCID.ORG/0000-0002-6141-5512
HTTPS://ORCID.ORG/0000-0002-5623-4864
HTTPS://ORCID.ORG/0000-0002-6851-3115
https://doi.org/10.1145/3709673
https://orcid.org/0009-0009-5228-3835
https://orcid.org/0000-0002-4653-0408
https://orcid.org/0000-0002-6141-5512
https://orcid.org/0000-0002-5623-4864
https://orcid.org/0000-0002-6851-3115
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3709673

23:2 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

applications, such as graph similarity search [25, 52, 61, 66, 69], graph classification [36, 37], and
inexact graph matching [7]. Scenarios include handwriting recognition [17], image indexing [54],
semantic image matching [51], and investigations of antiviral drugs [67], etc. The lower part of
Figure 1 illustrates the edit path (i.e., sequence of edit operations) of a graph pair (𝐺1,𝐺2) with
GED = 4. The edit path with the minimum length is called Graph Edit Path (GEP), so the length of
a GEP is exactly the GED.

0001
0010
0100

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒
𝒖𝟏
𝒖𝟐
𝒖𝟑

	𝒖𝟏 	𝒖𝟐

	𝒖𝟑 G1

	𝒗𝟏 	𝒗𝟐

	𝒗𝟑
G2

	𝒗𝟒

Relabel node

Insert green node Insert edge

Delete edge	𝒖𝟑 	𝒖𝟑

	𝒖𝟒

	𝒖𝟑	𝒖𝟐

	𝒖𝟑 	𝒖𝟒

Fig. 1. A toy example of graph pair (𝐺1,𝐺2)

Existing methods for GED computation can be categorized into the following three types. (1)
Exact Algorithms. GED can be computed exactly by the A* algorithm [38], but due to being NP-
hard [61], it is time-consuming even for a pair of 6-node graphs [4]. (2) Approximate Algorithms.
Tomake computation tractable, approximate algorithms are proposed based on discrete optimization
or combinatorial search such as A*-Beam [29], Hungarian [37] and VJ [16]. A*-beam restricts the
search space of A* algorithm, which is still an exponential-time algorithm. Hungarian and VJ
convert the GED computation to a linear sum assignment problem and find the optimal node
matching between two graphs, which takes 𝑂 (𝑛3) time. Moreover, these heuristic methods lack
a theoretical guarantee and generate results of inferior quality. (3) Learning-based Methods.
Recent studies turn to data-driven methods based on graph neural networks (GNN) to achieve better
performance [2, 3, 33, 35, 59]. Differing from the approximate algorithms, learning-based methods
extract intra-graph and inter-graph information by generating node and graph embeddings, which
are then used to predict GEDs with smaller errors within 𝑂 (𝑛2) time in the worst case. The two
most recent works, Noah [59] and GEDGNN [33], further support generating the edit path based on
A*-beam search and 𝑘-best matching, respectively, to ensure the feasibility of the predicted GED.

However, a key issue remains with these learning-based methods. Specifically, they compute a
pairwise vertex discrepancy matrix A where each element A𝑖, 𝑗 corresponds to the coupling cost
(discrepancy) of matching vertex 𝑖 in 𝐺1 to vertex 𝑗 in 𝐺2, and A𝑖, 𝑗 is computed only from their
vertex features. As Figure 2(a) shows, a shared operation of all existing learning-based methods
(including our GEDIOT) is pairwise scoring, which given two node embedding matrices obtained
from𝐺1 and𝐺2 (via a graph neural network), returns a matrix A where element A𝑖, 𝑗 is the pairwise
score computed from the embeddings of node 𝑢𝑖 in 𝐺1 and node 𝑣 𝑗 in 𝐺2. Here, we use ⊕ to
denote the pairwise scoring operation. Existing learning-based models directly treat A as the vertex
coupling matrix to fit the ground-truth vertex coupling relationship, but we argue that the coupling
matrix should be derived from the pairwise discrepancy matrix A through a more well-established
method that is aware of the global context of the graph pair, such as optimal transport [23]. As
illustrated by the bottom branch of Figure 2(b) for GEDGNN [33], they fit A directly to the 0-1
ground-truth node-matching matrix for GED. Note that the optimal node matching is a global
decision: node 𝑢𝑖 in𝐺1 is matched to node 𝑣 𝑗 in𝐺2 in the GED solution not only because they have
similar labels and neighborhood structures, but also because, for example, node 𝑢𝑖 in 𝐺1 is not as

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:3

𝐇!: Node Embeddings
of 𝐺!	= (𝑉!, 𝐸!)

𝐇": Node Embeddings
of 𝐺"	= (𝑉", 𝐸")

𝒖𝟏
𝒖𝟐
𝒖𝟑

𝒗𝟏
𝒗𝟐
𝒗𝟑
𝒗𝟒

𝒖𝟏
𝒖𝟐
𝒖𝟑

𝒗𝟏𝒗𝟐𝒗𝟑𝒗𝟒

(a) The Pairwise Scoring Operation ⊕

𝐇!

𝐇"

Cost Matrix

GED
Prediction

0001
0010
0100ℒ!"#$%

Ground-Truth
Matching

(b) GEDGNN

Transport
Matrix

ℒ&"'()

(c) GEDIOT

𝐇!

𝐇"

Cost Matrix

OT

Matching Matrix
Transport Cost GED

Prediction

ℒ&"'()

ℒ!"#$%

Ground-Truth
Matching

0001
0010
0100

Pairwise Scoring

𝒖𝟐

𝒗𝟒
T

W

Learnable
Weight

Fig. 2. OT Motivation and Learning-based Model Comparison

similar to the other nodes (e.g., node 𝑣𝑘 , 𝑘 ≠ 𝑗) in 𝐺2. However, A𝑖, 𝑗 is computed only based on the
embeddings of nodes 𝑢𝑖 and 𝑣 𝑗 .
To fundamentally address this drawback, we propose solutions based on the foundation of

the Optimal Transport (OT) theory. OT is a mathematical framework that focuses on finding the
most efficient way to move and transform one distribution of mass into another, which has been
successfully applied in various fields [13, 23, 57]. Laid upon rigid mathematical theory [31, 47], OT
provides strong theoretical guarantees and well-understood properties. With the development of
numerical algorithms, such as the Sinkhorn algorithm [14], it is particularly effective and efficient
when embedding sentences or graph vertices as probabilistic distributions in the Wasserstein space
derived from optimal transport [56, 57].
In this paper, we propose an ensemble approach that integrates a supervised learning-based

method and an unsupervised method, both based on OT. Our learning-based method, GEDIOT, is
based on inverse optimal transport (IOT) [12, 44] that leverages a learnable Sinkhorn algorithm
to generate the coupling matrix. As Figure 2(c) shows, our GEDIOT model takes the cost matrix
computed by pairwise scoring, and passes it through an OT module to minimize the cost of
transporting masses from nodes of 𝐺1 to nodes of 𝐺2, which returns the learned transport matrix
that considers the global cost matrix when fitting the ground-truth node-matching matrix for GED.
As our experiments have shown, adding OT after the pairwise-scoring-induced cost matrix brings
significant performance improvement in both GED and GEP predictions.

Based on optimal transport, we also propose an unsupervised method, GEDGW, that models GED
computation as a linear combination of optimal transport and its variant, Gromov-Wasserstein (GW)
discrepancy, for node and edge operations, respectively, which can be solved efficiently without the
ground truth. Our ensemble method, GEDHOT, combines GEDIOT and GEDGW to further boost
the performance. Our contributions are listed as follows:

• We propose a neural network architecture based on inverse optimal transport (where the cost
matrix is learnable) that formulates the GED learning task as a bi-level optimization problem,
named GEDIOT (GED with IOT), which introduces the OT component to capture the global
context effectively.
• To make OT applicable, GEDIOT extends the learned cost matrix with a dummy row and utilizes
the Sinkhorn algorithm with a learnable regularization coefficient to integrate OT with neural
networks for GED computation, improving the model performance and stability. Since the
coupling matrix can represent the confidence of node matching, we can also generate the edit
path from it using the 𝑘-best matching algorithm of [33].
• We separate the edit operations into two types: vertex edit operations and edge edit operations.
We then model the GED computation as an optimization problem combining optimal transport
(for vertex edits) and its variant Gromov-Wasserstein discrepancy (for edge edits), leading to
our unsupervised solution named GEDGW (Graph Edit Distance with Gromov-Wasserstein
discrepancy).

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:4 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

• We combine GEDIOT and GEDGW into an ensemble method named GEDHOT (Graph Edit
Distance with Hybrid Optimal Transport) for more accurate GED computation.
• Extensive experiments show the superior performance of proposed methods. Compared with
the state-of-the-art existing method GEDGNN [33], the Mean Absolute Error (MAE) on GED
computation decreases by 20.5%–63.8% with GEDIOT. Furthermore, the hybrid method GED-
HOT achieves the best performance, where the MAE decreases by 31.2%–72.3% compared with
GEDGNN. We also conduct experiments to verify the high-quality edit path generation and
superior generalizability of our methods.

The rest of this paper is organized as follows. Section 2 reviews the related work, and Section 3
defines our problem and presents the background of OT. Then, Section 4 describes the proposed
learning-based method GEDIOT, and Section 5 further proposes the unsupervised method GEDGW
and the ensemble method GEDHOT, and analyzes the time complexity of our methods. Finally,
Section 6 reports our experiments, and Section 7 concludes this paper.

2 Related Work
GED Computation. Classical exact algorithms [4, 8] seek the exact graph edit distance for each
graph pair. Due to the NP-hardness of GED computation, they fail to generate solutions in a
limited time when the graph size increases. To make computation tractable, plenty of heuristic
algorithms are proposed, including A*-Beam [29], Hungarian [37] and VJ [16], all of which provide
an approximate GED in polynomial time. Recently, graph neural networks (GNN) have become
popular since the extracted node and graph embeddings can greatly help the performance in various
tasks [24, 50, 55, 62, 63, 65, 70]. A number of GNN-based methods, such as SimGNN [3], TaGSim [2],
Noah [59], MATA* [27] and GEDGNN [33], have also been proposed to generate embeddings for
GED computation with adequate training data, which achieve the best performance in approximate
GED computation. For a more detailed review of heuristic and GNN-based methods, please see
Appendix A in our full paper [1].
Graph Similarity Search. Given a query graph and a threshold, graph similarity search retrieves
all graphs from a database with GED to the query graph within the given threshold. An important
step in this task is to verify whether the GEDs of graph pairs are smaller than the threshold. A series
of works [8, 9, 19, 21, 22, 26, 68] are proposed to speed up the GED verification process between
the database and the query graph. It is related to, but also distinct from, GED computation. They
focus on the filtering technique of search space based on the threshold, while GED computation
seeks the difference between a pair of graphs and has no threshold available for filtering. However,
when setting the similarity threshold to infinity, the verification step can also be extended for GED
computation [8, 9].
Optimal Transport. The goal of optimal transport (OT) [31] is to minimize the cost of transporting
mass from one distribution to another. It has been applied in various fields, including image and
signal processing [23], natural language processing [57], and domain adaptation [13]. Inverse
optimal transport (IOT) [12, 44] is an inverse process to the classical optimal transport, which
calculates the cost matrix from the coupling matrix. Recent studies [41, 43] interpret classical
contrastive learning as inverse optimal transport. DB-OT [42] applies inverse optimal transport to
long-tailed classification. Legal case matching algorithms are proposed in [60] via inverse optimal
transport. They all use the general inverse optimal transport with the cross-entropy loss to build
an OT-assisted neural network model, and the relation between inverse optimal transport and
graphs remains rarely studied as it requires careful design for different graph problems. While
our proposed GEDIOT model is also based on IOT, as Section 4.2 will describe, in order for the

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:5

Table 1. Notations

Notation Description
𝐺 a labeled undirected graph

𝑉 , 𝐸, 𝐿 the node, edge and label sets of 𝐺
(𝐺1,𝐺2) the graph pair for GED computation

M node label matching matrix of (𝐺1,𝐺2)
A1, A2 adjacency matrices of 𝐺1 and 𝐺2

H1, H2 final node embeddings of 𝐺1 and 𝐺2

𝐺𝐸𝐷 (𝐺1,𝐺2) the GED of graph pair (𝐺1,𝐺2)
𝐺𝐸𝑃 (𝐺1,𝐺2) the GEP of graph pair (𝐺1,𝐺2)

𝝅 the coupling matrix between 𝐺1 and 𝐺2

𝝅∗, 𝐺𝐸𝐷∗ (𝐺1,𝐺2) ground truths of the graph pair (𝐺1,𝐺2)
1𝑛, 0𝑛 the 𝑛-dimensional vectors full of 1 and 0
·∥· the concatenation operator
· ⊘ · the element-wise division
⟨P ,Q⟩ the Frobenius dot-product

∑
𝑖

∑
𝑗 (𝑃𝑖, 𝑗𝑄𝑖, 𝑗)

L(C1,C2) the 4-th order tensor
(
(C1

𝑖, 𝑗 − C2
𝑘,𝑙
)2

)
𝑖, 𝑗,𝑘,𝑙

L ⊗ B the matrix
(∑

𝑗,𝑙 L𝑖, 𝑗,𝑘,𝑙B𝑗,𝑙

)
𝑖,𝑘

Sinkhorn algorithm to be applicable to GED prediction, we need to modify the OT constraints by
incorporating a dummy supernode.

A few works have also applied OT and its variants to other graph problems (but not GED) [10, 15,
30, 48, 49]. One of the most important variants is Gromov-Wasserstein discrepancy (GW) [28, 32], a
measure used to compare two metric spaces, capturing the differences in their intrinsic geometric
structures. GW has been applied for graph partitioning and graph matching [56]. Fused GW [45]
is a combination of optimal transport and GW, which has been successfully applied in graph
classification and clustering. However, the optimization objective of Fused GW does not consider
the edit costs of unmatched vertices in GED computation, but the size of𝐺1 and𝐺2 may not match
for a given graph pair (𝐺1,𝐺2), so as Section 5 will describe, our proposed GEDGW model first
needs to add dummy nodes to incorporate such costs into the objective.

3 Preliminaries
This section introduces Graph Edit Distance (GED), Graph Edit Path (GEP), and the fundamental
concepts of Optimal Transport (OT) on graphs. All vectors default to column vectors unless
otherwise specified. Table 1 summarizes important notations for quick lookup.

3.1 Problem Statement
We consider two tasks: GED computation and GEP generation between two node-labeled undirected
graphs𝐺1 = (𝑉 1, 𝐸1, 𝐿1) and𝐺2 = (𝑉 2, 𝐸2, 𝐿2). We discuss GED computation of edge-labeled graphs
in Appendix H.1 [1] due to space limit. We denote |𝑉 1 | = 𝑛1, |𝐸1 | =𝑚1 and |𝑉 2 | = 𝑛2, |𝐸2 | =𝑚2. We
assume that 𝑛1 ≤ 𝑛2 as otherwise, we can swap 𝐺1 and 𝐺2.
Graph Edit Distance (GED). Given the graph pair (𝐺1,𝐺2), graph edit distance 𝐺𝐸𝐷 (𝐺1,𝐺2)
is the minimum number of edit operations that transform 𝐺1 to 𝐺2. An edit operation is an
insertion/deletion of a node/edge or the relabeling of a node.
GraphEdit Path (GEP).The edit path of the graph pair (𝐺1,𝐺2) is a sequence of edit operations that
transform𝐺1 to𝐺2. The graph edit path𝐺𝐸𝑃 (𝐺1,𝐺2) is the shortest one with length𝐺𝐸𝐷 (𝐺1,𝐺2).

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:6 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

Figure 1 shows a GEP of the graph pair (𝐺1,𝐺2), where different colors denote different vertex
labels and 𝐺𝐸𝐷 (𝐺1,𝐺2) = 4.
Node Matching. The node matching (hereafter we use the terms “node” and “vertex” interchange-
ably) of (𝐺1,𝐺2) is an 𝑛1 × 𝑛2 binary matrix, denoted by 𝝅 ∈ {0, 1}𝑛1×𝑛2 , where 𝝅𝑖,𝑘 = 1 if the node
𝑢𝑖 ∈ 𝑉 1 matches 𝑣𝑘 ∈ 𝑉 2, and 𝝅𝑖,𝑘 = 0 otherwise. Since we assume that 𝑛1 ≤ 𝑛2, 𝝅 satisfies the
following constraints

𝝅1𝑛2 = 1𝑛1 , 𝝅⊤1𝑛1 ≤ 1𝑛2 , 1⊤𝑛1𝝅1𝑛2 = 𝑛1, (1)

where 1𝑛 is the 𝑛-dimensional vector full of 1, and a ≤ b denotes that a𝑖 ≤ b𝑖 for the 𝑖
th elements of

a and b for all 𝑖 . Intuitively, the constraints ensure that each of the 𝑛1 vertices of𝐺1 is matched to a
vertex in𝐺2 since Eq. (1) allows exactly one “1” in each row and at most one “1” in each column.
As illustrated in the 0-1 matrix in Figure 1, nodes 𝑢1, 𝑢2 and 𝑢3 in𝐺1 are matched to 𝑣1, 𝑣2 and 𝑣3 in
𝐺2, respectively, and 𝑣4 in 𝐺2 is not matched.

With a given node matching between 𝐺1 and 𝐺2, the edit path can be generated by traversing
and comparing the differences between the labels and edges of all matching nodes in 𝐺1 and
𝐺2. Specifically, (i) we first check each node in 𝐺2 to see if it is matched and if it has the same
label as that of its matched node in 𝐺1, if not, we add one to the Edit Distance (ED). This takes
𝑂 (𝑛2) time. In Figure 1, since 𝑣3 and 𝑢3 have different labels (hints a node relabeling), and 𝑣4 (hints
a node insertion) is not matched, we add 2 to ED. (ii) We then check each edge in 𝐺1 to see if
the corresponding edge (decided by the two matched end-nodes) exists in 𝐺2, and vice versa; if
not, we add one to ED. This takes 𝑂 (𝑚1 +𝑚2) time. In Figure 1 edge (𝑢2, 𝑢3) exists in 𝐺1 but the
corresponding (𝑣2, 𝑣3) based on node matching does not exist in 𝐺2 (hints an edge deletion), and
edge (𝑣3, 𝑣4) exists in 𝐺2 but there is no corresponding edge in 𝐺1 (hints an edge insertion), so we
add 2 to ED. Overall, the number of edit operations is 4. Note that the time complexity is linear (i.e.,
𝑂 (𝑛2 +𝑚1 +𝑚2)). The pseudo-code is shown in Algorithm 3 in Appendix C [1].

By relaxing the binary constraints of 𝝅 ∈ {0, 1}𝑛1×𝑛2 to 𝝅 ∈ [0, 1]𝑛1×𝑛2 , node matching can be
connected with the optimal transport theory to be introduced as follows.

3.2 Background of Optimal Transport

Optimal Transport (OT). The optimal transport problem seeks the most efficient way of trans-
porting one distribution of mass into another. Given a graph pair (𝐺1,𝐺2), where 𝐺1 = (𝑉 1, 𝐸1, 𝐿1)
and 𝐺2 = (𝑉 2, 𝐸2, 𝐿2), we assume there are two pre-defined mass distributions 𝝁 = {𝝁𝑖 }𝑛1

𝑖=1 and
𝝂 = {𝝂 𝑗 }𝑛2

𝑗=1 on nodes of 𝐺1 and 𝐺2, respectively. For instance, when 𝑛1 = 𝑛2, for all 𝑢𝑖 in 𝐺1 and

	𝒖𝟏 	𝒖𝟐

	𝒖𝟑

	𝒗𝟏 	𝒗𝟐

	𝒗𝟑G1 G2

mass: 1 mass: 1

mass: 1

mass: 1 mass: 1

mass: 1

001

010

100

1.51.50

1.50.51

1.51.50

Cost Matrix

Node Matchings

0.500.5

010

0.500.5

Optimal Coupling Matrix

0.20.50.3

0.30.50.2

0.500.5

Feasible Coupling Matrix

𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒗𝟏 𝒗𝟐 𝒗𝟑

100

010

001

𝒗𝟏 𝒗𝟐 𝒗𝟑
𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒗𝟏 𝒗𝟐 𝒗𝟑

Fig. 3. Example of Cost Matrix and Coupling Matrices

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:7

𝑣 𝑗 in 𝐺2, we can set their masses as 𝝁𝑖 = 1 and 𝝂 𝑗 = 1, which puts the same importance weight
on every node. Figure 3 shows our mass distributions on 𝐺1 and 𝐺2 where every node has mass 1.
Coupling matrix 𝝅 ∈ R𝑛1×𝑛2 is a node-to-node mass transport matrix between 𝐺1 and 𝐺2, where
each element 𝝅𝑖,𝑘 denotes the amount of mass transported from node 𝑢𝑖 ∈ 𝑉 1 to 𝑣𝑘 ∈ 𝑉 2. In our
work, 𝝅𝑖,𝑘 is in the range [0, 1] reflecting the confidence that 𝑢𝑖 matches 𝑣𝑘 . The feasible set of
coupling matrices of (𝐺1,𝐺2) is denoted by:

Π(𝝁,𝝂) =
{
𝝅 ∈ R𝑛1×𝑛2 | 𝝅1𝑛2 = 𝝁, 𝝅⊤1𝑛1 = 𝝂, 𝝅 ≥ 0

}
.

The lower-left corner of Figure 3 shows an example of a feasible 𝝅 . The feasible set of 𝝅 basically
relaxes Eq. (1) to allow values in [0, 1], but still requires that elements in a row (resp. column) sum
up to 1 (if 𝑛1 ≠ 𝑛2, dummy nodes need to be added as we will describe in Section 4.2. So we are
basically generalizing Eq. (1) for the case when𝐺1 and𝐺2 have the same size, where 𝝅⊤1𝑛1 = 1𝑛2).
With a given inter-graph node-to-node cost matrix C ∈ R𝑛1×𝑛2 , where C𝑖, 𝑗 denotes the cost of

transporting a unit of mass from 𝑢𝑖 ∈ 𝑉 1 to 𝑣 𝑗 ∈ 𝑉 2, OT finds the optimal coupling matrix 𝝅
between 𝐺1 and 𝐺2 as follows:

min
𝝅 ∈Π (𝝁,𝝂)

⟨C, 𝝅⟩ , (2)

where ⟨C, 𝝅⟩ = ∑
𝑖

∑
𝑗 C𝑖, 𝑗𝝅𝑖, 𝑗 is the Frobenius dot-product of C and 𝝅 , and the optimal value is

the so-called Wasserstein Distance or Earth Mover’s Distance. The lower center of Figure 3 shows
a simple hand-crafted cost matrix C between graphs 𝐺1 and 𝐺2, defined as follows. Initially, we
assume matrix C is all-zero. If the labels of 𝑢𝑖 in𝐺1 and 𝑣 𝑗 in𝐺2 are different, we increase C𝑖, 𝑗 by 1.
Let 𝑑𝑖 and 𝑑 𝑗 be the degrees of 𝑢𝑖 and 𝑣 𝑗 . We further increase C𝑖, 𝑗 by |𝑑𝑖 −𝑑 𝑗 |/2, since the difference
between degrees is associated with the number of edge insertions/deletions. The constant 1/2 is
used to avoid double-counting of an edge on its two endpoints. Solving OT over this cost matrix
gives the coupling matrix shown in the lower-right corner of Figure 3, which indicates that 𝑢2
is mapped to 𝑣2, but 𝑢1 can be mapped to either 𝑣1 or 𝑣3 with 50% probability each. This directly
corresponds to the two optimal node matchings illustrated in Figure 3, which give a GED value of
2. A simple yet efficient method to solve Eq. (2) is by introducing an entropy regularization term
into the optimization objective [53]:

min
𝝅 ∈Π (𝝁,𝝂)

⟨C, 𝝅⟩ + 𝜀𝐻 (𝝅), (3)

where 𝐻 (𝝅) = ∑
𝑖

∑
𝑗 𝝅𝑖, 𝑗

(
log𝝅𝑖, 𝑗 − 1

)
= ⟨𝝅 , log(𝝅) − 1⟩ is the entropy function and 𝜀 > 0 is the

regularization coefficient. Leveraging the duality theory [5] and strict convexity of Eq. (3), the
unique solution can be solved by the Sinkhorn algorithm as shown in Algorithm 1 [14], which
alternately updates the dual variables 𝝍 and 𝝋 to fit the specified mass distribution 𝝁 and 𝝂 . For
more details, please see Appendix B.1 [1].
Gromov-Wasserstein Discrepancy (GW). In practice, it is challenging to define a reasonable
node-to-node cost matrix C ∈ R𝑛1×𝑛2 without specified node embeddings for the two graphs 𝐺1

and 𝐺2. To address this issue, Gromov-Wasserstein discrepancy (GW) [28, 64] is introduced for
graph alignment tasks [46, 56] as an extension of optimal transport. GW only requires the distances
between nodes in the same graph, not inter-graph node distances. Specifically, GW is the optimal
value of the following optimization objective:

min
𝝅 ∈Π (𝝁,𝝂)

∑︁
𝑖, 𝑗,𝑘,𝑙

(C1
𝑖, 𝑗 − C2

𝑘,𝑙
)2𝝅𝑖,𝑘𝝅 𝑗,𝑙 , (4)

where C1 and C2 are the pre-defined cost matrices (e.g., adjacency matrices, all-pair shortest paths)
of graphs 𝐺1 and 𝐺2, respectively. Here, we choose the typical option of (C1

𝑖, 𝑗 − C2
𝑘,𝑙
)2 to measure

the mismatch between two edges (𝑖, 𝑗) ∈ 𝐸1 and (𝑘, 𝑙) ∈ 𝐸2, but more choices can be found in [32].

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:8 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

Algorithm 1: Sinkhorn algorithm
Input: cost matrix C, mass distributions 𝝁, 𝝂 , regularization coefficient 𝜀, maximum

iteration maxiter
1 K← exp(−C/𝜀), 𝝋 ← 1𝑛1

2 for𝑚 = 1 to maxiter do
3 𝝍 ← 𝝂 ⊘ (K⊤𝝋)
4 𝝋 ← 𝝁 ⊘ (K 𝝍)
5 𝝅 ← diag(𝝋) K diag(𝝍)
6 𝑤 ← ⟨C, 𝝅⟩
7 return 𝝅 ,𝑤

Intuitively, 𝝅𝑖,𝑘 (resp. 𝝅 𝑗,𝑙) represents the probability of matching nodes 𝑢𝑖 ∈ 𝑉 1 and 𝑣𝑘 ∈ 𝑉 2 (resp.
𝑢 𝑗 ∈ 𝑉 1 and 𝑣𝑙 ∈ 𝑉 2), and Eq. (4) computes the expectation of edge-pair mismatch.

Let L(C1,C2) be the 4-th order tensor
(
(C1

𝑖, 𝑗 − C2
𝑘,𝑙
)2

)
𝑖, 𝑗,𝑘,𝑙

and L ⊗ 𝝅 denotes the matrix(∑
𝑗,𝑙 L𝑖, 𝑗,𝑘,𝑙𝝅 𝑗,𝑙

)
𝑖,𝑘
. Then the objective function can be rewritten into the following simple form:

min
𝝅 ∈Π (𝝁,𝝂)

〈
𝝅 ,L(C1,C2) ⊗ 𝝅

〉
, (5)

which can be solved with the conditional gradient algorithm [6, 48].

4 Learning-Based Method: GEDIOT
In this section, we introduce GEDIOT, our neural network for GED computation based on inverse
optimal transport. The training is an inverse process of OT to find (i.e., fit) the cost matrix given
the ground-truth node coupling matrix of (𝐺1,𝐺2), 𝝅∗, as supervision.
Motivation of introducing OT. Recall that a node matching satisfies the constraints in Eq. (1).
Let us denote its feasible set by

𝑈 (1𝑛1 , 1𝑛2) =
{
𝝅 ≥ 0 | 𝝅1𝑛2 = 1𝑛1 , 𝝅

⊤1𝑛1 ≤ 1𝑛2 , 1
⊤
𝑛1𝝅1𝑛2 = 𝑛1

}
. (6)

Previous learning-based models predict GED and node matching via the interaction information of
node/graph embeddings [2, 3, 33, 59], but they directly fit the predicted node matching with the
ground-truth node coupling using binary cross-entropy loss, without considering all the constraints
in𝑈 (1𝑛1 , 1𝑛2) during the training process.
We propose a novel neural architecture, GEDIOT, for GED computation and GEP generation,

which predicts only the node-to-node cost matrix C from the interaction information of node/graph
embeddings, and relies on OT to obtain the node matching from C so that all the constraints in
𝑈 (1𝑛1 , 1𝑛2) are taken into consideration.

The training process is constructed as a bi-level optimization as formulated in Eq. (7), where
the inner minimization computes the coupling matrix 𝝅 satisfying the constraints in 𝑈 (1𝑛1 , 1𝑛2)
by solving an entropy-regularized OT problem that can be evaluated with our learnable Sinkhorn
module, and the outer minimization calculates the difference between the coupling matrix and the
ground truth to update the cost matrix Ĉ via backpropagation.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:9

min
Ĉ
L𝑚

(
𝝅∗, 𝝅

)
+ L𝑣

(
GED∗, ĜED

)
, (7)

where 𝝅 = argmin
𝝅 ∈𝑈 (1𝑛1 ,1𝑛2)

〈
Ĉ, 𝝅

〉
+ 𝜀𝐻 (𝝅),

ĜED =

〈
Ĉ, 𝝅

〉
.

Here, 𝝅∗ and 𝐺𝐸𝐷∗ are the ground truth coupling matrix and GED of graph pair (𝐺1, 𝐺2), respec-
tively. Note that 𝝅∗ ∈ {0, 1}𝑛1×𝑛2 is a one-to-one mapping and there are (𝑛2 −𝑛1) full-zero columns.
During test, computing GED is simply to solve the (inner) entropy-regularized OT problem, which
is thus effective and interpretable.

In Eq. (7), Ĉ ∈ R𝑛1×𝑛2 is a learnable cost matrix that encodes the cost of matching each vertex pair
across 𝐺1 and 𝐺2, and 𝝅 ∈ R𝑛1×𝑛2 denotes the coupling matrix induced from Ĉ by minimizing the
inner optimization problem. Recall from Section 3.1 that when relaxing the binary constraints of
𝝅 ∈ {0, 1}𝑛1×𝑛2 to 𝝅 ∈ [0, 1]𝑛1×𝑛2 , Eq. (1) basically defines 𝝅𝑖, 𝑗 to be the probability mass transported
from 𝑢𝑖 ∈ 𝑉 1 to 𝑣 𝑗 ∈ 𝑉 2, and the row 𝝅𝑖 defines the distribution of transported probability mass
from𝑢𝑖 to vertices of𝑉 2. In Eq. (7), the GED value is approximated with

〈
Ĉ, 𝝅

〉
=

∑𝑛1
𝑖=1

∑𝑛2
𝑗=1 Ĉ𝑖, 𝑗𝝅𝑖, 𝑗

since
∑𝑛2

𝑗=1 Ĉ𝑖, 𝑗𝝅𝑖, 𝑗 is the expected cost to transport mass from 𝑢𝑖 , so
〈
Ĉ, 𝝅

〉
is the expected cost to

transport all mass from 𝐺1. In the special case when 𝝅 ∈ {0, 1}𝑛1×𝑛2 ,
〈
Ĉ, 𝝅

〉
basically adds up the

costs of transporting mass from 𝑢𝑖 to its matched target in 𝑉 2 for all 𝑢𝑖 ∈ 𝑉 1; and the first term in
the outer minimization encourages a sparse 𝝅 since the ground-truth 𝝅∗ is sparse.
The objective of the outer optimization contains two terms designed for our two tasks: GED

computation and GEP generation. Specifically, L𝑚 is the matching loss for GEP generation, which
we use Binary Cross-Entropy (BCE) loss between the ground truth 𝝅∗ and the learned coupling
matrix 𝝅 that is then fed into the 𝑘-best matching framework [11, 33] as described in Section 4.5.
L𝑣 is the value loss for GED computation, which we adopt Mean-Squared Error (MSE) between the
ground truth GED and the learned one obtained from both node and graph embeddings. The inner
entropy-regularized OT of Eq. (7) provides an optimal coupling matrix with the current cost matrix
Ĉ. Then, the outer minimization fits the learned coupling matrix and GED to the ground truths
to optimize the neural parameters in the model. Notably, we will formulate Ĉ further using the
node features extracted from (𝐺1,𝐺2) by GNN (see Figure 2), so “minĈ” in the outer optimization
actually optimizes on the parameters of feature extraction network. More analysis of the process of
Eq. (7) can be found in Appendix B.2 [1], where we delve into the gap between the learned and
ground truth.
Model Overview. Figure 4 illustrates the network architecture of GEDIOT, including three main
components: (1) node embedding component, (2) learnable OT component, and (3) graph discrepancy
component. We highlight our new OT module with a red dashed frame in Figure 4. In the node
embedding component, a GNN is employed to generate node embeddings with multiple graph
convolution layers. For both graphs (𝐺1 and 𝐺2), the node embeddings outputted by all layers are
concatenated to aggregate information from neighbors of different hops (instead of only the last-hop
neighbors), to alleviate the GNN over-smoothing issue [34, 39]. The concatenated embeddings
are then passed through an MLP to derive the final node embeddings of the desired dimension 𝑑 ,
denoted byH1 ∈ R𝑛1×𝑑 (for𝐺1) andH2 ∈ R𝑛2×𝑑 (for𝐺2). Subsequently, the learnable OT component
extracts the node-matching matrix from the node embedding matrices through the OT process.
This component includes a cost matrix layer that utilizes H1 and H2 to measure the node-to-node

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:10 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

		𝒖𝟏 		𝒖𝟐

		𝒖𝟐
		𝒖𝟑

		𝒖𝟒

GNN GNN GNN

		𝒗𝟏 		𝒗𝟐

		𝒗𝟒 		𝒗𝟑

MLPConcatenate

𝐇!

Cost Matrix
Layer

Graph
Embedding

Learnable
Sinkhorn

Layer

Neural
Tensor

Network

𝐇"

Node Embedding Component Learnable OT Component

Graph Discrepancy Component

Node
Matching

GED
Computation

Coupling
Matrix 𝝅" 𝓛𝒎	(𝑩𝑪𝑬)

Predicted Score 𝒘
𝟏

Predicted
Score 𝒘𝟐

𝓛𝒗	(𝑴𝑺𝑬)

𝐂"𝒖𝟏
𝒖𝟐
𝒖𝟑
𝒖𝟒
𝒖𝟓

𝒗𝟏
𝒗𝟐
𝒗𝟑
𝒗𝟒

Fig. 4. The architecture of GEDIOT

cost matrix Ĉ, and a learnable Sinkhorn layer to read out the learned coupling matrix 𝝅 via the
Sinkhorn algorithm with a learnable regularization coefficient. This component also provide a GED
score𝑤1 =

〈
Ĉ, 𝝅

〉
. Additionally, a graph discrepancy component is employed to measure the edit

operations of unmatched nodes (e.g., the (𝑛2 − 𝑛1) nodes in 𝐺2) from the graph-to-graph level,
which outputs another score𝑤2 for GED prediction. This component includes a neural network to
generate the graph embeddings and a neural tensor network (NTN) [3] to calculate the predicted
score𝑤2. Finally, scores𝑤1 and𝑤2 are combined to compute 𝐺𝐸𝐷 (𝐺1,𝐺2). Note that all the sizes
of parameters are user-defined (e.g., embedding dimension 𝑑) and independent of graph sizes (see
more details in Appendix H.2 [1]). Figure 4 marks the learnable parts (H1,H2, Ĉ, 𝝅) in GEDIOT for
ease of understanding.

4.1 Node Embedding Component
In this component, a GNN and an MLP are employed to capture the graph topology information
and generate the final node embedding.
GNN Module. We adopt a siamese GNN to generate node embeddings by graph convolution
operations, following previous graph similarity learning models [27, 33, 35]. Given the graph pair
(𝐺1,𝐺2), nodes in both 𝐺1 and 𝐺2 are embedded with the shared network through node feature
propagation and aggregation.
Concretely, Graph Isomorphism Network (GIN) [58] is adopted to capture the graph topology,

since GIN has been shown to be as powerful as the Weisfeiler-Lehman (WL) graph isomorphism
test in differentiating different graph structures [40]. For a graph 𝐺 = (𝑉 , 𝐸, 𝐿), we initialize the
node embedding h(0) (𝑢) for 𝑢 ∈ 𝑉 as the one-hot encoding of its label. If graphs are unlabeled, we
set each initial node embedding as a constant number following previous works [3, 33]. In the 𝑖th
layer, the embedding of node 𝑢, denoted by h(𝑖) (𝑢), is updated from itself and its neighbors as

h(𝑖) (𝑢) = MLP ©«
(
1 + 𝛿 (𝑖)

)
h(𝑖−1) (𝑢) +

∑︁
𝑣∈N(𝑢)

h(𝑖−1) (𝑣)ª®¬ (8)

where 𝛿 (𝑖) is a learnable parameter of each layer and N(𝑢) is the set of neighbors of 𝑢.
MLP Module. As the features propagate via GIN, higher-order graph structural information is
fused into node embeddings, which may cause over-smoothed node embeddings at the last layer.
Note that various GIN layers contain different orders of topological information: h(0) (𝑢) represents
the features of 𝑢 itself whereas h(𝑖) (𝑢) contains the feature information from its 𝑖th-hop neighbors.
To obtain sufficiently rich node embeddings for more accurate GED computation, we concatenate
the node embeddings from all GIN layers: h =

[
h(0) ∥h(1) ∥ · · · ∥h(𝑘)

]
. The concatenated embedding

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:11

h is then fed to an MLP to produce the final node embedding H ∈ R𝑛×𝑑 :

H = MLP (h) = MLP
([
h(0) ∥h(1) ∥ · · · ∥h(𝑘)

])
. (9)

Suppose that the size of input h is 𝑛 ×𝐷 , then we use an MLP with three dense layers of 𝐷 × 2𝐷 ,
2𝐷 × 𝐷 and 𝐷 × 𝑑 , respectively, to reduce the input h to the final node embeddings H ∈ R𝑛×𝑑 .

4.2 Learnable OT Component
This component includes a cost matrix layer to extract the cost matrix from node embeddings H1

and H2 extracted by the node embedding component introduced in Section 4.1, and a learnable
Sinkhorn layer to implement the inner entropy-regularized OT of Eq. (7) to generate the node
matching from the cost matrix.
Cost Matrix Layer. This layer measures the node-to-node cost matrix Ĉ ∈ R𝑛1×𝑛2 for the graph
pair (𝐺1,𝐺2), by multiplying the final node embeddings H1, H2 with a trainable parameter matrix:

Ĉ = 𝑓
(
H1W(H2)⊤

)
,

where Ĉ𝑖, 𝑗 = 𝑓 (H1
𝑖W(H2

𝑗)𝑇) =
∑𝑑

𝑘=1
∑𝑑

𝑙=1 𝑓 (H1
𝑖,𝑘
W𝑘,𝑙H2

𝑙, 𝑗
), W ∈ R𝑑×𝑑 is a learnable interaction

matrix, and 𝑓 is an element-wise activation function. W𝑘,𝑙 can be regarded as a correlation weight
for the 𝑘 th dimension in embedding H1 and the 𝑙 th dimension in embedding H2. In this work, we
use tanh as the activation function:

Ĉ = tanh
(
H1W(H2)⊤

)
. (10)

Learnable Sinkhorn Layer. This layer is designed to solve the entropy-regularized OT numerically
with the Sinkhorn algorithm in Algorithm 1. It takes the learned cost matrix C as input to generate
the coupling matrix 𝝅 and the predicted score𝑤1.

Recall that the core process of the Sinkhorn algorithm is the alternate update of dual variables as
shown in Lines 3 and 4 in Algorithm 1:

𝝍 ← 𝝂 ⊘ (K⊤𝝋), 𝝋 ← 𝝁 ⊘ (K 𝝍),
where K = exp(−C/𝜀) is related to the learned cost matrix C and regularization coefficient 𝜀, 𝝋 and
𝝍 are the dual variables, and 𝝁 and 𝝂 are the pre-defined mass distributions (e.g., all-1 vectors).
However, the constraint set𝑈 (1𝑛1 , 1𝑛2) in Eq. (6) has an inequality constraint 𝝅⊤1𝑛1 ≤ 1𝑛2 , which
hinders applying the Sinkhorn algorithm directly, since the derivation of Sinkhorn as detailed in
Appendix B.1 [1] only allows equality constraints (with inequality constraints, the dual formulation
would introduce additional conditions that require the Lagrangian multipliers to be non-negative
for 𝝅⊤1𝑛1 ≤ 1𝑛2). To address this issue, we reconstruct an equivalent standard-form OT without the
inequality constraint by extending the cost matrix C with a dummy row filled with 0 and redefining
mass distributions as 𝝁,𝝂 as follows:

C̃ =

[
Ĉ
0⊤𝑛2

]
, 𝝁 = [1⊤𝑛1 , 𝑛2 − 𝑛1]

⊤, 𝝂 = 1𝑛2 .

Accordingly, we denote the new constraint set by
Π(𝝁,𝝂) =

{
𝝅 ∈ R(𝑛1+1)×𝑛2 | 𝝅1𝑛2 = 𝝁, 𝝅⊤1𝑛1+1 = 𝝂, 𝝅 ≥ 0

}
,

and the standard-form OT is formulated as follows:
min

𝝅 ∈Π (𝝁,�̃�)

〈
C̃, 𝝅

〉
. (11)

Intuitively, the dummy row in C̃ basically adds a dummy supernode in 𝐺1 to match (𝑛2 − 𝑛1)
nodes in 𝐺2, as Figure 5 illustrates. We set the cost of matching the dummy supernode as 0 since

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:12 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

1 2

3

G 1

1 2

3

G 2

4

5

Fig. 5. Illustration of the Dummy Supernode

our learnable OT component only accounts for the edit operations related to node matching (i.e.,
matching each of the 𝑛1 node in 𝐺1 towards 𝐺2); while the edit cost induced by these (𝑛2 − 𝑛1)
nodes in 𝐺2 will be handled by the graph discrepancy component (see Section 4.3).

By adding entropy regularization 𝜀𝐻 (𝝅) to Eq. (11), we can solve for 𝝅 by the Sinkhorn algorithm.
In each iteration, we update the dual variables �̃� ∈ R𝑛2 and 𝝋 ∈ R𝑛1+1 alternately via:

�̃� ← 𝝂 ⊘
(
K̃⊤𝝋

)
, 𝝋 ← 𝝁 ⊘

(
K̃ �̃�

)
, (12)

where K̃ ← exp(−C̃/𝜀) is the element-wise exponential of −C̃/𝜀. We stack the two operations
as feedforward layers to implement the iterations. When the iterative updates converge, 𝝅 =

diag(𝝋) K̃ diag(�̃�), and the learned coupling matrix 𝝅 is exactly 𝝅 with the last row removed [10].
The predicted score𝑤1 is

〈
Ĉ, 𝝅

〉
, which estimates the optimal cost of edit operations induced by

node matching.
A question remains: how to set a proper regularization coefficient 𝜀? While a smaller 𝜀 leads to a

closer approximation of the exact OT solution (without regularization). However, it also introduces
a greater risk of numerical instability, which may lead to a divide-by-zero error. A straightforward
approach is to set different 𝜀 for different datasets manually to achieve satisfactory performance.
Nevertheless, the selection of an appropriate 𝜀 is costly.
Rather than fixing 𝜀 in advance for different datasets, we treat it as a learnable parameter and

optimize it by gradient descent during training. The regularization coefficient 𝜀 is tuned for different
datasets adaptively towards the optimal value, avoiding time-consuming manual adjustments. This
is where the term “learnable” in the layer name originated (as Eq. (12) is parameter-free).
We also provide a concrete example from real-world datasets in Appendix D [1] to further

illustrate our method.

4.3 Graph Discrepancy Component
Recall that before the learnable Sinkhorn layer, we add a dummy supernode to 𝐺1; when the layer
completes and outputs 𝜋 , we remove the last row that corresponds to the dummy supernode. The
learnable OT component captures only the edit operations induced by the node matching (from
the node-to-node level), and some edit operations are not accounted for since 𝑛1 ≤ 𝑛2. We thus
adopt another graph discrepancy component to supplement the unencoded information from the
embedding of unmatched (𝑛2 − 𝑛1) nodes in𝐺2 from the graph-to-graph level. It includes a graph
embedding layer to learn the embeddings of 𝐺1 and 𝐺2, and a neural tensor network (NTN) [3]
that reads out the graph discrepancy information from the graph embeddings to enhance GED
prediction.

Specifically, we first generate the graph-level embeddings with the node attentive mechanism [3].
Given a graph 𝐺 (can be either 𝐺1 or 𝐺2) with node embedding matrix H ∈ R𝑛×𝑑 (can be either H1

or H2) extracted by our node embedding component, we first calculate the global graph context

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:13

vector

h𝑐 = tanh
(
W1

(
1
𝑛

(
𝑛∑︁
𝑖=1

H𝑖

)⊤))
, (13)

which averages node features for all nodes of 𝐺 followed by a non-linear transformation, where
W1 ∈ R𝑑×𝑑 is a learnable weight matrix and H𝑖 is the 𝑖th row of H ∈ R𝑛×𝑑 . Then, the attention
weight of each node 𝑣𝑖 is computed as the inner product between h𝑐 and H𝑖 and normalized to the
range (0, 1), giving the node weight vector: a = 𝜎 (Hh𝑐) ∈ R𝑛 , where 𝜎 is the sigmoid function.
Finally, the graph embedding h𝐺 ∈ R𝑑 is computed as the weighted sum of node embeddings:
h𝐺 =

∑𝑛
𝑖=1 a𝑖H𝑖 .

Now that we have obtained graph embeddings for 𝐺1 and 𝐺2, we use an NTN to calculate the
graph-to-graph interaction vector s(𝐺1,𝐺2) ∈ R𝐿 where 𝐿 denotes the output dimension of NTN.

s(𝐺1,𝐺2) = ReLU
(
h⊤
𝐺1W

[1:𝐿]
2 h𝐺2 +W3 [h⊤𝐺1 ∥h⊤𝐺2]⊤ + b

)
, (14)

where W[1:𝐿]2 ∈ R𝐿×𝑑×𝑑 , W3 ∈ R𝐿×2𝑑 and b ∈ R𝐿 are learnable, and h⊤
𝐺1W

[1:𝐿]
2 h𝐺2 denotes the

following 𝐿-dimensional vector:[
h⊤
𝐺1W

(1)
2 h𝐺2 , h⊤

𝐺1W
(2)
2 h𝐺2 , . . . , h⊤

𝐺1W
(𝐿)
2 h𝐺2

]⊤
,

where W(𝑖)2 is the 𝑖th learnable weight matrix ofW[1:𝐿]2 .
Finally, we apply an MLP to progressively reduce the dimension of s(𝐺1,𝐺2) to a scalar, which

outputs the predicted score𝑤2 to measure the edit operations of the unmatched nodes.

4.4 Model Training
GEDIOT is supervised by the ground-truth 𝐺𝐸𝐷∗ (𝐺1,𝐺2) and the corresponding coupling matrix
𝝅∗ for node matching between two graphs 𝐺1 and 𝐺2 during the training process. As shown in
Eq. (7), the loss function consists of two parts: a value loss L𝑣 to predict the GED and a matching
loss L𝑚 to predict the coupling matrix. The final loss function of GEDIOT is defined as

L = 𝜆L𝑣 + (1 − 𝜆)L𝑚, (15)
where we use a hyperparameter 𝜆 to balance L𝑣 and L𝑚 .

Since the range of 𝐺𝐸𝐷 (𝐺1,𝐺2) is too large to train a neural network effectively, we normalize
the ground-truth GED to the range [0, 1], and the normalized ground-truth GED is given by:

n𝐺𝐸𝐷∗ (𝐺1,𝐺2) = 𝐺𝐸𝐷∗ (𝐺1,𝐺2)
max(𝑛1, 𝑛2) +max(𝑚1,𝑚2)

,

where the denominator on the right is the maximum number of edit operations that modify all
nodes and edges to transform 𝐺1 to 𝐺2. To predict this normalized GED, we define the function:

score(𝐺1,𝐺2) = 𝜎 (𝑤1 +𝑤2),

where𝑤1 =
〈
Ĉ, 𝝅

〉
is the predicted score from the learnable OT component, and𝑤2 is the predicted

score from NTN [3]. Here, 𝜎 is the sigmoid function to ensure that the prediction is within (0, 1).
We use MSE as the loss function for value:

L𝑣 =
(
score(𝐺1,𝐺2) − n𝐺𝐸𝐷∗ (𝐺1,𝐺2)

)2
,

and we fit the predicted coupling matrix with the ground-truth 0-1 matrix 𝝅∗, by minimizing the
binary cross-entropy loss (BCE) between the learned coupling matrix 𝝅 and ground truth 𝝅∗ :

L𝑚 =
1

𝑛1𝑛2
𝐵𝐶𝐸

(
𝝅∗ |𝝅

)
,

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:14 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

Best in 𝑆!: 𝑀"
(!,!)	Best in 𝑆": 𝑀"

(",!)	

Best in 𝑆": 𝑀"
(",&)	 Best in 𝑆!: 𝑀"

(!,&)	

𝐺" 𝐺!
𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝑺

𝑆! 𝑆"

𝑀!
(",")	

Second-Best in 𝑆

Space Splitting: First Iteration

𝑀"
(",")	

Best in 𝑆

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝐺" 𝐺!

𝑢"

𝑢!

𝑢&

𝑣"

𝑣!

𝑣&

𝑺𝟏 𝑺𝟐
𝑀"
(",!)	

Best in 𝑆"
𝑀!
(",!)

Second-Best in 𝑆"

Best among all ‘Second-Best’
Matchings in 𝑆! and 𝑆"

𝑆" 𝑆%𝑆!

Space Splitting: Second Iteration

𝑀"
(!,!)	

Best in 𝑆!
𝑀!
(!,!)

Second-Best in 𝑆!

Best in 𝑆&: 𝑀"
(&,&)	

Fig. 6. Example of Space Splitting of 𝑘-Best Matching

where

𝐵𝐶𝐸
(
𝝅∗ |𝝅

)
=

𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑗=1

𝝅∗𝑖, 𝑗 log𝝅𝑖, 𝑗 +
(
1 − 𝝅∗𝑖, 𝑗

)
log

(
1 − 𝝅𝑖, 𝑗

)
=

〈
𝝅∗, log(𝝅)

〉
+

〈
1 − 𝝅∗, log(1 − 𝝅)

〉
.

4.5 GEP Generation
Although we fit 𝝅 to the ground-truth node matching 𝝅∗ ∈ {0, 1}𝑛1×𝑛2 , in practice when the model
is trained, the learned coupling matrix 𝝅 outputted by GEDIOT is not perfect but in the range
𝝅∗ ∈ [0, 1]𝑛1×𝑛2 representing the confidence of node-to-node matching.
During inference, we adopt the 𝑘-best matching framework of [33] to generate 𝐺𝐸𝑃 (𝐺1,𝐺2)

from the learned coupling matrix 𝝅 , which utilizes the solution space splitting method [11] to
obtain a candidate set of 𝑘-best bipartite node matchings (based on the matching cost specified by
the learned coupling matrix 𝝅) and searches for the one with the shortest edit path as𝐺𝐸𝑃 (𝐺1,𝐺2).
Specifically, let 𝑆 be a set of node matchings (Figure 6 shows two graphs 𝐺1 and 𝐺2 each having 3
nodes and all 6 possible node matchings in 𝑆), in which we can find the best and second-best node
matchings according to the matching cost from 𝝅 , denoted by𝑀 (1,1)1 and𝑀 (1,1)2 , respectively, in
𝑂 (𝑛3) time [11]. The first (resp. second) “1” in the superscript (1, 1) means that the two matchings
are in the first partition (resp. obtained in the first iteration). Let (𝑢, 𝑣) be a node pair in 𝑀 (1,1)1
but not in 𝑀 (1,1)2 where 𝑢 ∈ 𝑉 1 and 𝑣 ∈ 𝑉 2. We can split 𝑆 into two subspaces 𝑆1 and 𝑆2, such
that a node matching of 𝑆 is in 𝑆1 if it contains (𝑢, 𝑣), and otherwise it is in 𝑆2. As shown in the
upper part of Figure 6, 𝑢1 matches 𝑣1 in the best matching in 𝑆 , but 𝑢1 does not match 𝑣1 in the
second-best matching in 𝑆 . Then, we split 𝑆 into 𝑆1 and 𝑆2 according to whether 𝑢1 matches 𝑣1
in the first iteration. Note that 𝑀 (1,1)1 (resp. 𝑀 (1,1)2) becomes the best node matching in 𝑆1 (resp.
𝑆2) after splitting, which we denote as 𝑀 (1,2)1 (resp. 𝑀 (2,2)1). We also search the new second-best

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:15

1 2

3

G 1

1 2

3

G 2

4

5

Fig. 7. Illustration of Adding Dummy Nodes in 𝐺1

node matchings in 𝑆1 and 𝑆2, denoted by𝑀 (1,2)2 and𝑀 (2,2)2 , respectively. The entire node matching
space is partitioned by repeatedly selecting a partition to split in this manner. Assuming that there
are 𝑡 partitions and each has its best and second-best node matching 𝑀 (𝑟,𝑡)1 and 𝑀 (𝑟,𝑡)2 , where
𝑟 = 1, 2, .., 𝑡 , the (𝑡 + 1)th best node matching is𝑀 (𝑡

∗,𝑡)
2 of the partition 𝑡∗ with the best ‘second-best’

node matching, so partition 𝑡∗ is selected for splitting. Consider the lower part of Figure 6, where
we assume the second-best matching 𝑀 (2,2)2 in 𝑆2 is better than the second-best matching 𝑀 (1,2)2
in 𝑆1. Since the best and second-best matchings in 𝑆2 differ based on whether 𝑢1 is matched to
𝑣2, we further split 𝑆2 accordingly. After splitting, the second-best matching𝑀 (2,2)2 in the original
𝑆2 becomes the best matching in 𝑆3, which we denote as 𝑀 (3,3)1 . This process is repeated until 𝑘
partitions are reached, and GED lower-bound-based pruning [8, 18] is integrated to prune the
unfruitful branches. Finally, 2𝑘 node matchings (2 from each partition) are collected as the candidate
set to find the shortest edit path. More details can be found in Appendix C [1].

5 Unsupervised Method: GEDGW
Currently, learning-based methods [2, 3, 33, 59] show the best performance of approximate GED
computation, but they need ground truth for training set. This section presents our unsupervised
optimization approach, GEDGW, that is able to achieve performance comparable to learning-
based methods. GEDGW is based on the Gromov-Wasserstein discrepancy, which bridges GED
computation and optimal transport from an optimization perspective.

5.1 Formulation of GEDGW
Recall that the total edit operations that transform 𝐺1 to 𝐺2 can be determined with a given node
matching between𝐺1 and𝐺2, where GED is the smallest one. Consequently, the GED computation
of the graph pair (𝐺1,𝐺2) can be formulated as an optimization problem related to node matching.
Since there can be (𝑛2 − 𝑛1) nodes in 𝐺2 that do not match any nodes in 𝐺1, we add (𝑛2 − 𝑛1)

dummy nodes in 𝐺1 without any labels and edges following previous works [20, 38], as Figure 7
illustrates. This ensures that the two graphs have the same number of nodes without affecting the
GED computation. For simplicity, we abuse the notations to still denote the graph after adding
dummy nodes by 𝐺1 and let 𝑛 = 𝑛2 = max{𝑛1, 𝑛2} in this section.

Given a node matching, we can derive its induced edit operations into those on nodes and edges.
Accordingly, GED computation can be derived by solving the following quadratic programming
problem where the first (resp. second) term in the objective models the cost of node (resp. edge)
edit operations. Appendix B.3 [1] provides a detailed illustration of the GEDGW formulation.

min
𝝅

∑︁
𝑖,𝑘

M𝑖,𝑘𝝅𝑖,𝑘 +
1
2

∑︁
𝑖, 𝑗,𝑘,𝑙

(A1
𝑖, 𝑗 − A2

𝑘,𝑙
)2𝝅𝑖,𝑘𝝅 𝑗,𝑙 , (16)

s.t. 𝝅1𝑛 = 1𝑛, 𝝅⊤1𝑛 = 1𝑛, 𝝅 ∈ {0, 1}𝑛×𝑛 .

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:16 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

Here,M ∈ {0, 1}𝑛×𝑛 is the node label matching matrix between nodes of𝐺1 and𝐺2, whereM𝑖,𝑘 = 1
if nodes 𝑢𝑖 ∈ 𝑉 1 and 𝑣𝑘 ∈ 𝑉 2 have the same label; otherwise M𝑖,𝑘 = 0. Matrices A1 ∈ {0, 1}𝑛×𝑛 and
A2 ∈ {0, 1}𝑛×𝑛 are the adjacency matrices of 𝐺1 and 𝐺2, respectively. The factor 1

2 in the second
term is to avoid the double counting of 𝝅𝑖,𝑘𝝅 𝑗,𝑙 and 𝝅 𝑗,𝑙𝝅𝑖,𝑘 since the graphs are undirected.
More concretely, the first linear term of Eq. (16) measures the cost of the node edit operations,

including (1) The insertion/deletion of a node as indicated by matching a node in 𝐺2 and a dummy
node in𝐺1, and (2) the relabeling operation as represented by matching a node in𝐺2 to an original
node in 𝐺1 whose labels are different.
The second quadratic term measures the cost of edge insertion/deletion since each element
(A1

𝑖, 𝑗 − A2
𝑘,𝑙
)2𝝅𝑖,𝑘𝝅 𝑗,𝑙 in the sum measures whether edge (𝑢𝑖 , 𝑢 𝑗) ∈ 𝐸1 and edge (𝑣𝑘 , 𝑣𝑙) ∈ 𝐸2 exist

simultaneously when 𝑢𝑖 matches 𝑣𝑘 and 𝑢 𝑗 matches 𝑣𝑙 .
After relaxing the binary constraint to allow elements of 𝝅 to take values in [0, 1], the solution

𝝅 represents the confidence of node-to-node matching between 𝐺1 and 𝐺2. Note that Eq. (16)
with relaxation on binary variables can be regarded as a linear combination of optimal transport
(OT) and Gromov-Wasserstein Discrepancy (GW), where the first linear term models the edit
operations on nodes as an OT problem (the right part of Figure 9 in Appendix B.3 [1]) and the
second quadratic termmodels the edit operations on edges as a GW problem (the left part of Figure 9
in Appendix B.3 [1]). So we call this method GEDGW. The optimization problem of GEDGW is
reformulated as follows:

min
𝝅 ∈Π (1𝑛,1𝑛)

⟨𝝅 ,M⟩ + 1
2

〈
𝝅 ,L(A1,A2) ⊗ 𝝅

〉
(17)

whereΠ(1𝑛, 1𝑛) = {𝝅 ∈ R𝑛×𝑛 | 𝝅1𝑛 = 1𝑛, 𝝅⊤1𝑛 = 1𝑛, 𝝅 ≥ 0} is the feasible set of couplingmatrices.
We exploit the Conditional Gradient (CG) method [6, 48] to solve GEDGW, which is presented in
detail in Appendix B.4 [1]. An example in Appendix D [1] further illustrates our GEDGW method.

5.2 Further Improvement by Ensembling
Recall that GEDGW and GEDIOT model the GED computation from two different perspectives
via optimal transport. To achieve better performance, we combine these two OT-based methods
into an ensemble GEDHOT (GED with Hybrid Optimal Transport), which combines the results
from GEDGW and GEDIOT to enhance the performance of GED computation and GEP generation
during test.
Specifically, given an input of graph pair (𝐺1,𝐺2), we run GEDGW and GEDIOT to get the

GEDs and coupling matrices denoted by �𝐺𝐸𝐷GW (𝐺1,𝐺2) and 𝝅GW, �𝐺𝐸𝐷 IOT (𝐺1,𝐺2) and 𝝅IOT,
respectively. Since GED is the minimum number of edit operations, we choose the smaller of�𝐺𝐸𝐷GW (𝐺1,𝐺2) and �𝐺𝐸𝐷 IOT (𝐺1,𝐺2) as �𝐺𝐸𝐷 (𝐺1,𝐺2).�𝐺𝐸𝐷 (𝐺1,𝐺2) = min

{�𝐺𝐸𝐷GW (𝐺1,𝐺2),�𝐺𝐸𝐷 IOT (𝐺1,𝐺2)
}
.

For GEP generation, we generate the best edit paths via the 𝑘-best matching framework [33] from
𝝅GW and 𝝅IOT, respectively, and then choose the shorter one.

5.3 Time Complexity Analysis
Due to space limitation, we provide a comprehensive analysis of the time complexity of our proposed
methods in Appendix E [1].

In a nutshell, for GEDIOT, since the model training can be done offline given a graph dataset, we
consider the computation cost of its forward propagation, the time complexity of which is given by

𝑂
(
𝑁 (𝑚𝑑 + 𝑛𝑑2 + 𝑛𝑁 2𝑑2) + 𝐿𝑑2 + 𝑛𝑑2 + 𝑛2𝑑 +𝑀𝑛2

)
≈ 𝑂 (𝑛2),

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:17

Table 2. Statistics of Graph Datasets

D |D| |𝑉 |𝑎𝑣𝑔 |𝐸 |𝑎𝑣𝑔 |𝑉 |𝑚𝑎𝑥 |𝐸 |𝑚𝑎𝑥 |𝐿 |
AIDS 700 8.9 8.8 10 14 29
LINUX 1000 7.6 6.9 10 13 1
IMDB 1500 13 65.9 89 1467 1

where we assume that the number of GNN layers is 𝑁 , the dimension of hidden layers of GNN and
MLP is 𝑑 , the output dimension of NTN is 𝐿, 𝑛 = 𝑛2,𝑚 = max(𝑚1,𝑚2) and𝑀 denotes the number
of iterations of the Sinkhorn algorithm. As the hyperparameters are regarded as constants, the time
complexity can be simplified to𝑂 (𝑛2), which is the same as previous learning-based methods in the
worst case. For GEP generation via the 𝑘-best matching framework, the time complexity is 𝑂 (𝑘𝑛3).

For GEDGW, we use the CGmethod [6, 48] (see Appendix B.4 [1] for details) to solve Eq. (17). The
time complexity of CG is bounded by 𝑂 (𝐾𝑛3), where 𝐾 is the number of iterations. For GEDHOT,
the time complexity is 𝑂 (𝑛2 + 𝐾𝑛3) = 𝑂 (𝐾𝑛3), and the time complexity to generate GEP using the
𝑘-best matching framework is 𝑂 (𝑘𝑛3). Note that both GEDGW and GEDHOT have the same time
complexity as the classical heuristic algorithms (e.g. Hungarian and VJ).

6 Experiment
This section evaluates the performance of our proposed methods and compares with existing
approximate GED computing methods. Our code is released at https://github.com/chengqihao/GED-
via-Optimal-Transport.

6.1 Datasets
We use three real-world graph datasets: AIDS, Linux, and IMDB. Table 2 summarizes their statistics
including the number of graphs (|D|), the average number of nodes (|𝑉 |𝑎𝑣𝑔) and edges (|𝐸 |𝑎𝑣𝑔),
the maximum number of nodes (|𝑉 |𝑚𝑎𝑥) and edges (|𝐸 |𝑚𝑎𝑥), and the number of labels (|𝐿 |). For
graph pairs with no more than 10 nodes, we use the A* algorithm [38] to generate the exact ground
truth, and for the remaining graphs with more than 10 nodes, we use the ground-truth generation
technique in [2, 33] to generate 100 synthetic graphs for each graph. For each dataset, we sample
60% graphs and pair every two of them to create graph pairs of the training set. As for the test set,
we sample 20% graphs; for each selected graph, 100 graphs are randomly chosen from the training
graphs to generate 100 graph pairs for the test set. The validation set is formed in the same manner
as the test set. Appendix F.1 [1] describes the datasets, data preprocessing, and dataset partitions in
detail.

6.2 Compared Methods
Recall that GEDGW is a non-learning approximation algorithm, GEDIOT is a learning-based
method, and GEDHOT is a combination of both. We compare them with the classical approximation
algorithms and learning-based methods.
Classical Algorithms. We select three representative classical approximate algorithms for GED
computation. (1) Hungarian [37] is based on the Hungarian method for weighted graph matching
which takes cubic time. (2) VJ [16] is based on bipartite graph matching which takes cubic time.
(3) Classic runs both Hungarian and VJ to find the GEPs, and takes the better GEP. We do not
include the heuristic A*-beam algorithm [29] since Noah in the paragraph below is an optimized
version of A*-beam with better performance.
Learning-based Methods. We choose four state-of-the-art learning-based methods for GED
computation. (1) SimGNN [3] is the very first learning method applying GNN for GED computation.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

https://github.com/chengqihao/GED-via-Optimal-Transport
https://github.com/chengqihao/GED-via-Optimal-Transport

23:18 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

(2) Noah and GPN [59]. Noah employs the well-designed graph path network (GPN) to optimize
the search direction of the A*-Beam algorithm [29] to find GEP. Additionally, GPN can also be
utilized independently for GED computation only. (3) TaGSim [2] categories edit operations to
four different types, and learns the number of edit operations in each type to achieve competitive
GED approximation. (4) GEDGNN [33] is the latest method for both GED computation and GEP
generation. See Section 2 for a detailed review.
Our Methods. We propose GEDIOT, GEDGW, and GEDHOT for comparison. The detailed
setup can be found in Appendix F.2 [1].

6.3 Evaluation metrics
We consider four kinds of metrics to evaluate the performance, which have been widely used [2, 3,
33, 59].
Metrics for GED Computation. (1)Mean Absolute Error (MAE) measures the average absolute
error between ground-truth GEDs and approximate GEDs. For a graph pair (𝐺1,𝐺2), it is formulated
as |𝐺𝐸𝐷∗ (𝐺1,𝐺2) −�𝐺𝐸𝐷 (𝐺1,𝐺2) |. (2) Accuracy measures the ratio of approximate GEDs that
equal the ground-truth GEDs after rounding to the nearest integer. (3) Feasibility measures the
ratio that the approximate GEDs are no less than the ground-truth GEDs, so that a GEP of this
length is feasible (i.e., can be found).
Metrics for Ranking. These metrics measure the matching ratio between the ranking results
of the approximate GED and the ground truth. They include (4) Spearman’s Rank Correlation
Coefficient (𝜌). (5) Kendall’s Rank Correlation Coefficient (𝜏). (6) Precision at 𝑘 (𝑝@𝑘). The
first two metrics focus on global ranks while the last focuses on top 𝑘 . We use 𝑝@10 and 𝑝@20.
Metrics for Path. These metrics measure how well the generated edit path 𝐺𝐸𝑃 matches the
ground-truth 𝐺𝐸𝑃∗. They include (7) 𝑅𝑒𝑐𝑎𝑙𝑙 = |𝐺𝐸𝑃∩𝐺𝐸𝑃∗ |

|𝐺𝐸𝑃∗ | , (8) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐺𝐸𝑃∩𝐺𝐸𝑃∗ |
|𝐺𝐸𝑃 | , and (9) F1

score defined as 𝐹1 = 2 · 𝑅𝑒𝑐𝑎𝑙𝑙 ·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .

Metrics for Efficiency. (10) Running Time (𝑠𝑒𝑐/100𝑝), where 𝑝 = “pairs”. It records the time for
every 100 graph pairs during test.

6.4 Experimental Results
We evaluate the performance of various methods for both GED computation and GEP generation.
Performance of GED Computation. We first compare our proposed methods (i.e., GEDGW,
GEDIOT, and GEDHOT) with the six baselines mentioned in Section 6.2 (Hungarian and VJ are
dominated by Classic and are hence omitted due to space limit). We categorize the methods into
three types: learning-based methods, non-learning methods, and hybrid methods. We count Noah
also as a hybrid method since it combines GPN with A*-Beam.

Table 3 reports the results.We can see that among the learning-basedmethods, GEDGNN achieves
the best performance on all three datasets for value, ranking, and feasibility metrics. Meanwhile,
GEDIOT significantly outperforms GEDGNN (as well as the other learning-based baselines) in
terms of value and ranking metrics with comparable time consumption. For instance, compared
with the state-of-the-art method GEDGNN, the MAE of our proposed GEDIOT is 23.9%, 63.8%,
20.5% smaller on AIDS, Linux, and IMDB, respectively; also, on AIDS, the accuracy of GEDGNN
and our GEDIOT is 40.4% and 49.7%, respectively. Note that TaGSim is the most time-efficient (e.g.,
on AIDS, the training time for an epoch of TaGSim is 151 s, while that of GEDIOT is 581 s) but
cannot return high-quality results. We train TaGSim for more epochs so that the total training
time of TaGSim is roughly equal to GEDIOT, and the results are similar to that reported in Table 3.
On AIDS, Linux, and IMDB, the MAE and accuracy of TaGSim with more training time are 0.816

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:19

Table 3. Performance Evaluations of GED Computation.

Datasets Methods Value Ranking Feasibility ↑ Time ↓
(𝑠𝑒𝑐/100𝑝)MAE ↓ Accuracy ↑ 𝜌 ↑ 𝜏 ↑ 𝑝@10 ↑ 𝑝@20 ↑

AIDS

SimGNN 0.880 34.7% 0.841 0.704 0.632 0.741 61.5% 0.279
GPN 0.924 35.6% 0.816 0.680 0.606 0.713 66.5% 0.245

TaGSim 0.807 37.4% 0.862 0.730 0.669 0.754 66.2% 0.087
GEDGNN 0.763 40.4% 0.870 0.742 0.716 0.774 72.1% 0.307
GEDIOT 0.581 49.7% 0.922 0.813 0.814 0.853 73.9% 0.318
Classic 6.594 3.3% 0.529 0.418 0.545 0.614 100% 1.463
GEDGW 1.247 41.2% 0.789 0.670 0.752 0.765 100% 0.430
Noah 3.164 5.6% 0.704 0.585 0.681 0.721 100% 161.023

GEDHOT 0.484 59.3% 0.936 0.838 0.863 0.885 73.9% 0.745

Linux

SimGNN 0.408 63.3% 0.939 0.856 0.911 0.916 75.6% 0.278
GPN 0.142 87.1% 0.959 0.896 0.947 0.974 90.5% 0.265

TaGSim 0.346 69.6% 0.937 0.859 0.888 0.910 85.9% 0.069
GEDGNN 0.094 91.6% 0.961 0.897 0.980 0.976 95.9% 0.282
GEDIOT 0.034 97.2% 0.969 0.911 0.992 0.995 98.5% 0.326
Classic 2.471 21.5% 0.785 0.707 0.762 0.835 100% 0.915
GEDGW 1.198 48.1% 0.817 0.705 0.827 0.811 100% 0.382
Noah 1.736 8.4% 0.870 0.798 0.906 0.936 100% 71.646

GEDHOT 0.026 97.9% 0.970 0.915 0.994 0.997 98.5% 0.754

IMDB

SimGNN 1.191 40.4% 0.735 0.648 0.759 0.799 68.1% 0.291
GPN 1.614 28.2% 0.742 0.668 0.669 0.708 34.3% 0.229

TaGSim 5.247 14.8% 0.496 0.441 0.666 0.699 47.7% 0.095
GEDGNN 0.735 59.6% 0.859 0.781 0.838 0.856 80.2% 0.305
GEDIOT 0.584 65.3% 0.930 0.858 0.902 0.912 78.6% 0.347
Classic 12.980 62.8% 0.764 0.718 0.837 0.831 100% 3.483
GEDGW 0.818 83.0% 0.926 0.896 0.968 0.951 93.6% 0.247
Noah 10.467 38.4% 0.717 0.688 0.755 0.795 100% 4816.67

GEDHOT 0.506 69.9% 0.956 0.899 0.978 0.972 73.1% 0.607

↑: higher is better, ↓: lower is better Bold: best, Underline: runner-up.

and 37.9%, 0.316 and 70.6%, 4.962 and 11.4% respectively, which are still worse than our model. It
demonstrates that our experimental setup is sufficient to converge.
For the non-learning methods, Classic and GEDGW, it is obvious that GEDGW achieves much

better performance on all the value and ranking metrics with up to 14× faster computational speed.
More surprisingly, on AIDS and IMDB, GEDGW even achieves a higher accuracy than the state-
of-the-art learning-based method GEDGNN. Note that the training phase for the learning-based
methods always takes several hours, while GEDGW does not need that phase and directly outputs
results within a second. Moreover, all the learning-based methods need the ground truths of GED
and node matching for model training. The performance of GEDGW suggests that it is possible to
approximate high-quality GEDs in a non-learning way.

Finally, for the two hybrid methods, Noah and GEDHOT, we can see that compared to Noah, the
MAE of our GEDHOT is up to 20× smaller with hundreds of times smaller computational time (recall
that Noah runs the expensive A* algorithm). In addition, in Table 3, GEDHOT clearly outperforms all
the other methods, followed by the proposed GEDIOT and GEDGW with a consistent second-best
performance on all three datasets. For instance, on AIDS, the accuracies of GEDIOT, GEDGW and
GEDHOT are 49.7%, 41.2%, and 59.3% respectively, while that of GEDGNN is only 40.4%. This
shows that GEDHOT can combine the merits of both GEDIOT and GEDGW to get better results.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:20 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

Table 4. Performance Evaluations of GEP Generation.

Datasets Methods Value Ranking Path Time ↓
(𝑠𝑒𝑐/100𝑝)MAE ↓ Accuracy ↑ 𝜌 ↑ 𝜏 ↑ 𝑝@10 ↑ 𝑝@20 ↑ 𝑅𝑒𝑐𝑎𝑙𝑙 ↑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ↑ 𝐹1 ↑

AIDS

Classic 6.594 3.3% 0.529 0.418 0.545 0.614 0.572 0.345 0.423 1.752
Noah 3.164 5.6% 0.704 0.585 0.681 0.721 0.609 0.505 0.548 163.153

GEDGNN 1.503 42.2% 0.795 0.690 0.849 0.838 0.715 0.646 0.675 56.439
GEDIOT 1.266 49.9% 0.814 0.715 0.881 0.858 0.756 0.692 0.719 57.857
GEDGW 0.829 53.2% 0.862 0.774 0.842 0.858 0.715 0.675 0.692 57.102
GEDHOT 0.440 71.2% 0.923 0.864 0.951 0.935 0.809 0.786 0.796 112.161

Linux

Classic 2.471 21.5% 0.785 0.707 0.762 0.835 0.770 0.541 0.623 0.954
Noah 1.736 8.4% 0.870 0.798 0.906 0.936 0.851 0.772 0.802 73.018

GEDGNN 0.156 93.5% 0.970 0.954 0.987 0.980 0.917 0.904 0.909 19.317
GEDIOT 0.114 95.4% 0.976 0.965 0.988 0.987 0.924 0.914 0.918 19.514
GEDGW 0.591 72.2% 0.898 0.836 0.925 0.887 0.837 0.780 0.802 26.788
GEDHOT 0.033 98.4% 0.994 0.990 0.992 0.996 0.928 0.924 0.926 47.523

IMDB

Classic 12.980 62.8% 0.764 0.718 0.837 0.831 0.833 0.628 0.654 3.663
Noah 10.467 38.4% 0.717 0.688 0.755 0.795 0.845 0.670 0.682 4864.38

GEDGNN 3.574 79.6% 0.888 0.859 0.924 0.924 0.907 0.808 0.826 93.893
GEDIOT 3.638 82.0% 0.903 0.878 0.923 0.928 0.907 0.816 0.831 93.091
GEDGW 0.374 93.2% 0.969 0.955 0.988 0.983 0.763 0.736 0.744 81.948
GEDHOT 0.254 95.0% 0.983 0.972 0.995 0.993 0.946 0.927 0.933 170.412

↑: higher is better, ↓: lower is better Bold: best, Underline: runner-up.

Performance of GEP Generation. We next compare the performance of GEP generation of the
methods above. Note that among the learning-based baselines, Noah and GEDGNN are the only
two that can generate GEP, so we include Noah, GEDGNN, and Classic as baselines in Table 4 for
comparison. We can see that Classic takes the shortest computational time, but the MAE is several
times larger than other methods. Among the other four methods, similar to GED results in Table 3,
GEDHOT achieves the best performance for value and ranking metrics on all the three datasets. For
example, on AIDS, the accuracy of GEDGNN and GEDHOT is 42.2% and 71.2% respectively; also,
on Linux, GEDHOT obtains 4.7×, 17.9×, 3.5× smaller MAE compared with GEDGNN, GEDGW,
GEDIOT, respectively. Moreover, the second-best is either GEDIOT or GEDGW.
Note that the computational time of GEDHOT is about twice as large as the time of the other

three methods except for Classic. Even if a smaller time cost is preferred, our proposed GEDGW
and GEDIOT are preferred compared to GEDGNN, which is the latest method for GEP generation.
It is worth noting that on AIDS and IMDB, the non-learning method GEDGW even achieves 1.8×
and 9.6× smaller MAE than the learning-based method GEDGNN.
Regarding path quality metrics, Recall, Precision, and F1 score, Table 4 shows that GEDHOT

consistently performs the best, and GEDIOT is consistently the second-best.
We also study the contribution of GEDIOT and GEDGW for the ensemble method GEDHOT. For

example, on AIDS, for GED computation, most graph pairs (80.8%) use the results from GEDIOT
instead of GEDGW. For GEP generation, 63.1% of the graph pairs use the results from GEDIOT, and
36.9% of the graph pairs use the results fromGEDGW.More results can be found in Appendix G.2 [1].

Note that GED is a distance metric, satisfying the triangle inequality. Without loss of generality,
we conduct experiments on AIDS and Linux to evaluate the fraction of triangle inequality violations
in the predicted GEDs. The results shown in Appendix G.2 [1] indicate that our methods satisfy
this property in most cases (> 95%).

6.5 Generalizability
Since all the learning-based methods require training data supervision, it is interesting to explore
how they generalize beyond the training data distribution, including our GEDIOT model.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:21

Table 5. GED Computation of Unseen Graph Pairs.

Datasets Methods Value Ranking Feasibility ↑ Time ↓
(𝑠𝑒𝑐/100𝑝)MAE ↓ Accuracy ↑ 𝜌 ↑ 𝜏 ↑ 𝑝@10 ↑ 𝑝@20 ↑

AIDS

SimGNN 0.925 34.4% 0.808 0.668 0.631 0.731 63.6% 0.284
GPN 1.038 33.4% 0.771 0.631 0.578 0.683 64.5% 0.235

TaGSim 0.880 34.8% 0.832 0.694 0.674 0.739 66.0% 0.093
GEDGNN 0.826 38.0% 0.831 0.696 0.702 0.750 69.4% 0.298
GEDIOT 0.684 44.5% 0.897 0.776 0.791 0.835 71.3% 0.313

Linux

SimGNN 0.399 63.2% 0.953 0.877 0.934 0.918 77.6% 0.288
GPN 0.147 86.6% 0.973 0.916 0.948 0.967 90.5% 0.279

TaGSim 0.347 69.3% 0.951 0.877 0.878 0.905 87.4% 0.079
GEDGNN 0.122 89.8% 0.965 0.904 0.968 0.973 95.1% 0.291
GEDIOT 0.051 96.1% 0.976 0.925 0.983 0.990 97.6% 0.336

IMDB

SimGNN 1.236 39.3% 0.733 0.642 0.755 0.801 67.4% 0.307
GPN 1.635 27.7% 0.741 0.664 0.670 0.710 33.9% 0.226

TaGSim 4.811 15.4% 0.501 0.445 0.665 0.700 47.2% 0.107
GEDGNN 0.743 59.2% 0.858 0.777 0.842 0.857 79.8% 0.294
GEDIOT 0.595 65.5% 0.925 0.850 0.903 0.913 78.5% 0.353

↑: higher is better, ↓: lower is better Bold: best, Underline: runner-up.

Modeling GED Computation of Unseen Graphs. Recall that we prepared the test set by
sampling 100 training graphs for each test graph, which models the graph similarity search task. To
evaluate the generalizability, now we instead sample 100 test graphs (rather than training graphs)
for each test graph, so that both graphs in a graph pair of the test set are unseen during training.
Table 5 shows the results of the five learning-based methods, where GEDIOT still significantly

outperforms GEDGNN and the others in terms of value and ranking metrics. For example, on Linux,
the MAE of GEDIOT is 2.4× smaller than GEDGNN, and the accuracy reaches 96.1% while that of
GEDGNN is below 90%.
Compared with the results in Table 3, the performance of all methods decreases since the test

set is more challenging. Nevertheless, the amount of degradation is not significant. For example,
the accuracy of GEDIOT decreases by 10.5% and 1.1% on AIDS and Linux, respectively, which
demonstrates its generalizability.
Generalization to Large Unseen Graphs. Ground truth is crucial for supervised learning-based
methods. In GED computation, ground truth is difficult to obtain for large graphs due to the
NP-hardness of the problem. For instance, there are plenty of graphs with more than 10 nodes in
the IMDB dataset, and it is too expensive to calculate the GEDs of these graph pairs with exact
algorithms. Therefore, we consider training the model only with small graphs and testing the
performance of the learning-based methods on large unseen graphs. More concretely, we select the
graph pairs from the training set of IMDB that are formed by the small graphs (at most 10 nodes)
to build a new training set. All the methods trained on it are appended with the “-small” suffix,
i.e., GEDGNN-small, GEDIOT-small and GEDHOT-small. To evaluate generalizability, we also
construct a new test set, which consists of the graph pairs from the test set of IMDB that are formed
by the large graphs (more than 10 nodes). The results are shown in Figure 8, where GEDGNN,
GEDIOT, and GEDHOT denote the methods trained on the complete training set of IMDB. We can
see that models trained on small graphs have an inferior performance compared to training on
complete training set. However, GEDHOT-small and GEDIOT-small are still significantly better than
GEDGNN-small in terms of MAE and accuracy. Notably, GEDGW achieves the highest accuracy of

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:22 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

0

5

10

15

20

25

G
E

D
 M

AE

1.302 0.993 0.788

7.173

3.144
1.71

24.536

1.444

GEDGNN
GEDIOT
GEDHOT
GEDGNN-small
GEDIOT-small
GEDHOT-small
Classic
GEDGW

(a) IMDB - MAE

0%

10%

20%

30%

40%

50%

60%

70%

80%

G
E

D
 A

cc
ur

ac
y

32.1%

44.0%

58.1%

9.1%
14.2%

49.2%
41.0%

80.7%

(b) IMDB - Accuracy

Fig. 8. Generalizability for Large Unseen Graphs on IMDB

Table 6. Ablation Study of GEDIOT Components.

Method AIDS Linux
MAE ↓ Accuracy ↑ 𝜌 ↑ 𝜏 ↑ 𝑝@10 ↑ 𝑝@20 ↑ MAE↓ Accuracy ↑ 𝜌 ↑ 𝜏 ↑ 𝑝@10 ↑ 𝑝@20 ↑

GEDIOT 0.581 49.7% 0.922 0.813 0.814 0.853 0.034 97.2% 0.969 0.911 0.992 0.995
GEDIOT (w/ GCN) 0.578 49.1% 0.917 0.805 0.794 0.838 0.064 93.8% 0.967 0.909 0.980 0.985
GEDIOT (w/o MLP) 0.854 35.9% 0.814 0.677 0.599 0.678 0.158 85.9% 0.958 0.889 0.934 0.956
GEDIOT (w/o Cost) 0.794 38.4% 0.870 0.741 0.692 0.765 0.132 87.5% 0.964 0.901 0.953 0.966

GEDIOT (w/o learnable 𝜀) 0.767 38.5% 0.906 0.790 0.801 0.831 0.063 94.7% 0.967 0.910 0.988 0.991

80.7% since it is unsupervised, demonstrating its robustness as compared to learning-based methods
that face generalizability challenges.

We further discuss how the generalizability is impacted when synthesizing test graph pairs with
larger GEDs. Similarly, GEDGW achieves the best performance and our neural model outperforms
GEDGNN. Detailed results are shown in Figure 12 in Appendix G.1 [1].
We notice that the state-of-the-art methods Nass [21] and AStar-BMao [9] for graph similarity

search (introduced in Section 2) can be applied for exact GED computation by setting the similarity
threshold to infinity. As indicated in [33], exact methods suffer from huge computation costs when
the graph size increases. We compare our method GEDIOT with Nass and AStar-BMao on two
large real-world datasets. The detailed setup and the running time of the three methods can be
found in Appendix G.3 [1]. We find that the running time of the two exact methods Nass and
AStar-BMao is quite sensitive w.r.t. the graph size and the GED value. Our method GEDIOT shows
a consistent advantage compared to the two exact algorithms, particularly for larger graphs and
GEDs, since the time complexity of GEDIOT is only 𝑂 (𝑛2), whereas AStar-BMao and Nass are still
exponential-time algorithms.

We also generate synthetic power-law graphs of various sizes (from 50 to 400 nodes). The results
are reported in Appendix G.4 [1], where we find that the GED relative error of our GEDGW and
GEDHOT is nearly 0 while that of GEDGNN is always almost 2, and the computational time of
learning-based methods is orders of magnitude faster than the exact algorithms.

6.6 Ablation and Parameter Study
We conduct ablation study to verify the effectiveness of various modules in GEDIOT, and to show
the robustness of GEDIOT w.r.t. hyperparameters by varying their values.
Effect of Modules in GEDIOT. In this ablation study, we modify GEDIOT into four variants and
compare their performance with GEDIOT. Table 6 shows the results, where we use “w/ GCN” to
denote the variant substituting GIN with GCN in GEDIOT, and use “w/o MLP”, “w/o Cost”, and
“w/o learnable 𝜀” to denote GEDIOT that removes the MLP in the node embedding component,
that replaces cost matrix module in the learnable OT component with H1 (H2)⊤ (i.e., to model

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

Computing Approximate Graph Edit Distance
via Optimal Transport 23:23

node interactions with simple inner product of their embeddings), and that fixes the regularization
coefficient 𝜀 in the learnable Sinkhorn layer as 𝜀0 = 0.05, respectively.
As Table 6 shows, replacing or removing a module in GEDIOT can significantly degrade the

performance of both value and ranking metrics, which verifies the effectiveness of our proposed
components for GED computation. For instance, on AIDS, if fixing the regularization coefficient 𝜀,
the accuracy decreases from 49.7% to 38.5% and MAE increases from 0.581 to 0.767.
Varying Parameters in the Sinkhorn Algorithm. We study how the performance of GEDIOT
is impacted as the initial value of the regularization coefficient, denoted by 𝜀0 and the number of
iterations varies in the learnable Sinkhorn layer. The results are presented in Appendix G.5 [1].
We find that both MAE and accuracy are stable with various 𝜀0, which shows the robustness of
the learnable regularization method to 𝜀0. Moreover, we observe that the MAE decreases and the
accuracy increases as the number of iterations increases, but after 15 (resp. 10) iterations on AIDS
(resp. Linux), the MAE and accuracy become fairly stable as the Sinkhorn algorithm converges.
Note that the computational time also increases when conducting more iterations. Considering the
time-accuracy tradeoff, we set the iteration number to 5 by default.
Varying 𝜆 in the Loss Function. As presented in Appendix G.5 [1], we also discuss the effect of
varying 𝜆 in Eq. (15) (from 0 to 1) that balances the two terms L𝑚 and L𝑣 of the loss function. The
results show that the performance improves with the increase of 𝜆 in [0, 1] and becomes stable
when 𝜆 is around 0.8.
Varying the Size of Training Set. In this experiment, we evaluate the effect of varying the
training set size. Concretely, we randomly sample 10%-100% of the original training set of AIDS
and Linux to retrain GEDIOT. The results in Appendix G.5 [1] describe its influence on training
time, MAE, and accuracy of GEDIOT. It can be observed that as the training set size increases, the
MAE decreases and the accuracy increases, while the training time increases linearly. Furthermore,
the observed trends of MAE and accuracy with increasing training set size appear to be flattening,
which shows that training set size is sufficient.
𝑘-Best Matching. We further verify the effect of 𝑘 in 𝑘-best matching for GEP generation. As
depicted in Appendix G.5 [1], the MAE constantly decreases and the accuracy increases as the
parameter 𝑘 increases. Nevertheless, computational time also increases with the increase of 𝑘 since
the search space becomes larger.

7 Conclusion
In this paper, we proposed novel optimal-transport-based methods for graph edit distance compu-
tation and graph edit path generation from both learning and optimization perspectives. We first
proposed a neural network with inverse optimal transport called GEDIOT. By modeling the node
edit operations and edge edit operations as optimization problems, we also proposed an unsuper-
vised method GEDGW to approximate the GED value without the need of training. Additionally,
we combine the two methods and propose an ensemble method GEDHOT which achieves a higher
performance. Experiments demonstrate that our methods outperform the state-of-the-art methods
for GED computation and GEP generation with remarkable result quality and generalizability.

Acknowledgments
This work was supported by DOE ECRP Award 0000274975, NSF OIA-2229394, NSF OAC-2414474,
and NSF OAC-2414185. Additionally, Zhongyi Huang was partially supported by the NSFC Project
No. 12025104.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:24 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

References
[1] 2024. Full Technical Report. https://arxiv.org/abs/2412.18857.
[2] Jiyang Bai and Peixiang Zhao. 2021. TaGSim: Type-Aware Graph Similarity Learning and Computation. PVLDB 15, 2

(2021), 335–347.
[3] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. 2019. SimGNN: A Neural Network

Approach to Fast Graph Similarity Computation. In WSDM. 384–392.
[4] David B Blumenthal and Johann Gamper. 2020. On The Exact Computation of The Graph Edit Distance. Pattern

Recognition Letters 134 (2020), 46–57.
[5] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
[6] Gábor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and

Sebastian Pokutta. 2022. Conditional Gradient Methods. arXiv preprint arXiv:2211.14103 (2022).
[7] Horst Bunke and Gudrun Allermann. 1983. Inexact Graph Matching for Structural Pattern Recognition. Pattern

Recognition Letters 1, 4 (1983), 245–253.
[8] Lijun Chang, Xing Feng, Xuemin Lin, Lu Qin, Wenjie Zhang, and Dian Ouyang. 2020. Speeding up GED Verification

for Graph Similarity Search. In ICDE. 793–804.
[9] Lijun Chang, Xing Feng, Kai Yao, Lu Qin, and Wenjie Zhang. 2022. Accelerating Graph Similarity Search via Efficient

GED Computation. IEEE Transactions on Knowledge and Data Engineering 35, 5 (2022), 4485–4498.
[10] Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. 2020. Partial Optimal Transport with Applications on Positive-

unlabeled Learning. NeurIPS 33 (2020), 2903–2913.
[11] Chandra R Chegireddy and Horst W Hamacher. 1987. Algorithms for Finding 𝑘-Best Perfect Matchings. Discrete

Applied Mathematics 18, 2 (1987), 155–165.
[12] Wei-Ting Chiu, Pei Wang, and Patrick Shafto. 2022. Discrete Probabilistic Inverse Optimal Transport. In ICML.

3925–3946.
[13] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. 2016. Optimal Transport for Domain Adaptation.

TPAMI 39, 9 (2016), 1853–1865.
[14] Marco Cuturi. 2013. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. NeurIPS 26 (2013), 2292–2300.
[15] Yihe Dong and Will Sawin. 2020. COPT: Coordinated Optimal Transport on Graphs. NeurIPS 33 (2020), 19327–19338.
[16] Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. 2011. Speeding up Graph Edit Distance Computation Through

Fast Bipartite Matching. In International Workshop on Graph-Based Representations in Pattern Recognition. 102–111.
[17] Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen, and Horst Bunke. 2013. A Fast Matching Algorithm

for Graph-Based Handwriting Recognition. In International Workshop on Graph-Based Representations in Pattern
Recognition (Lecture Notes in Computer Science, Vol. 7877). 194–203.

[18] Karam Gouda and Mona Arafa. 2015. An Improved Global Lower Bound for Graph Edit Similarity Search. Pattern
Recognition Letters 58 (2015), 8–14.

[19] Karam Gouda and Mosab Hassaan. 2016. CSI_GED: An Efficient Approach for Graph Edit Similarity Computation. In
2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 265–276.

[20] Derek Justice and Alfred Hero. 2006. A Binary Linear Programming Formulation of The Graph Edit Distance. TPAMI
28, 8 (2006), 1200–1214.

[21] Jongik Kim. 2021. Boosting Graph Similarity Search through Pre-computation. In Proceedings of the 2021 International
Conference on Management of Data. 951–963.

[22] Jongik Kim, Dong-Hoon Choi, and Chen Li. 2019. Inves: Incremental Partitioning-Based Verification for Graph
Similarity Search.. In EDBT. 229–240.

[23] Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo K Rohde. 2017. Optimal Mass Transport:
Signal Processing and Machine-Learning Applications. IEEE Signal Processing Magazine 34, 4 (2017), 43–59.

[24] Ling Li, Siqiang Luo, Yuhai Zhao, Caihua Shan, ZhengkuiWang, and Lu Qin. 2023. COCLEP: Contrastive Learning-based
Semi-Supervised Community Search. In ICDE. 2483–2495.

[25] Yongjiang Liang and Peixiang Zhao. 2017. Similarity Search in Graph Databases: A Multi-Layered Indexing Approach.
In ICDE. 783–794.

[26] Yongjiang Liang and Peixiang Zhao. 2017. Similarity Search in Graph Databases: A Multi-layered Indexing Approach.
In 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 783–794.

[27] Junfeng Liu, Min Zhou, Shuai Ma, and Lujia Pan. 2023. MATA*: Combining Learnable NodeMatching with A* Algorithm
for Approximate Graph Edit Distance Computation. In CIKM. 1503–1512.

[28] Facundo Mémoli. 2011. Gromov-Wasserstein Distances and The Metric Approach to Object Matching. Foundations of
Computational Mathematics 11, 4 (2011), 417–487.

[29] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. 2006. Fast Suboptimal Algorithms for The Computation of Graph
Edit Distance. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR). 163–172.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

https://arxiv.org/abs/2412.18857

Computing Approximate Graph Edit Distance
via Optimal Transport 23:25

[30] Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. 2019. GOT: An Optimal Transport
Framework for Graph Comparison. NeurIPS 32 (2019), 13899–13910.

[31] Gabriel Peyré, Marco Cuturi, et al. 2019. Computational Optimal Transport: With Applications to Data Science.
Foundations and Trends® in Machine Learning 11, 5-6 (2019), 355–607.

[32] Gabriel Peyré, Marco Cuturi, and Justin Solomon. 2016. Gromov-Wasserstein Averaging of Kernel and Distance
Matrices. In ICML. 2664–2672.

[33] Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. 2023. Computing Graph Edit
Distance via Neural Graph Matching. PVLDB 16, 8 (2023), 1817–1829.

[34] Shaima Qureshi et al. 2023. Limits of Depth: Over-Smoothing and Over-Squashing in GNNs. Big Data Mining and
Analytics 7, 1 (2023), 205–216.

[35] Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal, and Sayan Ranu.
2022. Greed: A Neural Framework for Learning Graph Distance Functions. In NeurIPS. 22518–22530.

[36] Kaspar Riesen and Horst Bunke. 2008. IAM Graph Database Repository for Graph Based Pattern Recognition and
Machine Learning. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition (SSPR) (Lecture Notes in Computer Science, Vol. 5342). 287–297.

[37] Kaspar Riesen and Horst Bunke. 2009. Approximate Graph Edit Distance Computation by Means of Bipartite Graph
Matching. Image and Vision Computing 27, 7 (2009), 950–959.

[38] Kaspar Riesen, Sandro Emmenegger, and Horst Bunke. 2013. A Novel Software Toolkit for Graph Edit Distance
Computation. In International Workshop on GraphBased Representations in Pattern Recognition. 142–151.

[39] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. 2023. A Survey on Oversmoothing in Graph Neural
Networks. arXiv preprint arXiv:2303.10993 (2023).

[40] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt. 2011.
Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research 12, 9 (2011), 2539–2561.

[41] Liangliang Shi, Jack Fan, and Junchi Yan. 2024. OT-CLIP: Understanding and Generalizing CLIP via Optimal Transport.
In ICML. 1–22.

[42] Liangliang Shi, Zhaoqi Shen, and Junchi Yan. 2024. Double-Bounded Optimal Transport for Advanced Clustering and
Classification. In AAAI, Vol. 38. 14982–14990.

[43] Liangliang Shi, Gu Zhang, Haoyu Zhen, Jintao Fan, and Junchi Yan. 2023. Understanding and Generalizing Contrastive
Learning from The Inverse Optimal Transport Perspective. In ICML. 31408–31421.

[44] Andrew M Stuart and Marie-Therese Wolfram. 2020. Inverse Optimal Transport. SIAM J. Appl. Math. 80, 1 (2020),
599–619.

[45] Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. 2020. Fused Gromov-Wasserstein
Distance for Structured Objects. Algorithms 13, 9 (2020), 212.

[46] Titouan Vayer, Nicolas Courty, Romain Tavenard, Laetitia Chapel, and Rémi Flamary. 2019. Optimal Transport for
Structured Data with Application on Graphs. In ICML, Vol. 97. PMLR, 6275–6284.

[47] Cédric Villani et al. [n. d.]. Optimal Transport: Old and New. Vol. 338. Springer.
[48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. 2021. Semi-Relaxed Gromov-

Wasserstein Divergence and Applications on Graphs. In ICLR. 1–14.
[49] Hanchen Wang, Rong Hu, Ying Zhang, Lu Qin, Wei Wang, and Wenjie Zhang. 2022. Neural Subgraph Counting with

Wasserstein Estimator. In SIGMOD. 160–175.
[50] Jianwei Wang, Kai Wang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. 2024. Neural Attributed Community Search at

Billion Scale. PACMMOD 1, 4 (2024), 1–25.
[51] Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. 2021. Combinatorial Learning of Graph

Edit Distance via Dynamic Embedding. In CVPR. 5241–5250.
[52] Xiaoli Wang, Xiaofeng Ding, Anthony K. H. Tung, Shanshan Ying, and Hai Jin. 2012. An Efficient Graph Indexing

Method. In ICDE. 210–221.
[53] Alan Geoffrey Wilson. 1969. The Use of Entropy Maximising Models, in the Theory of Trip Distribution, Mode Split

and Route Split. Journal of Transport Economics and Policy (1969), 108–126.
[54] Bing Xiao, Xinbo Gao, Dacheng Tao, and Xuelong Li. 2008. HMM-Based Graph Edit Distance for Image Indexing.

International Journal of Imaging Systems and Technology 18, 2-3 (2008), 209–218.
[55] Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. 2022. Graph Neural Networks in Node Classification:

Survey and Evaluation. Machine Vision and Applications 33, 1 (2022), 4–22.
[56] Hongteng Xu, Dixin Luo, and Lawrence Carin. 2019. Scalable Gromov-Wasserstein Learning for Graph Partitioning

and Matching. In NeurIPS. 3046–3056.
[57] Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng, and Lei Li. 2021. Vocabulary Learning via Optimal Transport for

Neural Machine Translation. In ACL. 1–13.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

23:26 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, & Qin Zhang

[58] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful Are Graph Neural Networks? arXiv
preprint arXiv:1810.00826 (2018).

[59] Lei Yang and Lei Zou. 2021. Noah: Neural-Optimized A* Search Algorithm for Graph Edit Distance Computation. In
ICDE. 576–587.

[60] Weijie Yu, Zhongxiang Sun, Jun Xu, Zhenhua Dong, Xu Chen, Hongteng Xu, and Ji-Rong Wen. 2022. Explainable
Legal Case Matching via Inverse Optimal Transport-based Rationale Extraction. In SIGIR. 657–668.

[61] Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. 2009. Comparing Stars: On
Approximating Graph Edit Distance. PVLDB 2, 1 (2009), 25–36.

[62] Muhan Zhang. 2022. Graph Neural Networks: Link Prediction. Graph Neural Networks: Foundations, Frontiers, and
Applications (2022), 195–223.

[63] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural Networks. NeurIPS 31 (2018), 5171–5181.
[64] Wei Zhang, Zihao Wang, Jie Fan, Hao Wu, and Yong Zhang. 2024. Fast Gradient Computation for Gromov-Wasserstein

Distance. Journal of Machine Learning 3, 3 (2024), 282–299.
[65] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. 2021. A Learned Sketch for Subgraph Counting. In

SIGMOD. 2142–2155.
[66] Xiang Zhao, Chuan Xiao, Xuemin Lin, Qing Liu, and Wenjie Zhang. 2013. A Partition-Based Approach to Structure

Similarity Search. PVLDB 7, 3 (2013), 169–180.
[67] Xiang Zhao, Chuan Xiao, Xuemin Lin, and Wei Wang. 2012. Efficient Graph Similarity Joins with Edit Distance

Constraints. In ICDE. IEEE, 834–845.
[68] Xiang Zhao, Chuan Xiao, Xuemin Lin, Wenjie Zhang, and Yang Wang. 2018. Efficient Structure Similarity Searches: A

Partition-based Approach. The VLDB Journal 27, 1 (2018), 53–78.
[69] Weiguo Zheng, Lei Zou, Xiang Lian, Dong Wang, and Dongyan Zhao. 2013. Graph Similarity Search with Edit Distance

Constraint in Large Graph Databases. In CIKM. 1595–1600.
[70] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and

Maosong Sun. 2020. Graph Neural Networks: A Review of Methods and Applications. AI Open 1 (2020), 57–81.

Received July 2024; revised September 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 23. Publication date: February 2025.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Statement
	3.2 Background of Optimal Transport

	4 Learning-Based Method: GEDIOT
	4.1 Node Embedding Component
	4.2 Learnable OT Component
	4.3 Graph Discrepancy Component
	4.4 Model Training
	4.5 GEP Generation

	5 Unsupervised Method: GEDGW
	5.1 Formulation of GEDGW
	5.2 Further Improvement by Ensembling
	5.3 Time Complexity Analysis

	6 Experiment
	6.1 Datasets
	6.2 Compared Methods
	6.3 Evaluation metrics
	6.4 Experimental Results
	6.5 Generalizability
	6.6 Ablation and Parameter Study

	7 Conclusion
	Acknowledgments
	References

