
Budget Error-Correcting under Earth-Mover Distance

Christian Konrad1, Wei Yu2, and Qin Zhang3

1 LIAFA, Université Paris Diderot, France
konrad@lri.fr
2 Aarhus University
yuwei@cs.au.dk

3 IBM Almaden
qinzhang@cs.au.dk

Abstract. We study the following budget error-correcting problem: Alice has a
point set x and Bob has a point set y in the d-dimensional grid. Alice wants to
send a short message to Bob so that Bob can use this information to adjust his
point set y towards x to minimize the Earth-Mover Distance between the two
point sets. A more intuitive way to understand this problem is: Alice tries to help
Bob to recall Eve’s face by sending him a short message. Of course Bob will
fail to recall if he does not know Eve, but if he knows something about Eve, the
message could help a lot.
Naturally, there is a trade-off between the message size and the quality of such
an adjustment. Now given a quality constraint, we want to minimize the mes-
sage size. This problem is well motivated by applications including image ex-
change/synchronization and video compression. In this paper, we give almost
matching upper and lower bounds for this problem.

1 Introduction
In this paper we study the following two-party one-way communication problem.

Definition 1 (The EMD k-Budget Error-Correcting). We have two players Alice and
Bob. Alice is given a set of n points x = {x1, . . . , xn} ⊆ [∆]d on the d-dimensional grid
[∆]d, and Bob is given another set of n points y = {y1, . . . , yn} ⊆ [∆]d. Alice sends a
message M to Bob. Bob then tries to relocate his points to y∗ = {y∗1 , . . . , y∗n} ⊆ [∆]d

such that
EMD(x, y∗) ≤ C min

ỹ∈Nk(y)
EMD(x, ỹ),

where the Earth-Mover Distance (EMD) between two point sets x, y of size n is defined
as the minimum perfect matching between x, y, that is,

EMD(x, y) = min
π:[n]→[n]

∑
1≤i≤n

∥∥xi − yπ(i)∥∥2 .
Nk(y) denotes all point sets of cardinality n that can be obtained by relocating k points
in y, and C is a fixed approximation factor. The goal is to minimize the message size
|M |.

1.1 Motivations

This work is largely motivated by the following general problem in the two-party one-
way communication. We have two players Alice and Bob. Alice holds an object x and
Bob holds an object y. Alice wants to send Bob a message so that either Bob can learn
Alice’s input x, or he can report that x and y are far apart under a certain measurement.
The goal is to minimize the message size.

As a concrete example, consider the classic document exchange problem [6, 16, 18].
In this problem Alice has a string x and Bob has a string y. Alice wants to send a short
message to Bob so that either Bob can learn x or he can assert that the Edit Distance4

between x and y is at least k. The reason of introducing a parameter k into the problem
can be seen from the following application: Suppose that Alice wants to send a large
file to Bob through a noisy channel. She can supplement the file with a short sketch M
of the file so that if the number of errors introduced in the transmission is small, then
Bob can correct them using M without any further communication5. Otherwise, which
is often quite unlikely, Bob can detect that the file is heavily corrupted. In this case he
can simply ask Alice to retransmit the whole file. Such a strategy can greatly reduce the
cost of error correction.

This general problem is also quite useful in the object (e.g., document, image, etc.)
synchronization, where it is natural to assume that the similarity between Alice’s object
x and Bob’s object y is high, therefore a short sketch of x can let Bob recover x.

The strategy that either we correct at most k mistakes without additional commu-
nication or we retransmit everything works fine for some distance measurements, e.g.,
the Hamming Distance and the Edit Distance. However, it is not suitable for measure-
ments like the Earth-Mover Distance (EMD). EMD is a popular distance function to
compare the similarity between two images in the field of computer vision (see, e.g.,
[22, 11, 10, 4, 21]). During the transmission of an image, it is possible that the whole
image is slightly shifted or rotated. Such a noise often will not affect the usefulness of
the image, but according to the previous error-correcting strategy, the whole image has
to be retransmitted since the EMD is high between the original image and the one after
the shift/rotation.

To give a better solution to this scenario, we borrow an idea from the compressive-
sensing/sparse-recovery literature (see [9] for a survey). In typical settings of sparse
recovery, Alice has an n-dimensional vector x. She sends Bob a linear sketchAx where
A is an m× n (m� n) matrix, and then Bob tries to reconstruct a vector x∗ such that

‖x− x∗‖p ≤ C min
k-sparse x̃

‖x− x̃‖q

where p, q are norm parameters, C > 0 is the approximation factor, and we say a
vector x is k-sparse if it has at most k non-zero coordinates. The primary goal is to
minimize m, that is, the number of rows of the sketch matrix A. A sparse-recovery
scheme can potentially be used for our error-correcting setting: Alice computes Ax and

4 That is, the minimum number of character insertions/deletions/substitutions needed to convert
x to y.

5 We can assume that M is transmitted via an error-correcting code so that Bob can learn M
without error. This will only increase the message size by a constant factor.

2

sends the result to Bob. Bob then computes Ay and (Ax − Ay) = A(x − y). He then
tries to recover the important coordinates of (x − y) from A(x − y). One issue is that
now (x − y) contains negative coordinates. Indyk and Price [15] studied the sparse
recovery for p = q = EMD, but the problem they formulated is different from ours
(note that x∗ being k-sparse is different from x∗ ∈ Nk(0)). Our problem is more like
an “approximate” error-correction code. Also, their algorithm only works for vectors
with positive coordinates thus cannot be used to estimate (x− y). Another difference is
that in our problem we do not restrict Alice’s message to be a linear sketch.

Besides error correction and object synchronization, our problem also has other po-
tential applications. For example, in the image/video compression, consider the scenario
that we use a sensor to monitor a herd of cows on a farm. In sensor networks we would
like to minimize the communication since the transmission of data is the biggest energy
drain. It is reasonable to assume that in most consecutive time steps only a few cows
move a large distance from their original positions, while the others stay in a small
neighbourhood. Therefore in order to save communication, instead of sending a new
image at each time step, the sensor can only send the central server a short message
which is enough for the server to detect/recover the positions of those cows whose new
positions deviate significantly from their original positions. A similar idea has already
been used in [24] for smart cameras (e.g. phone cameras) for detecting moving objects.

1.2 Results and Techniques

In this paper we show the following results for EMD k-Budget Error-Correcting.

– We give an O(d)-approximation randomized protocol with Õ(k log∆ log(n∆d))
bits6 of communication.

– We complement our upper bound with a lower bound ofΩ(k log∆ log(∆d/k)/log d)
bits of communication. The lower bound holds for randomized algorithms that
compute an O(d)-approximation.

Note that for typical settings where d = O(1), n = ∆O(1), the upper bound almost
matches the lower bound. The stated communication complexity protocol can actually
be implemented in polynomial time. See Section 2 for details.

Below we summarize the general ideas of our approaches.

Upper bound. We illustrate our algorithm in the one dimensional case. Given Alice’s
input x and Bob’s input y on the one dimensional grid [∆], the optimal solution will
return a set of k pairs of points {(u1, v1), . . . , (uk, vk)} (ui ∈ x, vi ∈ y) so that if Bob
moves point vi to ui for all i ∈ [k], the EMD between Alice’s point set x and Bob’s
modified point set yOPT is minimized. Intuitively, we can view the k pairs of points as
the top k edges of a perfect matching between x and y, and a good algorithm will try to
report those edges.

W.l.o.g, we assume that ∆ = 2L for some integer L. Firstly, we employ an idea that
was already used in [14]. Alice builds a hierarchical partition (we later call it pyramid
arrays) PA(x) = {PA0(x),PA1(x), . . . ,PAL(x)} for x, where PAi(x) is an array

6 We use Õ(f) to denote a function of the form O(f log f).

3

containing 2i elements, and the j-th element of PAi(x) contains the number of points in
x that fall into the interval

(
(j − 1) · 2L−i, j · 2L−i

]
. Bob builds a similar hierarchical

partition PA(y) for y. It is easy to see that for two points u, v (u ∈ x, v ∈ y) such that
2L−r ≤ dist(u, v) < 2L−r+1, u and v must lie in cells with different indices in PA`(x)
and PA`(y) for all r ≤ ` ≤ L, thus (u, v) will contribute 2 to ‖PA`(x)− PA`(y)‖1
for r ≤ ` ≤ L. On the other hand, u and v will very likely lie in cells with the same
index in PA`(x) and PA`(y) for all 0 ≤ ` < r, thus (u, v) will not contribute to
‖PA`(x)− PA`(y)‖1 for 0 ≤ ` < r. Therefore a natural idea is to first find the largest
` such that ‖PA`(x)− PA`(y)‖1 ≤ 2αk for some small constant α > 1, and then
Alice sends an encoding of PA`(x) to Bob, from which Bob can compute a set of edges
possibly including the k longest ones. There are two issues we need to consider.

1. It is possible that for a pair of points (u, v) with dist(u, v) < 2L−r, u and v lie in
cells with different indices in PA`(x) and PA`(y) for an ` ≤ r. In this case we may
introduce a “false positive” in the relocation.

2. For a pair (u, v) (u ∈ x, v ∈ y), Bob can only learn from PA`(x) that a point u
lies in some interval

(
(j − 1) · 2L−`, j · 2L−`

]
, and he still does not know the exact

location of u to where he should relocate his corresponding point v.

To handle the first issue, we simply perform a random shift of all points in x and
y. In doing so, we can guarantee with a good probability that there are not many false
positives. Such random shifts were used before, e.g., in [13]. To handle the second issue,
we introduce a constant redundancy factor α > 1 in the algorithm. That is, Alice sends
a message to Bob so that Bob is able to relocate αk (> k) points (if needed). Now in the
case when Bob cannot decide the exact location that he should relocate a point but only
an interval, he simply moves the point to an arbitrary location on that interval. Such
an operation will introduce an additional error, but since the optimal solution can only
relocate k points, we can charge the errors that we make when relocating each point to
the error that the optimal solution has to make on the (at least) (α− 1)k points that it is
unable to relocate. Some extra difficulties come from the interplay of these two issues.
For example, it is possible that the relocation of a false positive will again introduces
some error. Thus we need to carefully design the charging scheme so that such errors
can also be charged to the error that the optimal solution will make.

Remark 1. To the best of our knowledge, all previous works on computing EMD-
related problems using a hierarchical partition plus a random shift only give a loga-
rithmic approximation, given certain polylogarithmic space/communication constraints.
For example, even if Bob had to estimate EMD(x, y), there is no polylogarithmic com-
munication protocol that would achieve a constant approximation in our one-way com-
munication setting. The best known uses polynomial space [1, 23]. Thus it is very inter-
esting to the authors that computing the “residual EMD distance” (i.e., EMD k-Budget
Error-Correcting) actually admits a constant approximation (when the dimension is a
constant).

Lower bound. We again illustrate the idea through the one dimensional case. We first
describe a family of hard instances for EMD k-Budget Error-Correcting on the one
dimensional grid [∆]. Alice and Bob hold sets of n points x and respectively y on grid

4

[∆]. The construction is performed in two steps. In the first step, we choose p point
center locations 1, ∆/p + 1, 2∆/p + 1, . . . , (p − 1)∆/p + 1, and in both x and y we
assign n/p points to each point center. In the second step, we move points from these
point centers in x and y to the right. At this step we make the point sets x and y different.
We pick L (= Θ(log∆)) subsets X1, . . . , XL ⊆ [p] such that |Xi| = k for all i ∈ [L].
In x, for all i ∈ [L], for all j ∈ Xi, we move one point in the j-th point center by a
distance of 2Bi where B is a technical parameter. In y we perform similar operations:
we first pick a random I ∈ [L], and then for all i = {I + 1, . . . , L}, for all j ∈ Xi, we
move one point from the j-th point center by a distance of 2Bi. Note that x and y differ
by those points that are moved in x indicated by X1, . . . , XI . These points remain in
point centers in y. The k most significant differences in point set x and y are the k points
that Alice moved by distance 2BI , that is, those points indicated by XI . Intuitively, if
Bob wants to correct most of these points, Bob has to learn XI approximately.

The technical implementation of this idea is a reduction from the well-known two-
party one-way communication problem called Augmented Indexing. Augmented Index-
ing has been used to prove lower bounds in streaming and sparse-recovery literature [5,
19, 7]. In Augmented Indexing, Alice has (X1, . . . , XL) and Bob has (XI+1, . . . , XL)
for some index I ∈ [L]. Alice sends a single message to Bob and upon reception Bob
outputs XI . This problem is hard in the sense that since Alice does not know I , she has
to send many of Xi (i = 1, . . . , L) to Bob so that Bob can output XI correctly. In our
application, each Xi (i ∈ [L]) is a subset of [p] of cardinality k. The main difficulty
lies in the fact that we aim to solve Augmented Indexing given a protocol for EMD k-
Budget Error-Correcting that only computes a constant factor approximation. The key
of our argument is that on our hard instances a constant factor approximation to EMD
k-Budget Error-Correcting must identify many of the k points indicated by Xi. We use
a family of k-subsets with bounded intersection which is similar to a binary constant
weight code such that those identified points are enough to recover the correct k-subset,
that is Xi. We comment that similar ideas have also been used in [7] for proving lower
bounds for sparse-recovery problems.

2 The Upper Bound

Given two arrays A,B of the same length, we define ‖A−B‖1 =
∑
i |A[i]−B[i]|.

For the upper bound we need an encoding scheme for arrays with certain properties.
This encoding is stated in Lemma 1. Due to space constraints, the proof of the lemma
is deferred to Appendix A.

Lemma 1. Let x and y be two arrays of length N each. Each element in x and y is
from {0, . . . , n}. x could be encoded in O(log(1/ε) log(nN) + t log(nN)) bits, with
which one having y in hand can

– fully decode x when ‖x− y‖1 ≤ t; or
– output “impossible” when ‖x− y‖1 > t.

with probability 1−ε in encoding timeO(N2 log2 n) and decoding timeO(N2 log2 n).

We need the definition of pyramid arrays for the upper bound.

5

1. Alice randomly shifts all her points by a distance vector δ > 0. More precisely, Alice
first picks a d-dimensional vector δ ∈ [∆]d uniformly at random, and then shifts all
her points by δ. Let x′ = {x′i | i ∈ [2∆]d} be the characteristic d-dimensional vector
of Alice’s point set after the shift, that is, x′i (i ∈ [2∆]d) counts the number of Al-
ice’s points at location i. Alice includes δ in her message to Bob. Bob does the same
operation with the same δ to his point set and gets a vector y′ = {y′i | i ∈ [2∆]d}.

2. Alice and Bob construct d dimensional pyramid arrays PAd(x′) and PAd(y′) of x′ and
y′, respectively.

3. For each level ` = 0, 1, . . . , L = log(2∆), Alice sends Bob a message M` accord-
ing to Lemma 1 so that Bob can distinguish whether

∥∥PAd` (x′)− PAd` (y
′)
∥∥
1
> 2αk

or
∥∥PAd` (x′)− PAd` (y

′)
∥∥
1
≤ 2αk. Bob then finds the largest level `∗ such that∥∥PAd`∗(x′)− PAd`∗(y

′)
∥∥
1
≤ 2αk while

∥∥PAd`∗+1(x
′)− PAd`∗+1(y

′)
∥∥
1
> 2αk, and

reconstructs PAd`∗(x
′) according to Alice’s message for level `∗.

4. Bob picks an arbitrary vector z′ = {z′i | i ∈ [2∆]d} with the constraint that the `∗-th
level of the pyramid arrays of z′, that is, PAd`∗(z

′), is equal to PAd`∗(x
′) − PAd`∗(y

′).
Let z = {z1,...,1, . . . , z∆,...,∆} where zi = z′i+δ for all i ∈ [∆]d. Finally, Bob re-
locates his n input points on grid [∆] so that the corresponding characteristic vector
changes from y to y∗ = y + z.

Note that the whole message Alice sends to Bob is M = {δ,M0,M1, . . . ,ML}.

Fig. 1. Algorithm for EMD k-Budget Error-Correcting in d dimension.

Definition 2 (d-Dimensional Pyramid Arrays). Let x = {xi | i ∈ [∆]d} be a vec-
tor of length ∆d. W.l.o.g., assume that ∆ = 2L for some integer L. We define the d-
dimensional pyramid arrays of x to be a set of arrays PAd(x) = {PAd

0(x), . . . ,PAd
L(x)},

where PAd
i (x)’s are constructed as follows.

1. PAd
` (x) = {a`,i | i ∈ [2`]d} is an array of size 2d`, for each ` ∈ {0, 1, . . . , L}.

2. PAd
L(x) = {aL,i | i ∈ [2L]d} is simply constructed by assigning aL,i = xi for each

i ∈ [2L]d(= [∆]d).
3. For ` = 0, 1, . . . , L − 1, PAd

` (x) = {a`,i | i ∈ [2`]d} is constructed by assigning
a`,i =

∑
s∈{0,1}d a`+1,2i+s for each i ∈ [2`]d.

The d-dimensional pyramid arrays can naturally be seen as a tree with the coordinates
of PAd

L(x) as leaves. Each coordinate r of PAd
` (x) (0 ≤ ` ≤ L− 1) corresponds to an

internal node of the tree, and the value of coordinate r is the sum of the values of all
leaves in the subtree rooted at r. For a leaf u, let r`(u) be the internal node at level `
such that u is in the subtree rooted at node r`(u).

Theorem 1. There exists an algorithm that gives an O(d)-approximation for the EMD
k-Budget Error-Correcting problem on d-dimensional grid [∆]d with communication
Õ(k log∆ log(n∆d)) bits and success probability 2/3.

6

Set α = 6 and β = 2. Let the approximation ratio be C = 10d 7. The algorithm
is depicted in Figure 1. Now we show its correctness and analyze its communication
complexity.

Correctness. Let yOPT ∈ Nk(y) be such that EMD(x, yOPT) is minimized. Our goal is
to show that EMD(x, y∗) ≤ C · EMD(x, yOPT) with probability 2/3.

Let {(u1, v1), . . . , (uk, vk)} be a set of pairs such that in the optimal solution Bob
moves one of his points at location vi to ui (that is, to match one of Alice’s point
at location ui) for each i ∈ [k]. Let (uk+1, vk+1), . . . , (un, vn) be a minimum perfect
matching between the rest (n−k) of Bob’s points with the rest (n−k) of Alice’s points.
If there are more than one such minimum perfect matchings, the choice can be made
arbitrarily. W.l.o.g., we assume that ‖u1 − v1‖2 ≥ ‖u2 − v2‖2 ≥ . . . ≥ ‖un − vn‖2.

Now let’s focus on the level `∗ computed by Bob. Recall that `∗ is the largest level
` ∈ [L] ∪ 0 such that

∥∥∥PAd
` (x
′)− PAd

` (y
′)
∥∥∥
1
≤ 2αk. Let A =

√
d · 2L−`∗ be the

diagonal distance of a grid cell in level `∗. Obviously, for all those pairs (ui, vi) (i ∈
[n]) with ‖ui − vi‖2 ≥ A, we have r`∗(ui) 6= r`∗(vi) at level `∗ in the corresponding

tree. Thus each such pair will contribute 2 to
∥∥∥PAd

`∗(x
′)− PAd

`∗(y
′)
∥∥∥
1
. The issue is

that it is possible that for those pairs (ui, vi) with ‖ui − vi‖2 < A, we have r`∗(ui) 6=
r`∗(vi), and each such pair will also contribute 2 to

∥∥∥PAd
`∗(x

′)− PAd
`∗(y

′)
∥∥∥
1
. In this

case we say such a pair (ui, vi) is misclassified. If this happens then our algorithm may
try to “recover” a pair whose distance is not in the top-k. This in itself is not a problem
since recovering such pairs will only decrease the resulting EMD. The problem is that
although Bob knows r`∗(ui), he still do not know the exact location of ui to where he
should relocate vi. The current algorithm simply relocates vi to an arbitrary leaf in the
subtree rooted at r`∗(ui), but doing that will introduce an error of at most A, which
could be larger than ‖ui − vi‖2 itself. To handle this we introduced a random shift with
a distance δ in our algorithm. The hope is that such mis-classifications will not happen
too often.

First, we need the following observation. The proof can be found in B.1.

Proposition 1. In dimension d, for a line with arbitrary but fixed slope and length x,
the probability of the line cut by a grid of side length K is at most

√
dx
K .

Set η = α−β
4
√
d

. We focus on a level ` such that 2L−` =
∑n
i=βk ‖ui − vi‖2 /(ηk) 8,

and will show that with probability 3/4,
∥∥∥PAd

` (x
′)− PAd

` (y
′)
∥∥∥
1
≤ 2αk. If this is the

case, then according to the definition of `∗, it holds that A =
√
d · 2L−`∗ ≤

√
d · 2L−`.

For i = βk, . . . , n, let Ti be the indicator variable of the event that (ui, vi) is mis-

classified at level `. Then by Proposition 1, we have that Pr[Ti = 1] ≤
√
d‖ui−vi‖2
2L−` . Let

7 We are not trying to optimize constants here.
8 For convenience, we assume that

∑n
i=βk ‖ui − vi‖2 /(ηk) is a power of 2. Such an assump-

tion will not change the approximation ratio by more than a factor of 2.

7

T =
∑n
βk Ti. We have

E[T] ≤
n∑

i=βk

√
d ‖ui − vi‖2

2L−`
=

∑n
i=βk

√
d ‖ui − vi‖2∑n

i=βk ‖ui − vi‖2 /(ηk)
=
√
dηk.

By Markov inequality, we have T ≤ 4
√
dηk = (α − β)k with probability 3/4. There-

fore with probability 3/4, it holds that∥∥∥PAd
` (x
′)− PAd

` (y
′)
∥∥∥
1
≤ 2(T + βk) ≤ 2αk.

Consequently, with probability 3/4,

A ≤
√
d ·

n∑
i=βk

‖ui − vi‖2 /(ηk) =
4d

(α− β)k

n∑
i=βk

‖ui − vi‖2 . (1)

Now suppose that (1) holds. The optimal algorithm (OPT) will correct the first k
pairs, leaving the rest pairs untouched. Thus

EMD(x, yOPT) ≥
n∑

i=k+1

‖ui − vi‖2 ≥
n∑

i=βk

‖ui − vi‖2 .

In our algorithm (SOL), the first αk pairs are recovered so that the distance between
each such pair is at most A after the relocation. Let n1 be the largest number such that
‖un1 − vn1‖2 ≥ A. The first n1 pairs always get recovered since the original distance
between each such pair is at least A. Therefore,

EMD(x, y∗) ≤ αk ·A+

n∑
i=n1+1

‖ui − vi‖2

≤ αk ·A+ max{βk − n1, 0} ·A+

n∑
i=βk

‖ui − vi‖2 .

Thus

EMD(x, y∗)

EMD(x, yOPT)
≤
αk ·A+ max{βk − n1, 0} ·A+

∑n
i=βk ‖ui − vi‖2∑n

i=βk ‖ui − vi‖2

≤ 1 +
(α+ β)Ak∑n
i=βk ‖ui − vi‖2

≤ 1 +
4d(α+ β)

α− β
(by (1))

= 1 + 8d < C.

Therefore with probability (3/4 − ε · log(2∆)) ≥ 2/3 our algorithm achieves a C-
approximation. The first term 3/4 is the probability that Equation 1 holds, and the
second error term is introduced by applying Lemma 1 (choose ε = 1/(12 log(2∆)))
to each of the log(2∆) levels of the pyramid arrays.

8

Communication complexity. We need log(2∆) encodings from Lemma 1 with N =
∆d, t = 2αk and ε = 1/(12 log(2∆)). Each such encoding has a length of
O(log(1/ε) log(nN) + t log(nN)) = O((k+ log log∆) log(n∆d)) bits. We also need
an additional O(d log∆) bits of communication to transmit the δ, the distance of the
random shift. Thus the total cost isO((k+log log∆) log∆ log(n∆d)) = Õ(k log∆ log(n∆d)).

3 The Lower Bound

In this section, we show that any randomized communication protocol that computes a
C-approximation for d-dimensional EMD k-Budget Error-Correcting has communica-
tion complexityΩ(k log∆

logC (d log∆− log k). The proof is a reduction from the two-party
one-way communication problem Augmented Indexing.

Definition 3 (Augmented Indexing). LetX = (X1, . . . , Xn) whereX ∈ Un for some
universe U . Let I ∈ [n]. Alice is given X , Bob is given I and (XI+1, . . . , Xn). Alice
sends message MAI to Bob and upon reception Bob outputs XI .

Intuitively, since Alice does not know the index I , it is impossible to solve Aug-
mented Indexing with a message of size o(|X|). In [17] it is shown that the uniform
distribution on X is a hard distribution for a version of Augmented Indexing where
Bob also holds some Y ∈ U and the goal is to output 1 if XI = Y and 0 otherwise.
They show that Ω(n log |U|) communication is necessary for protocols with error at
most 1

4|U| . In our version of Augmented Indexing , Bob has to learn XI . This allows us
to modify (actually simplify) the proof in [17] to obtain the same communication bound
for constant error. The proof of the following lemma can be found in Appendix B.2.

Lemma 2. If X and I are chosen uniformly at random and the failure probability of
the protocol is at most 1/3, then EX |MAI| = Ω(n log |U|).

In the following, we will show how to solve Augmented Indexing with a protocol
for d-dimensional EMD k-Budget Error-Correcting. In our application, the universe
U from which the elements of X are chosen is a large family of k-subsets of a set
[p] (p > k) with bounded intersection. For ε > 0, we define Cεkk,p to be a family of
k-subsets of [p] such that any two subsets have at most k(1 − ε) elements in common.
Then we will use U = Ck/100k,p . Such a family is equivalent to a binary constant weight
code of length p, weight k, and distance 2εk. In Lemma 3 we show that there is a large
set of k-subsets with bounded intersection. The proof can be found in Appendix B.3.

Lemma 3. Let k, p be integers such that k < p/2, and let ε < 1 − 1/(bp/kc). Then
there is a family Cεkk,p of k-subsets of [p] such that for c1, c2 ∈ Cεkk,p, c1 6= c2 : |c1∩c2| ≤
k(1− ε) and

|Cεkk,p| ≥ (bp/kc)k(1−Hbp/kc(ε)),

where Hq is the q-ary entropy function Hq(x) = −x logq
x
q−1 − (1− x) logq(1− x).

Suppose that the EMD k-Budget Error-Correcting protocol outputs aC-approximation.
We take three integer parameters L, p, k such that p > k and L = d log(p

1/d/10)
log(200C)+2e. Let

9

X = (X1, . . . , XL) where Xi ∈ U = Ck/100k,p . Xi is a k-subset of [p] and we write
Xi = (X1

i , . . . , X
k
i).

Consider the Augmented Indexing problem where Alice has X , Bob has I ∈ [L]
and (XI+1, . . . , XL). Then by applying Lemma 2 and Lemma 3, the communication
complexity of this problem is

Ω(L · log |U|) = Ω
(
L · log(|Ck/100k,p |)

)
= Ω

(
log(p1/d)

logC
· log

(
(bp/kc)k(1−Hbp/kc(1/100))

))
= Ω

(
k

d

log p

logC
log
(p
k

))
, (2)

where we used the fact that for any q ≥ 1, Hq(1/100) < 0.35.

Reduction. Given such an Augmented Indexing instance, Alice and Bob construct a
d-dimensional instance for EMD k-Budget Error-Correcting with grid [∆]d (∆ = p2/d)
and n = 10kpL points. The construction requires a parameter B which we set to be
log(200C) + 2. Furthermore, we make use of the set of coordinates Zp = {1, p1/d +
1, 2p1/d + 1, . . . (p1/d − 1)p1/d + 1}d that we call point centers since in the reduction
Alice and Bob place many points onto these coordinates. Note that |Zp| = p.

The reduction consists of 3 steps.

Step 1. Alice and Bob use an arbitrary but fixed bijection f : [p] → Zp. They proceed
as follows to set up the EMD k-Budget Error-Correcting instance:

1. Alice and Bob place n
p points to each point center in Zp.

2. For each Xj
i (i ∈ [L], j ∈ [k]), Alice moves one point from point center f(Xj

i)

by a distance of 2Bi, resulting a new point at location f(Xj
i) + 2Bie1, where e1

is the d-dimensional standard basis unit vector pointing to dimension 1. Bob does
the same for each Xj

i with i > I . Denote Alice’s points set by x and Bob’s points
set by y. Since n = 10kpL, there will be n/p = 10kL points on each point center.
Thus Alice and Bob can ensure that there are always enough points to move.

Here, the effect of parameter B becomes clear: Alice and Bob displace points from the
point centers by distances 2Bi. B is hence responsible for increasing the distance of
points that correspond to different values of i. Note that we set B = Θ(logC), hence
the distances increase as the approximation factor increases.

Step 2. Alice and Bob run the protocol for EMD k-Budget Error-Correcting. Let y∗

denote the points of Bob after the relocation outputted by the protocol.

Step 3. Bob rounds the points y∗ to the closest positions in {Zp + 2Bie1 | i ∈ [L]}.
Then, he computes an estimate X̃ ′I of XI as follows: if there is a point in y∗ at position
x + 2BIe1 for some x ∈ Zp, then f−1(x) ∈ X̃ ′I . Next, Bob selects X̃I ∈ Ck/100k,p such
that |X̃I ∩ X̃ ′I | is maximized.

10

Theorem 2. Any randomized communication protocol that computes aC-approximation
to EMD k-Budget Error-Correcting on d-dimensional grid [∆]d with probability 2/3
requires a message of size Ω(k log∆

logC (d log∆− log k)), assuming that k < ∆d/2.

Proof. We use the prior reduction from Augmented Indexing to EMD k-Budget Error-
Correcting. Recall that the setup for the EMD k-Budget Error-Correcting instance uses
p = ∆d/2, B = log(200C) + 2, L = dlog(p1/d/10)/Be, and n = 10kpL.

Firstly, note that the distance between any two point centers is larger than or equal
to
√
∆. The maximal distance that a point is displaced from its point center is 2BL =

0.1p1/d = 0.1
√
∆. Under this condition, the EMD between Alice’s and Bob’s points

is the sum of the distances of the points that only Alice moved, that is, EMD(x, y) =

k
∑I
i=1 2Bi. Furthermore, we have minỹ∈Nk(y) EMD(x, ỹ) = k

∑I−1
i=1 2Bi, which can

be obtained by correcting the k points that Alice moved by a distance of 2BI . Since
our protocol approximates the EMD within a factor C, we obtain EMD(x, y∗) ≤ C ·
k
∑I−1
i=1 2Bi. Let err = |XI \ X̃I | be the number of points that Bob failed to recover.

Then each of these points contributes to the EMD by at least (2BI − 2B(I−1))/2, since
these points got rounded to some index other than I . We obtain

err ·
(
2BI − 2B(I−1))/ 2 ≤ C · k

∑I−1
i=1 2Bi,

Therefore we conclude that err < Ck
2B−2 = k

200 . Since the k-subsets of Ck/100k,p differ by
at least k

100 elements, we can recover X̃i
I = XI . The lower bound for EMD k-Budget

Error-Correcting follows by plugging p = ∆d/2 into Equation (2).

References

1. A. Andoni, K. Do Ba, P. Indyk, and D. Woodruff. Efficient sketches for earth-mover distance,
with applications. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE
Symposium on, pages 324–330. IEEE, 2009.

2. Z. Bar-Yossef. The complexity of massive data set computations. PhD thesis, University of
California at Berkeley, 2002.

3. E. R. Berlekamp. Algebraic coding theory, volume 111. McGraw-Hill New York, 1968.
4. C. Chefd’hotel and G. Bousquet. Intensity-based image registration using earth mover’s

distance. In SPIE, 2007.
5. K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming model. In

STOC ’09, pages 205–214. ACM, 2009.
6. G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin. Communication complexity of

document exchange. In SODA ’00, pages 197–206. SIAM, 2000.
7. K. Do Ba, P. Indyk, E. Price, and D. P. Woodruff. Lower bounds for sparse recovery. In

SODA ’10, pages 1190–1197. SIAM, 2010.
8. J. Feigenbaum, S. Kannan, M. J. Strauss, and M. Viswanathan. An approximate l 1-

difference algorithm for massive data streams. SIAM Journal on Computing, 32(1):131–151,
2002.

9. A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE,
98(6):937–947, 2010.

10. K. Grauman and T. Darrell. Fast contour matching using approximate earth movers distance.
In CVPR, pages 220–227, 2004.

11

11. A. S. Holmes, C. J. Rose, and C. J. Taylor. Transforming pixel signatures into an improved
metric space. Image Vision Comput., 20(9-10):701–707, 2002.

12. W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge university
press, 2003.

13. P. Indyk. A near linear time constant factor approximation for euclidean bichromatic match-
ing (cost). In SODA ’07, pages 39–42. SIAM, 2007.

14. P. Indyk and N.Thaper. Fast color image retrieval via embeddings. Workshop on Statistical
and Computational Theories of Vision (at ICCV), 2003.

15. P. Indyk and E. Price. K-median clustering, model-based compressive sensing, and sparse
recovery for earth mover distance. In STOC, pages 627–636, 2011.

16. U. Irmak, S. Mihaylov, and T. Suel. Improved single-round protocols for remote file syn-
chronization. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, volume 3, pages 1665–1676. IEEE, 2005.

17. T. S. Jayram and D. Woodruff. Optimal bounds for johnson-lindenstrauss transforms and
streaming problems with sub-constant error. In SODA ’11, pages 1–10. SIAM, 2011.

18. H. Jowhari. Efficient communication protocols for deciding edit distance. In ESA, 2012.
19. D. M. Kane, J. Nelson, and D. P. Woodruff. On the exact space complexity of sketching and

streaming small norms. In SODA ’10, pages 1161–1178. SIAM, 2010.
20. J. Massey. Shift-register synthesis and bch decoding. Information Theory, IEEE Transactions

on, 15(1):122–127, 1969.
21. J. Puzicha, J. M. Buhmann, Y. Rubner, and C. Tomasi. Empirical evaluation of dissimilarity

measures for color and texture. In ICCV, pages 1165–1173, 1999.
22. Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image

retrieval. Int. J. Comput. Vision, 40(2):99–121, Nov. 2000.
23. E. Verbin and Q. Zhang. Rademacher-sketch: A dimensionality-reducing embedding for

sum-product norms, with an application to earth-mover distance. In ICALP (1), pages 834–
845, 2012.

24. Y. Yoo and T. Park. A moving object detection algorithm for smart cameras. In Computer
Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer Society Con-
ference on, pages 1–8. IEEE, 2008.

A Proof for Lemma 1

Lemma 1. Let x and y be two arrays of length N each. Each element in x and y is
from {0, . . . , n}. x could be encoded in O(log(1/ε) log(nN) + t log(nN)) bits, with
which one having y in hand can

– fully decode x when ‖x− y‖1 ≤ t; or
– output “impossible” when ‖x− y‖1 > t.

with probability 1−ε in encoding timeO(N2 log2 n) and decoding timeO(N2 log2 n).

Proof. First, the encoding of x contains the `1 sketch of x in sizeO(log(1/ε) log(nN))
bits by using the following lemma from [8].

Lemma 4 (`1 Sketch [8]). Let x and y be two vectors of length N containing elements
from {0, . . . , n}. By having a sketch of x with O(log(Nn) log(1/ε)/δ2) bits, one can
compute a distance in the interval [(1− δ) ‖x− y‖1 , (1 + δ) ‖x− y‖1] with probabil-
ity 1− ε.

12

Using this sketch with δ = 1/2, one having y in hand can know ‖x− y‖1 up to
a factor of 1 ± 1

2 . Let the distance computed be X . If X > 3
2 t then we already know

that the output should be “impossible” since ‖x− y‖1 > t with probability (1 − ε) in
this case. Otherwise we know 3

2 t ≥ X ≥ 1
2 ‖x− y‖1 implying ‖x− y‖1 ≤ 3t with

probability (1− ε).
Let x̄ and ȳ be the binary representation of x and y, respectively. That is, x̄ =

{x̄1, . . . , x̄N} where x̄i is the log(n + 1)-bit binary representation of xi, and similar
for ȳ. The encoding also contains the error-correcting part for x̄ in the Reed-Solomon
code in the following lemma, denoted by c, with r = O(log(N log(n + 1))), d =

6t ·
(⌊

log(n+1)
log(N log(n+1))

⌋
+ 1
)

+ 1 and l = N log(n+1)
r .

Lemma 5 (Reed-Solomon Code [3, 20]). For a messageA of l elements fromGF (2r),
there is a systematic error-correcting code of l + 2d + 1 < 2r elements which can be
used to recover A if there are ≤ d lost elements in the coding. Moreover, the code is
of the form: (A, G), where G is the “error-correcting” part consisting of 2d elements.
The encoding and decoding time of the code is O((l + d)2).

The length of c is(
6t ·
(⌊

log(n+ 1)

r

⌋
+ 1

)
+ 1

)
· r = O(t log(nN)).

Now one tries to recover x̄ (also x) using ȳ and c. Since ‖x− y‖1 ≤ 3t, and each dif-
ferent coordinate between x and y will only expand to a block of log(n+1) consecutive
bits in x̄, thus the total number of errors in x̄ is at most b log(n+1)

r c + 1. Therefore, by

using c, one can correct up to 3t ·
(⌊

log(n+1)
r

⌋
+ 1
)

errors in x̄, which also means that
one can correct up to 3t errors in x with c. By taking y as x with ≤ 3t errors, we know
that Bob can decode x by using c.

The total length of the encoding is O(log(1/ε) log(nN) + t log(nN)). And the
encoding/decoding process costs O(N2 log2 n). ut

B Other Omitted Proofs

B.1 Proof for Proposition 1

Proof. Let the projection length of x on the dimensions be x1, x2, . . . , xd where x21 +
· · ·+ x2d = x2. Thus the probability is no more than

d∑
i=1

xi
A
≤ 1

A

√√√√d

d∑
i=1

x2i =

√
dx

A
.

B.2 Proof for Lemma 2

Proof. The proof follows [17], and uses the standard tools from information com-
plexity. We refer readers to [2] for an introduction of information complexity. Let

13

X = (X1, . . . , Xn) where Xi is chosen uniformly and independently of (Xj)j 6=i from
U . Since EX |MAI| ≥ H(MAI) ≥ I(X : MAI), it is enough to bound I(X : MAI). Then,
by the chain rule for mutual information, and the definition of mutual information we
obtain

I(X : MAI) =

n∑
i=1

I(Xi : MAI |Xi+1, . . . , Xn)

=

n∑
i=1

H(Xi |Xi+1, . . . , Xn)−
n∑
i=1

H(Xi |MAI, Xi+1, . . . , Xn).

By independence, we can simplify for all i ∈ {1, . . . , n} as follows

H(Xi |Xi+1, . . . , Xn) = H(Xi) = log(|U|).
It remains to upper bound H(Xi |MAI, Xi+1, . . . , Xn) for all i ∈ {1, . . . , n}. Note

that {MAI, Xi+1, . . . , Xn} is exactly Bob’s input for Augmented Indexing. Bob outputs
Xi with error ε, hence MAI, Xi+1, . . . , Xn is a predictor for Xi with error probability
ε. We apply Fano’s Inequality and obtain

H(Xi |MAI, Xi+1, . . . , Xn) ≤ H(ε) + ε · log(|U| − 1),

where H(ε) denotes the binary entropy of ε. Combining and setting ε = 1/3, we obtain
I(X : MAI) = Ω(n log |U|).

B.3 Proof for Lemma 3

Lemma 6 (Gilbert-Varshamov Bound [12]). Let Aq(M,d) be the maximum possible
size of a q-ary code with length M and Hamming distance at least d. Then,

Aq(M,d) ≥ qM∑d−1
j=0

(
M
j

)
(q − 1)j

.

Proof. We follow the proof of Lemma 3.1 of [7]. Let T be a code of block length k,
alphabet {1, . . . , bp/kc} and Hamming distance εk. From T we obtain a binary code
T ′ with block length p and Hamming distance 2εk by replacing each character i with
the bp/kc-long standard basis vector ei. Note that T ′ has exactly k ones. The set Cεkk,p is
obtained by interpreting the code words of T ′ as the characteristic vectors of the subsets.
Then if code words t′1, t

′
2 ∈ T ′ have Hamming distance 2εk then the corresponding

k-subsets c1, c2 obtained from t′1, t
′
2 are such that |c1 ∩ c2| = k(1− ε). By the Gilbert-

Varshamov bound (Lemma 6) we obtain

|Cεkk,p| = |T | ≥
(bp/kc)k∑εk−1

i=0

(
k
i

)
(bp/kc − 1)i

.

Following [7], for ε < 1 − 1/(bp/kc) we can use
∑εk−1
i=0

(
k
i

)
(bp/kc − 1)i <

(bp/kc)Hbp/kc(ε)k, and the result follows.

14

