
Robust Statistical Analysis on Streaming Data with
Near-Duplicates in General Metric Spaces
QIN ZHANG, Indiana University, USA

This paper considers statistical analysis on noisy datasets where near-duplicate elements need to be treated as

identical ones. We focus on two basic problems, distinct elements and ℓ0-sampling, in the data stream model

where the sequence of elements can only be scanned once using a limited space, under which a comprehensive

data deduplication step before statistical analysis is not feasible. Previous streaming algorithms for these

problems could only handle noisy datasets in O(1)-dimensional Euclidean spaces. In this paper, we propose

sublinear-space streaming algorithms that work for noisy datasets in any metric space. We also give a lower

bound result showing that solving the distinct elements problem on noisy datasets in general metric spaces

is inherently more difficult than solving it on noiseless datasets and on noisy datasets in O(1)-dimensional

Euclidean spaces.

CCS Concepts: • Theory of computation→ Streaming, sublinear and near linear time algorithms.

Additional Key Words and Phrases: data streams, near-duplicates, distinct elements, ℓ0-sampling

ACM Reference Format:
Qin Zhang. 2025. Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces.

Proc. ACM Manag. Data 3, 2 (PODS), Article 111 (May 2025), 25 pages. https://doi.org/10.1145/3725248

1 Introduction
Near-duplicates present a persistent challenge in the field of big data analytics. Conducting a

comprehensive data cleaning step prior to the analytical phase may not always be feasible, espe-

cially in settings like the data stream model [4, 18], where available memory space is limited and

cannot accommodate all the data elements. Previous studies [9, 10] have explored the feasibility of

performing two basic statistical problems, distinct elements (or, F0-estimation) and ℓ0-sampling,

in the data stream model without the need for a comprehensive data cleaning step. However,

algorithms proposed in these works can only handle datasets in the O(1)-dimensional Euclidean

space, which is not sufficient for many applications.

In this paper, we introduce streaming algorithms that can handle datasets with near-duplicates

in general metric spaces while still using sublinear memory space. The bulk of this paper focuses

on F0-estimation and ℓ0-sampling. In Section 7, we will briefly discuss several other statistical

problems that can be solved in the noisy data setting by adapting algorithms designed for noiseless

datasets.

Motivation. The original motivation for studying datasets with near-duplicates is that many real-

world datasets are inherently noisy due to human factors. For example, the same mailing address

is spelled differently in different contexts; the same image/video may appear in different forms

due to compression, edits, and change of resolutions; the same query with different keywords

combinations are sent to a search engine, etc. Such near-duplicates are ubiquitous in the age of big

data and may lead to significant errors in subsequent data analytics if not appropriately managed.

Qin Zhang is partly supported by NSF CCF-1844234 and IU Luddy Faculty Fellowship.

Author’s Contact Information: Qin Zhang, qzhangcs@iu.edu, Indiana University, Bloomington, IN, USA.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/5-ART111

https://doi.org/10.1145/3725248

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

HTTPS://ORCID.ORG/0000-0002-6851-3115
https://doi.org/10.1145/3725248
https://orcid.org/0000-0002-6851-3115
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3725248

111:2 Qin Zhang

We note that many of these data are not points in the Euclidean space. Although we can always

embed them into vectors/points in the Euclidean space, the resulting dimension of these vectors

can often be quite high.

Another strong motivation for studying datasets with near-duplicates comes from quantum data

management, where the noise comes from laws of nature. In the quantum realm, it has been shown

that Ω
(
d/ϵ2

)
copies of the quantum state are needed to learn a d-dimensional quantum state up

to a trace distance ϵ [23, 33]. In other words, if we want to preserve quantum data classically
1

using a finite number of copies of the states, the resulting dataset is inherently noisy. Moreover,

we need d = 2
n
dimensions to represent a n-qubit quantum state, which implies that the classical

representation of quantum states are often vectors of very high dimensions, and thus cannot be

handled by algorithms proposed in the previous work [9, 10].

As noticed in the previous work [9], it is unlikely that there is a magic hash function capable of

hashing near-duplicates to the same element (while ensuring non-near-duplicates hash to different

elements) with a description sublinear in terms of the input size. We thus cannot make use of

existing streaming algorithms designed for noiseless datasets.

Robust F0-Estimation and ℓ0-Sampling.We now introduce the noisy data model and two statis-

tical problems that we are going to study in this paper. We first give several definitions. Let d(·, ·)
be a distance function.

Definition 1.1 (valid partition). Given a dataset Q , we call a group partition G(Q) = {G1, . . . ,Gn}

of Q α-valid if for any i ∈ [n] and for any pair of elements p,q ∈ Gi , we have d(p,q) ≤ α .

In the noisy data setting, we consider elements in each group of a valid partition near-duplicates,
and each group corresponds to the same ground truth element. The following definition for robust

F0 aligns with [9].

Definition 1.2 (robust F0). The α-robust F0 of a dataset Q , denoted by F0(Q,α), is the number of

groups in the minimum-cardinality α-valid partition G(Q) = {G1, . . . ,Gn} of Q .

Note that the minimum-cardinality α-valid partition may not be unique, but this is not a problem

since we are only interested in the minimum cardinality of such partitions.

W.l.o.g., we can assume that the distance threshold α = 1, as we can always appropriately rescale

the distance function. We will thus use “valid" instead of “α-valid", and write F0(Q,α) as F0(Q) for
simplicity. When Q is clear from the context, we will further simplify “F0(Q)” and “G(Q)” to “F0”

and “G”, respectively.

Definition 1.3 (well-shaped dataset). We say a dataset Q is well-shaped if it has a valid partition

G(Q) = {G1, . . . ,Gn} such that for any two elements p,q ∈ Q , where p ∈ Gi and q ∈ G j (j , i), we
have d(p,q) > 2.

If such a partition exists, it must be unique and has the minimum cardinality. We call this partition

the natural partition of the well-shaped dataset Q .
We define robust ℓ0-sampling for well-shaped datasets as follows.

Definition 1.4 (robust ℓ0-sampling). Let Q be a well-shaped dataset and G = {G1, . . . ,Gn} be the

natural group partition of Q . The robust ℓ0-sampling on Q outputs an element q ∈ Q with the

property that for each i ∈ [n], Pr[q ∈ Gi] = 1/n.

We are also interested in datasets with small F0-ambiguity, which is defined as follows:

1
Even if large-scale quantum storage systems become available in the future, due to unique quantum properties including

post-measurement state disturbance and no-cloning theorem, we need to store quantum data in a classical format within a

database system to accommodate potentially unlimited queries.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:3

Definition 1.5 (F0-ambiguity). The F0-ambiguity of a dataset Q is defined to be the minimum

τ (τ ∈ [0, 1]) such that there exists a set of outliers O ⊆ Q satisfying the following: (1) Q\O is

well-shaped, and (2) F0(Q\O) ≥ (1 − τ)F0(Q). We use τ (Q) to denote the F0-ambiguity of Q .

The Data Stream Model. In the data stream model [4, 18], the elements q1, . . . ,qm of the dataset

come one by one in a sequence. During the streaming process, we need to maintain in the memory

a sketch sk(Q) of the set of elements Q that we have received so far, such that at any time step, we

are able to output the value f (Q) where f (·) is a function defined on Q (e.g., f (Q) = F0(Q) for the
distinct elements problem) using sk(Q). The primary goal in the data stream model is to minimize

the sketch size.

Previous Approaches and Limitations. As mentioned, robust F0-estimation and ℓ0-sampling

have been studied for points in the Euclidean space [9, 10]. The algorithms for F0-estimation in

[9] used the following idea: we first partition the Euclidean space using square grid such that

each grid cell C intersects with at most one group in G. Let C be the set of non-empty cells (i.e.,

cells containing at least one point in Q). We define the weight of a group G, denoted byw(G), to
be the number of cells C ∈ C that G intersects, and define the weight of each cell C ∈ C to be

w(C) = 1 /w(GC) if there is a (unique) group GC ∈ G intersecting C , andw(C) = 0 otherwise. It is

easy to see that

∑
C ∈Cw(C) = F0. For a O(1)-dimensional Euclidean space, we havew(C) = Θ(1).

Therefore, by subsampling cells in C and then computing the sum ofw(C) for the sampled cells C ,
we can approximate the robust F0.

To keep enough information in the memory for computingw(C), for each incoming point q in

the data stream, we first check whether there is a sampled cell C such that d(q,C) ≤ 1. If yes, we

store the cellCq that contains q provided it has not been stored previously; otherwise, we discard q.
Note that we are “preparing ahead”. That is, we store q even ifCq is not sampled, as long as there is

a possibility that another point in the same group falls into a sampled cell. Leveraging these stored

information, we can calculate the weight of each sampled cell precisely.

Unfortunately, the above approach only works for low dimensional Euclidean spaces, as the

number of cells that a group intersects may increase (or, the weight of each cell may decrease)

exponentially as the dimension increases. We thus cannot guarantee that the memory usage is

sublinear. More precisely, the space bound would be min{2Θ(d),m}, where d is the dimension of

the Euclidean space andm is the length of the stream.

The algorithm for ℓ0-sampling in [10] also uses the idea of grid partition. We again sample a

subset of C, but only consider groups whose first point is in a sampled cell as a candidate group for

the final output. Again, this approach only works for low dimensional Euclidean spaces, because

we also need to maintain groups whose first points are not in a sampled cell. This precaution is

necessary to handle scenarios where subsequent points from these groups land in sampled cells,

since we do not want to regard such groups as candidate groups. On the other hand, the number of

cells that a group intersects may again increase exponentially as the dimension increases.

The works [9, 10] discussed how to handle high dimensional data and general distance functions.

However, their algorithms only work for datasets exhibiting very high sparsity and for metric

spaces admitting efficient locality sensitive hashing (LSH) schemes [25]. While in this paper, we

aim to find solutions for general datasets in any metric spaces.

Our Contributions. The main contribution of this paper can be summarized as follows. For

convenience, we assume that each element in the dataset can be stored in one word of memory

space.
2
All algorithms succeed with probability 0.99.

2
Otherwise, we need to multiply a factor of γ to all of our space upper bounds, where γ is the space needed to store one

element in the data stream.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:4 Qin Zhang

(1) For awell-shaped dataset, we give a streaming algorithm that computes a (1+ϵ)-approximation

of the robust F0 usingO

(
min

{
1

ϵ

√
m log

1

ϵ , F0

})
words of space (Section 2). The F0 term is due

to the fact that we can always store a representative element for each group. For simplicity,

we will omit the trivial F0 term in all of our upper bounds (or, assume that F0 is larger than

the other term in the min operation).

(2) We give a streaming algorithm for robust ℓ0-sampling on a well-shaped dataset usingO(
√
m)

words of space. See Section 3.

(3) For a general dataset with F0-ambiguity τ , we give a streaming algorithm that computes a

1+ϵ
1−τ -approximation of robust F0 and uses O

(
1

ϵ

√
m logm

)
words of space. See Section 4.

(4) We show that any streaming algorithm for approximating robust F0 up to a multiplicative

factor 1.1 needs to use at least Ω(
√
m) bits of space. See Section 5.

Our results indicate that the robust F0-estimation problem has a significantly higher complexity than

the F0-estimation problem on noiseless datasets. For the latter, it is known that O
(
logm + 1/ϵ2

)
bits of space is sufficient for obtaining a (1 + ϵ)-approximation in the data stream model [27].

In the previous work [9, 10], it has been shown that for well-shaped datasets in the O(1)-
dimensional Euclidean space, there exist streaming algorithms that compute (1+ϵ)-approximations

of robust F0 (or, perform robust ℓ0-sampling) with probability 0.99 using space O
(
1/ϵ2

)
words

(or, O(1) words). Our results indicate that in the data stream model, solving the two problems on

datasets in general metric spaces is significantly more difficult than that in the O(1)-dimensional

Euclidean space.

We also obtain the following byproducts:

(5) For elements being points in the O(1)-dimensional Euclidean space, our algorithms designed

for the general metric space can be modified to compute a (1 + ϵ)-approximation of the

robust F0 with probability 0.99 using O
(
1/ϵ2

)
words of space, and perform ℓ0-sampling with

probability 0.99 using O(1) words of space.

These results match the performance of algorithms in [9, 10].
3

Related Work. The study of statistical analysis on stream data has a long history, starting from

[4, 18]. The F0-estimation and ℓ0-sampling are two of the most extensively studied problems. The

first streaming algorithm for F0-estimation was designed by Flajolet and Martin [18] in 1984. After

several decades of research (e.g., [4, 7, 8, 15, 17, 20]), optimal space complexity has been obtained

in [27]. Among many other applications in network traffic monitoring, data integration, and data

warehousing, F0-estimation serves as a foundation for database query plan optimization.

The streaming ℓ0-sampling problem was studied in [13, 19, 22, 26], where [26] obtained the

optimal space bound. This problem serves as a building block in numerous graph and geometry

problems in the data stream model [1–3, 5, 11, 11, 12, 19, 29].

On the other hand, the literature on robust statistical estimation is rather sparse. As mentioned,

[9, 10] studied F0-estimation and ℓ0-sampling, but only for data points inO(1)-dimensional Euclidean

spaces or for datasets exhibiting high sparsity in metric spaces that support efficient LSH schemes.

[36] studied statistical problems for datasets with near-duplicates in the distributed computation

model, where the communication cost is the primary concern.

Finally, we would like to mention that there is a large literature on data deduplication (also called

entity resolution or record linkage) [14, 16, 24, 30]. However, as previously mentioned, we cannot

afford a comprehensive data deduplication step in the data stream model.

3
The algorithm for robust ℓ0-sampling in [10] usesO (logm) space with a success probability (1−1/m). By standard parallel
repetition, this is equivalent to an algorithm that achieves a success probability 0.99 using O (1) space.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:5

Roadmap. The rest of this paper is organized as follows. After introducing useful notations and

conventions (Section 1.1), we present our algorithms for approximating robust F0 of a well-shaped

dataset in Section 2. We then make use of our algorithm for robust F0-estimation to design an

algorithm for robust ℓ0-sampling in Section 3. In Section 4, we give an alternative algorithm for

ℓ0-sampling on well-shaped datasets, and then show that it can be used to approximate robust F0

on general datasets. We provide our lower bound result in Section 5, and conclude the paper in

Section 8.

1.1 Preliminaries

Notations.We will use the following notations in this paper. All logarithms are in base 2 unless

specified otherwise. Let [n] ≜ {1, . . . ,n}.

• m: the length of the data stream.

• U : the universe of elements.

• Q (⊆ U): the set ofm elements in the data stream.

• G ≜ G(Q): the set of groups in the minimum-cardinality partition of Q . When Q is well-

shaped, G is the natural partition.

• qG : the representative element of group G; its selection varies in different algorithms.

• tG : the number of elements of group G that arrive after qG (including qG) in the data stream.

• Gsample
: the set of groups G ∈ G in which at least one element has been sampled.

We note that during the streaming process, qG , tG , and G
sample

may change over time. In all of our

algorithms, each group G ∈ Gsample
is represented by a tuple containing O(1) values.

The Zero(·) Function and Global Sampling Threshold z. We begin with h as a random hash

function h0 : U → {0, 1}. Whenm doubles for the i-th time, we choose a new random hash function

hi : U → {0, 1}, and append the output of h to the output of hi . That is, for an element q ∈ U ,

h(q) = hi (q) ◦ hi−1(q) ◦ . . . ◦ h0(q), where "◦" denotes concatenation. For an element q ∈ U , let

zero(q) be the number of trailing zeros of h(q).
In all of our algorithms, we maintain a global sampling threshold z. For each element q ∈ Q , we

sample q if zero(q) ≥ z; equivalently, we sample q with probability 1/2z .

Conventions. For any ϵ ∈ [0, 1], we say x̃ is a (1+ϵ)-approximation of x if (1−ϵ)x ≤ x̃ ≤ (1+ϵ)x .
We often ignore floor and ceiling operations when they do not affect any asymptotic bounds.

We will use constants such as 0.001 and 0.999 to represent low probability and high probability,

respectively. They can be replaced by δ and 1 − δ for any δ > 0 by the standard parallel repetition,

at the cost of an extra log(1/δ) factor in the space cost.

For simplicity, we will use fully random hash functions, which can always be replaced by pseudo-

random hash functions by Nisan’s pseudorandom generator [32] for space-bounded computation

at a small (logarithmic inm) extra space cost and an additional 1/m error probability, which will

not affect the asymptotic performance of our algorithms.

Probability Tools. We will make use of the following version of the Chernoff bound.

Lemma 1.6. Let X1, . . . ,Xn be independent random variables such that ∀i ∈ [n],Xi ∈ [0, 1]. Let
X =

∑
i ∈[n]Xi and let µ = E[X]. For any δ ∈ (0, 1), it holds that Pr[|X − µ | ≥ δµ] ≤ 2e−δ

2µ/3. And
for any a > 0, we have Pr [X > a] ≤ e−(a−2µ).

2 Robust F0 for Well-Shaped Datasets
In this section, we present an algorithm for robust F0-estimation on well-shaped datasets.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:6 Qin Zhang

The Ideas.We begin by giving an overview of the ideas behind our algorithm. The naive algorithm

to compute robust F0 involves maintaining one representative element from each group, which

clearly requires Θ(F0) space. A natural approach to reduce space usage is to sample groups by

sampling the stream elements. However, this subsampling procedure will cause large groups to be

sampled with higher probability than small groups. If we have information about the sizes of the

groups, we could compute a weight for each group to ensure that each group is treated equally.

The challenge is that by the time we encounter a sampled element qG ∈ G, we may have already

discarded many elements in G that came before qG , making it difficult to accurately determine the

size of G.
The algorithm for datasets in the O(1)-dimensional Euclidean space [9] resolves this issue by

sampling grid cells (instead of elements in Q), which can be done independent of the data stream.

As mentioned previously, this method comes at a price: it is tailored for the Euclidean space and

the sketch size grows exponentially with the space dimension.

We take a different approach to circumvent the above issue. For each sampled groupG ∈ Gsample
,

we count the number of elements that arrive after a randomly sampled element qG ; we denote this
count by tG . We introduce the following quantities and notations to facilitate the further discussion.

• k : a threshold parameter proportional to

√
m.

• Glarge
: the set of groups G ∈ Gsample

with tG > k .
• Gsmall ≜ G\Glarge

. Note that Gsmall
is the union of the set of groups {G ∈ Gsample | tG ≤ k}

and the set of groups G\Gsample
.

• nj (j = 1, . . . ,k − 1): the number of groups G ∈ Gsmall
with |G | = j.

• nk : the number of groups G ∈ Gsmall
with |G | ≥ k . Note that nk is defined differently from

nj (j = 1, . . . ,k − 1).

• X j (j ∈ [m]): the number of groupsG ∈ Gsample
with tG = j . Note that X j can be computed at

any time in the streaming process if we are able to store tG for each G ∈ Gsample
.

We manage to establish the following connections between the tail length frequencies {X j } of

sampled groups in Gsample
and the group size frequencies {nj } over all groups in G

small
when we

sample each element in the stream with probability 1/k :

(1) For any j < k , the quantity k(E[X j] − E[X j+1]) is roughly equal to nj .
(2) The quantity kE[Xk] is roughly equal to nk .

On the other hand, it is clear that

∑m
j=k+1

X j is exactly
��Glarge

��
. Therefore, we can use observa-

tions X j (j = 1, . . . ,m) to estimate F0 =
��Glarge

�� + ��Gsmall

�� = ∑m
j=k+1

X j +
∑k

j=1
nj ≈

∑m
j=k+1

X j +∑k−1

j=1
k(E[X j] − E[X j+1]) + kE[Xk], which is roughly what Algorithm 1 returns at the time of query.

Algorithm and Analysis. Our algorithm is presented in Algorithm 1. We have the following

result.

Theorem 2.1. Algorithm 1 outputs a (1+ϵ)-approximation of the robust F0 of a well-shaped dataset

ofm elements with probability 0.99 using O
(

1

ϵ

√
m log

1

ϵ

)
words of space.

In the rest of this section, we prove Theorem 2.1.

Since we sample each element q in the stream if zero(q) ≥ z where z = logk ,4 we are essentially
sampling each element with probability 1/k , where the value of k is chosen at Line 3 of Algorithm 1.

We thus have E
[��Gsample

��] ≤ m
k . By a Chernoff bound,

Pr

[���Gsample

��� − E [���Gsample

���] > m

2k

]
≤ exp

(
−

m

12k

)
≤ 0.001.

4
We ignore the floor/ceiling operations and assume k is a power of 2; this will not change any asymptotic bounds.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:7

Algorithm 1: Robust-F0-Estimation

Input: a stream of well-shaped dataset Q , parameter ϵ
Output: a (1 + ϵ)-approximation of F0(Q)

1 ε ← ϵ/5,m ← 1, Gsample ← ∅, z ← 0

2 foreach element q in the stream do
3 m ←m + 1, k ← max

{√
ε2m

100 log
1

ε
, 1

}
, z ← ⌊logk⌋

4 foreach G ∈ Gsample do
5 /* if representative element qG is no longer sampled, delete G */

6 if zero(qG) < z then delete G from Gsample

7 if ∃G ∈ Gsample s.t. d(qG ,q) ≤ 1 then
8 /* if q belongs to some group G, try to maintain the representative element

qG as a random element from those elements in G with the highest zero(·)

value */

9 if zero(q) > zero(qG) then
10 qG ← q, rG ← 1, tG ← 1 /* whenever qG gets updated, we reset tG */

11 else if zero(q) = zero(qG) then
12 /* In the case of ties, use Reservoir sampling [34] among elements with

the highest zero(·) value; rG is a counter used in Reservoir sampling

*/

13 rG ← rG + 1, tG ← 1

14 w.pr.
1

rG
, qG ← q

15 else tG ← tG + 1

16 else if zero(q) ≥ z then
17 /* for a newly sampled element that doesn’t belong to any existing group,

create a new group G = (qG , tG , rG) and add it to Gsample; we initialize the

representative element qG as q, the tail length tG to be 1, and the

counter rG to be 1 */

18 create a tuple G ≜ (qG , tG , rG) ← (q, 1, 1) and add G to Gsample

19 /* at the time of query */

20 for j = 1, . . . ,m do
21 Let X j be the number of groups G ∈ Gsample

with tG = j

22 Let ℓ1, . . . , ℓB and β1, . . . , βB be the pre-computed values defined in Definition 2.2

23 return F̃0 =
∑m

j=k+1
X j +

∑
b ∈[B−1]

Xℓb −Xℓb+1

βb
+

XℓB
βB

This implies that with probability 0.999, we have

��Gsample

�� ≤ E
[��Gsample

��]+m
2k ≤

3m
2k <

1

ε

√
400m log

1

ε .

Therefore, the space usage of Algorithm 1 is bounded byM ≜ 1

ε

√
400m log

1

ε .

We assume that F0 ≥ M , since otherwise we can store all groups in G. We then have

F0

k
≥

M

k
=

1

ε

√
400m log

1

ε

/√
ε2m

100 log(1/ε)
≥

100

ε2
log

1

ε
. (1)

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:8 Qin Zhang

Recall the sets Glarge,Gsmall
and values X j (j ∈ [m]),nj (j ∈ [k]) defined previously. By the

definitions of Glarge
and X j , we have

T ≜
∑m

j=k+1

X j =

���Glarge

���. (2)

Since F0 = |G| =
��Glarge

�� + ��Gsmall

��
, the remaining task is to estimate

��Gsmall

��
using X1, . . . ,Xk .

The Expectation of X j . We first investigate the expectation of each X j . For each i ∈ [k], let
pi = 1 − (1 − 1/k)i be the probability that there is at least one sampled element in a group G with

|G | = i . And let

λi ≜
pi
i
=

1 −
(
1 − 1

k

) i
i

. (3)

It is not difficult to check that

λ1 > λ2 > . . . > λk . (4)

Direct calculation gives

∀i ∈ [k], λi ∈ [λk , λ1] ⊆

[
1 − e−1

k
,

1

k

]
. (5)

For each G ∈ Gsmall
and j ∈ [k], let YG , j ∈ {0, 1} be the random variable such that

YG , j =

{
1, if G ∈ Gsample

and tG = j,

0, otherwise.

We thus have

X j =
∑

G ∈Gsmall

YG , j . (6)

Note that conditioned on G ∈ Gsmall ∩ Gsample
, by Reservoir sampling (Line 14 of Algorithm 1),

qG is a random element among the last kG ≜ min{k, |G |} elements in G. We thus have

Pr

[
YG , j = 1

]
= pkG ·

1

kG
= λkG . (7)

By (6) and (7), we have the following relation between X j and nj (j ∈ [k]).

E[X j] =
∑

G ∈Gsmall

E[YG , j] =

k−1∑
i=j

∑
G ∈Gsmall

: |G |=i

λi +
∑

G ∈Gsmall
: |G | ≥k

λk

= λjnj + . . . + λk−1nk−1 + λknk . (8)

We observe the following properties of E[X j]:

(1) E[X j] (j = 1, . . . ,k) monotonically decrease, and

E[X j] ≤ λ1

k∑
i=j

ni ≤ λ1F0. (9)

(2) We can obtain nj (j ∈ [k]) from E[X j]’s as follows:

∀1 ≤ j < k,nj =
E[X j] − E[X j+1]

λj
; nk =

E[Xk]

λk
. (10)

The Estimator. Equation (10) suggests us to estimate

��Gsmall

��
using following expression:∑

j ∈[k−1]

X j − X j+1

λj
+
Xk

λk
. (11)

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:9

To facilitate the analysis, we try to reduce the number of summands in (11) and modify the

estimator accordingly.

Definition 2.2 (B, βb , ℓb). Let

B = 1 + log
1+ε

λ1

λk
∈

(
1

2ε
,

1

ε

)
. (12)

We define

• β1 = λ1; βb = λ1

/
(1 + ε)b−1 (b = 2, . . . ,B); we thus have βB = λk , and β1 > β2 > . . . > βB .

• ℓ1 = 1; let ℓb (b = 2, . . . ,B) be the smallest index such that λℓb ≤ βb ; we thus have ℓB = k .

We define the estimator of

��Gsmall

��
as

S ≜
∑

b ∈[B−1]

Xℓb − Xℓb+1

βb
+
XℓB

βB
. (13)

The final estimator for |G| can be written as

F̃0 = S +T =
m∑

j=k+1

X j +
∑

b ∈[B−1]

Xℓb − Xℓb+1

βb
+
XℓB

βB
. (14)

We have the following lemma.

Lemma 2.3. With probability at least 0.99,
��S − ��Gsmall

���� ≤ 5εF0.

Proof. By (8), we have

E[XℓB] = nℓB βB = nkβB,

where the last equality follows from the definition ℓB = k . And for any b ∈ [B − 1],

E[Xℓb] − E[Xℓb+1
] =

∑
j ∈[ℓb ,ℓb+1

)

λjnj

∈


βb

1 + ε

∑
j ∈[ℓb ,ℓb+1

)

nj , βb
∑

j ∈[ℓb ,ℓb+1
)

nj

 .
Therefore, the quantity

E[S] =
∑

b ∈[B−1]

E[Xℓb] − E[Xℓb+1
]

βb
+
E[XℓB]

βB

estimates

��Gsmall

�� = ∑
j ∈[k] nj =

∑
b ∈[B−1]

∑
j ∈[ℓb ,ℓb+1

) nj + nk up to a multiplicative factor (1 + ε).
Consequently, ���E[S] − ���Gsmall

������ ≤ ε
���Gsmall

��� ≤ εF0. (15)

We next bound the difference between S and E[S]. To facilitate the analysis, we first split the

sum in (13) into two parts. Let b∗ be the index such that E[Xℓb∗] > ελkF0 and E[Xℓb∗+1] ≤ ελkF0.

We assume the existence of such a b∗; the case where no such b∗ exists will be addressed at the end

of the proof. We write

S = U +V , (16)

where

U =
∑

b ∈[b∗−1]

Xℓb − Xℓb+1

βb
+
Xℓb∗

βb∗
,

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:10 Qin Zhang

and

V = −
Xℓb∗+1

βb∗
+

∑
b=b∗+1, ...,B−1

Xℓb − Xℓb+1

βb
+
XℓB

βB
.

We first analyzeU :

E[U] =
∑

b ∈[b∗−1]

E[Xℓb] − E[Xℓb+1
]

βb
+
E[Xℓb∗]

βb∗

=
∑

b ∈[b∗−1]

(
1

βb+1

−
1

βb

)
E[Xℓb+1

] +
E[Xℓ1

]

β1

≤
∑

b ∈[b∗−1]

εE[Xℓb+1
]

βb+1

+
E[Xℓ1

]

β1

. (17)

We bound the difference between Xℓb and E[Xℓb] for each b ∈ {1, . . . ,b
∗}. Set η ≜ λk F0

2B . By the

definition of b∗, we know that E[X j] ≥ ελkF0 for any j ∈ [ℓb∗]. Therefore, for any b ∈ [b
∗ − 1],

η

E[Xℓb]
≤

λkF0

2B · ελkF0

=
1

2εB
< 1.

On the other hand, by (9) we have E[Xℓb] ≤ λ1F0 for any j ∈ [k]. Therefore,

η

E[Xℓb]
≥

λkF0

2B · λ1F0

≥
1

4B
.

By a Chernoff bound, we have for any b ∈ [b∗ − 1],

Pr

[��Xℓb − E[Xℓb]
�� ≥ η

]
≤ 2 exp

(
−

η2

3E[Xℓb]

)
≤ 2 exp

(
−
λkF0

24B2

)
(18)

≤ 2 exp

(
−
ε2F0

48k

)
(19)

≤ 2 exp

(
− logB2

)
(20)

≤
10
−3

B
, (21)

where from (18) to (19) we have used (5) and (12); from (19) to (20) we have used (1) and (12).

By another Chernoff bound, we have

Pr

[��Xℓ1
− E[Xℓ1

]
�� ≥ ελkF0

2

]
≤ 2 exp

(
−
ε2λ2

kF
2

0

12λ1F0

)
(22)

≤ 2 exp

(
−
ε2F0

48k

)
(23)

≤
10
−3

B
, (24)

where from (22) to (23) we have used (5), and from (23) to (24) we have used (1) and (12).

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:11

By (21), (24), and a union bound, we have with probability 0.998,

|U − E[U]| ≤
∑

b ∈[b∗−1]

ε

βb+1

· η +
ελkF0

2βk

≤ B ·
ε

βb+1

·
λkF0

2B
+
ελkF0

2βk

≤
εF0

2

+
εF0

2

= εF0. (25)

We next bound V . It is easy to see that

0 ≤ V ≤
∑

b=b∗+1, ...,B−1

Xℓb − Xℓb+1

βb
+
XℓB

βB

≤
1

βB

(∑
b=b∗+1, ...,B−1

(Xℓb − Xℓb+1
) + XℓB

)
=

1

λk
· Xℓb∗+1

. (26)

Recall that by the definition of b∗, we have E[Xℓb∗+1
] ≤ ελkF0. By Lemma 1.6, it holds that

Pr

[
Xℓb∗+1

> 3ελkF0

]
≤ exp(−(3ελkF0 − 2ελkF0)) ≤ 0.001. (27)

Combining (26) and (27), we have that with probability 0.999,

0 ≤ V ≤ 3εF0. (28)

By (16), (25) and (28), we have that with probability 0.997,

|S − E[S]| ≤ 4εF0. (29)

Lemma 2.3 follows from (15) and (29).

Finally, in the case when no such b∗ exists, we write

S =
∑

b=1, ...,B−1

Xℓb − Xℓb+1

βb
+
XℓB

βB
.

By the same argument as that for V , we have that with probability 0.999, 0 ≤ S ≤ 3εF0. We thus

have |S − E[S]| ≤ 3ϵF0, combining which with (15), the lemma follows. □

By (2), (14), Lemma 2.3 and the fact that F0 =
��Gsmall

�� + ��Glarge

��
, we have with probability 0.99,��F̃0 − F0

�� = ���S − ���Gsmall

������ ≤ 5εF0.

Setting ϵ = ε/5, we have that F̃0 is a (1 + ϵ)-approximation of F0.

3 Robust ℓ0-Sampling for Well-Shaped Datasets
In this section, we give an algorithm for robust ℓ0-sampling using our algorithm for F0-estimation.

The idea of the ℓ0-sampling algorithm is to perform a rejection sampling on the last element

qlast

G of each groupG ∈ Gsample
with probability pz =

1

2
z at the time of query. This is different from

the approach in the previous work [10] for robust ℓ0-sampling, where we try to store all groups

which are close to the set of sampled cells and then check whether their first points are in sampled

cells. To make sure that we still have “surviving groups” after the rejection sampling step and the
space cost is sublinear during the entire streaming process, we have to carefully choose the sample

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:12 Qin Zhang

Algorithm 2: Robust-ℓ0-Sampling
Input: a stream of well-shaped dataset Q
Output: an element of a group randomly sampled from G(Q)

1 z ← 0, Gsample ← ∅,Gaccept ← ∅

2 foreach element q in the stream do
3 /* maintain an estimate of F0 for continuously updating the global sample rate

*/

4 F̃0 ←Robust-F0-Estimation(q, 0.1), z ← ⌊log
F̃0

10
⌋

5 foreach G ∈ Gsample do
6 /* if representative element qG is no longer sampled, delete G */

7 if zero(qG) < z then delete G from Gsample

8 if ∃G ∈ Gsample s.t. d(qG ,q) ≤ 1 then
9 /* if q belongs to some group G, update qlast

G */

10 qlast

G ← q

11 /* update qG to be q if necessary */

12 if zero(q) > zero(qG) then qG ← q

13 else
14 /* for a newly sampled element that doesn’t belong to any existing

group, create a new group G = (qG ,q
last

G) and add it to Gsample; we

initialize both the representative element qG and qlast

G as q */

15 if zero(q) ≥ z then
16 create a tuple G ≜ (qG ,q

last

G) ← (q,q) and add G to Gsample

17 /* at the time of query: */

18 for G ∈ Gsample do
19 /* perform rejection sampling on the last element of all groups in Gsample at

the time of query */

20 if zero(qlast

G) ≥ z then add qlast

G to Gaccept

21 if
��Gaccept

�� = 0 then return “failure”

22 else return a random element in Gaccept

rate pz . We show that with the help of an estimation of the number of distinct elements F0, we can

maintain an appropriate pz for our purposes during the streaming process.

Our algorithm is presented in Algorithm 2. We have the following result.

Theorem 3.1. Algorithm 2 solves robust ℓ0-sampling on a well-shaped dataset ofm elements using
O(
√
m) words of space; the algorithm succeeds with probability 0.99.

Proof. For the correctness, it is easy to see that all groups G ∈ G with zero(qlast

G) ≥ z are

included in Gsample
. By the construction of Gaccept

(Line 18-20 in Algorithm 2), it includes all (and

only) groups G ∈ G with zero(qlast

G) ≥ z. Therefore, we just need to make sure that

��Gaccept

�� ≥ 1

at the end of the streaming process, the probability of which is equal to (1 − pz)
F0
. We thus set

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:13

pz =
10

F̃0

, where F̃0 is a 1.1-approximation of F0. Under this setting, we have

(1 − pz)
F0 =

(
1 −

10

F̃0

)F0

≤

(
1 −

9

F0

)F0

≤ 0.001. (30)

We can maintain F̃0 in parallel using our algorithm for robust F0-estimation (Algorithm 1).

By a Chernoff bound, the number of sampled groups (and thus the space usage) is upper bounded

by 2pzm with probability 0.999. We again assume that F0 ≥
√
m, since otherwise we can store all

groups in G. Under this assumption, we have pz ≤
11√
m . Therefore, with probability 0.999, the space

usage (excluding that for running Algorithm 1) is bounded by 2pzm = O(
√
m). By Theorem 2.1,

maintaining a 1.1-approximation of F0 also costs spaceO(
√
m). Therefore, the total space is bounded

by O(
√
m) with probability 0.99. □

4 General Datasets
Real-world datasets may not be well-shaped. In this section, we develop algorithms for robust F0-

estimation for datasets with small F0-ambiguity. To this end, we first design an algorithm for robust

ℓ0-sampling on well-shaped datasets where the representative element qG of every sampled group

G does not change during the entire streaming process. Note that in all the previous algorithms

(Algorithm 1 and 2), the representative elements qG may change over time, which is due to the fact

that when z increases (or, the global sampling probability decreases), some groups may be deleted

and then inserted again later. We then show that our new ℓ0-sampling algorithm can be used for

robust F0-estimation on general datasets.

4.1 An Alternative Algorithm for Robust ℓ0-Sampling on Well-Shaped Datasets
Our alternative algorithm for ℓ0-Sampling is described in Algorithm 3. Different from Algorithm 2,

it does not use F0-estimation as a subroutine.

The idea of the new ℓ0-sampling algorithm is to guess the best sample rate p∗ ≈ 1

F0

. To this

end, we essentially run Algorithm 2 for logm times in parallel without the F0-estimation (Line 4 of

Algorithm 2); each run uses a fixed sampling threshold z = log
1

p , where p takes values 1, 1

2
, 1

4
. . . , 1

m
for the logm runs. For each run, if p < p∗, then we may not be able to obtain a sample. However, in

this case, pF0 is small and we will not waste too much space. Otherwise if p > p∗, then pF0 could be

very large. We thus set a space cap 10

√
m, and suspend the run when the number of stored groups

exceeds the cap.

We have the following result.

Theorem 4.1. Algorithm 3 solves robust ℓ0-sampling on a well-shaped dataset ofm elements using
O(
√
m logm) words of space; the algorithm succeeds with probability 0.99.

Proof. LetM ≜ 10

√
m be a space parameter. We again assume that F0 ≥ M , since otherwise we

can store all groups in G.

When p ≥ min

{
10

F0

, 1
}
, letting z = log

1

p (ignoring ceiling/floor),���Gaccept

z

��� ≥ 1 (31)

with probability at least 1 − (1 − p)F0 ≥ 1 −

(
1 − 10

F0

)F0

≥ 0.999.

Under the assumption that F0 ≥ M , we have

E
[���Gsample

z

���] ≤ m

2
z ≤ pm ≤

10m

F0

≤
10m

M
=
√
m.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:14 Qin Zhang

Algorithm 3: Alternative-Robust-ℓ0-Sampling
Input: a stream of well-shaped dataset Q
Output: an element of a group randomly sampled from G(Q)

1 m ← 0, ζ ← 0

2 foreach element q in the stream do
3 m ←m + 1

4 /* create the ζ -th run when m > 2
ζ by copying all groups G in G

sample

ζ −1
to G

sample

ζ
if zero(qmax

G) ≥ ζ */

5 if m > 2
ζ then

6 ζ ← ζ + 1, G
sample

ζ ← ∅

7 foreach G ∈ G
sample

ζ −1
do

8 if zero(qmax

G) ≥ ζ then
9 add (qmax

G ,q
max

G ,q
last

G) to G
sample

ζ

10 for z = 0, 1, . . . , ζ do
11 /* each run follows the same procedure as Line 5 - 16 in Algorithm 2, except

that we include a point qmax

G in the group description, which is used to

determine whether to copy G when initiating a new run; we suspend a run

if the number of sampled groups in the run exceeds the limit */

12 if ∃G ∈ Gsample

z s.t. d(qG ,q) ≤ 1 then
13 qlast

G ← q

14 if zero(q) > zero(qmax

G) then qmax

G ← q

15 else if zero(q) ≥ z then
16 create a tuple G ≜ (qG ,q

max

G ,q
last

G) ← (q,q,q) and add G to G
sample

z

17 if
���Gsample

z

��� > 10

√
m then suspend the z-th run

18 /* at the time of query: */

19 for z = 0, 1, . . . , ζ do
20 if the z-th run is not suspended then
21 for G ∈ Gsample

z do
22 if zero(qlast

G) ≥ z then add qG to G
accept

z

23 Let z∗ be an arbitrary value z such that the z-th run is not suspended and
���Gaccept

z

��� ≥ 1

24 if no such z∗ exists then return “failure”

25 else return a random element in G
accept

z∗

By a Chernoff bound, with probability 1 − e−Ω(
√
m)
, it holds that���Gsample

z

��� ≤ 2

√
m < M . (32)

By a union bound, we have with probability 0.999,

���Gsample

z

��� < M holds for all them time steps of

the streaming process.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:15

By (31) and (32), we know that z = log
1

p with p = min

{
10

F0

, 1
}
satisfies both requirements

at Line 23 of Algorithm 3, giving the correctness of the algorithm. The total space for all z =
0, 1, . . . , logm runs is bounded by O(

√
m logm). □

Compared with Algorithm 2, the space cost of Algorithm 3 is higher by a logm factor. This extra

cost is traded for the stability of the representative element qG of all G ∈ G
sample

z .

4.2 Robust F0 for General Datasets
Wenow slightly modify Algorithm 3 for F0-estimation on a datasetQ with F0-ambiguity τ ∈ [0, 0.99],

as follows:

• At Line 17, replace the budget 10

√
m with

100

ϵ
√
m.

• At the time of query, replace Line 23-25 with: Find the smallest z∗ such that the z∗-th run is
not suspended; return 2

z∗
���Gaccept

z∗

��� as the estimation of F0. If no such z∗ exists, return “fail”.

We have the following theorem.

Theorem 4.2. Algorithm 3, after the above modifications, computes a 1+ϵ
1−τ -approximation of the

robust F0 of a dataset ofm elements with F0-ambiguity τ ∈ [0, 0.99]. The algorithm succeeds with
probability 0.99 and uses O

(√
m
ϵ logm

)
words of space.

Proof Ideas. The idea behind the proof is to show that once the representative element of each

sampled group in our algorithm remains unchanged during the streaming process, there exists a

group partitionH ofQ such that our algorithm is effectively performing ℓ0-sampling on the groups

inH . Moreover, the cardinality ofH will not deviate from F0(Q) by more than a τ F0 additive factor.

We also show that such a group partitionH can be constructed in a greedy fashion.

Proof. LetO ⊆ Q be a set of outliers such that Q̃ ≜ Q\O is well-shaped and F0(Q̃) ≥ (1−τ)F0(Q).

Let
˜G be the natural partition of Q̃ . By the definition of F0-ambiguity, we have

��� ˜G

��� ≥ (1 − τ)F0.

Observe that in Algorithm 3, for the z-th run which is not suspended, whenever we sample an

element q with zero(q) ≥ z, we effectively create a group H ≜ H (q) that contains all elements

q′ ∈ Q such that (1) d(q′,q) ≤ 1, and (2) there does not exist a previously formed group H ∈ Gsample

satisfying d(q,qH) ≤ 1. LetH be the set of groups created in this run. We conceptually extendH

to cover all elements in Q , as follows:

(1) Initialize Q ′← Q\ ∪H ∈H H ;

(2) Whenever Q ′ , ∅
(a) pick an arbitrary element q ∈ Q ′, create a new group H ← Ball(q, 1), where Ball(q, 1)

contains all points in Q ′ within a distance of 1 from q; we call q the representative element

of H ;

(b) H ← H ∪ {H }; Q ′← Q ′\H .

Since Q̃ is well-shaped, no group inH can cover elements in two distinct groups in
˜G. Therefore

|H | ≥

��� ˜G

��� ≥ (1 − τ)F0. (33)

On the other hand, we have the following claim, which can be proved by an inductive argument.

Claim 1. |H | ≤ |G| = F0.

Proof of Claim 1. Let H1, . . . ,Hn be the groups in H , ordered according to the time of their

creation in the streaming process and our conceptual extension. And let q1, . . . ,qn be their repre-

sentative elements. We show that there is an order of groups in G, denoted by G1, . . . ,GF0
, such

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:16 Qin Zhang

that for any i ∈ [F0], it holds that ⋃
j ∈[i]

G j ⊆
⋃
j ∈[i]

Hj . (34)

Note that (34) immediately implies n ≤ F0.

We prove (34) by induction. For the base case, let G1 be the group in G that contains q1. By the

definition of robust F0, we have G1 ⊆ Ball(q1, 1) = H1. Now assume that for k = i − 1, we have⋃
j ∈[i−1]

G j ⊆
⋃

j ∈[i−1]

Hj . (35)

For k = i , we first observe that the representative element qi of group Hi satisfies qi < ∪j ∈[i−1]Hj ,

which, combined with (35), gives qi < ∪j ∈[i−1]G j . LetGi be the group in G that contains qi . Clearly,

Gi ⊆ Ball(qi , 1) ⊆
⋃
j ∈[i]

Hj . (36)

Combining (35) and (36), we have ∪j ∈[i]G j ⊆ ∪j ∈[i]Hj , which completes the induction. □

By (33) and Claim 1, we have |H | ∈ [(1 − τ)F0, F0]. Note that Algorithm 3 effectively performs

ℓ0-sampling on groups inH . We can thus use Algorithm 3 to estimate |H |. LetM ≜ 100

ϵ
√
m be the

space parameter. W.l.o.g., assume that F0 ≥ M . Let z0 ≜ log
ϵ 2 |H |

40
(ignoring ceiling/floor). We note

that the algorithm does not need to know z0, which is only used for the purpose of analysis.

For any z-th run with z ≤ z0, for each G ∈ H , let XG be the indicator variable of the event that

zero(qlast

G) ≥ z, and let X =
∑
G ∈G XG . We have E[X] = |H |

2
z ≥

|H |

2
z

0
= 40

ϵ 2
. By a Chernoff bound,

we have Pr[|X − E[X]| ≤ ϵE[X]] ≥ 1 − 2 exp

(
−
ϵ 2E[X]

3

)
≥ 0.999. On the other hand, by another

Chernoff bound, with probability 0.999, the space usage with respect to the z0-th run is bounded

by 2 · m
2
z

0
= 80m

ϵ 2 |H |
≤ 80m

ϵ 2(1−τ)F0

≤ 80m
ϵ 2(1−τ)M ≤ M , where the last inequality uses the fact τ ∈ [0, 0.99].

Therefore, for the smallest run z∗ such that the z∗-th run is not suspended, the value 2
z∗X is a

(1 + ϵ)-approximation of |H |, which is also a
1+ϵ
1−τ -approximation of F0.

The total space over all Θ(logm) runs is bounded by O(M logm) = O
(√

m
ϵ logm

)
. □

Remark 1. The best definition for ℓ0-sampling on general datasets is unclear, as the minimum-
cardinality valid partition may not be unique. Nevertheless, Algorithm 3 still gives the following
guarantee: Let Q be a dataset with F0-ambiguity τ . Let ˜G = {G1, . . . ,Gn} be the natural partition
of Q̃ = Q\O , where O is the set of outliers and n ∈ [(1 − τ)F0, F0] according to the definition of
F0-ambiguity. Algorithm 3 outputs an element q such that for each i ∈ [n], Pr[q ∈ Gi] ∈

[
1

F0

, 1

(1−τ)F0

]
.

5 Lower Bound for Robust F0

In this section, we prove the following lower bound for approximating robust F0 in the data stream

model.

Theorem 5.1. Any randomized streaming algorithm that computes a 1.1-approximation of the
robust F0 problem on a dataset ofm points with probability 0.51 needs at least Ω(

√
m) bits of space.

We prove the theorem via a reduction from the Boolean Hidden Matching problem [6, 21, 28]. In

Boolean Hidden Matching, denoted by BHMn where n is a parameter, we have two parties Alice

and Bob. Alice holds a column vector x ∈ {0, 1}n , and Bob holds a matchingM of
n
2
edges and a

column vectorw ∈ {0, 1}
n
2 . Representing the matching as a matrixM of size

n
2
× n, where the k-th

row corresponds to the k-th edge (i, j) of the matchingM as follows:Mki = Mk j = 1, andMkℓ = 0

for any ℓ ∈ [n]\{i, j}. Under the promise that we either haveMx = w (yes instance) orMx = w̄ (no

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:17

aj

ai

b
(i,j)
j

b
(i,j)
i

b
(i,j)
−i

b
(i,j)
−j

i

j

aj

ai

b
(i,j)
j

b
(i,j)
i

b
(i,j)
−i

b
(i,j)
−j

i

j

A YES instance A NO instance

Fig. 1. Hard inputs for robust F0 in two dimensions w.r.t. an edge (i, j) ∈ M

instance; w̄ denotes the vector by flipping each coordinate ofw ∈ {0, 1}
n
2), the task is for Alice to

send a message to Bob in such a way that Bob can determine whether the input is a yes instance or

a no instance. Here, we use modulo 2 arithmetic in the matrix-vector multiplication. We will omit

the subscript n in BHMn when it is clear from the context.

We have the following result for BHM.

Theorem 5.2 ([21]). There is an input distribution µ for BHMn , such that for any deterministic
one-way communication algorithm that solves the BHMn problem for at least 0.51 fraction of inputs
distributed according to µ, Alice needs to send Bob a message of at least Ω(

√
n) bits.

We will use a reduction to show that a streaming algorithm for the robust F0 problem can be

used to create an algorithm for the BHM problem.

Reduction. Given an input I = (x,M,w) of BHMn , for each i ∈ [n], let zi = 1 if xi = 1, and

zi = −1 if xi = 0; that is, we try to convert {0, 1} values to {−1, 1} values. Similarly, for each

i ∈ [n], let vi = 1 if wi = 1, and vi = −1 if wi = 0. Let e1, . . . , en be the standard basis vectors in

the n-dimensional Euclidean space. We also identify a vector with a corresponding point in the

Euclidean space.

The reduction from BHM to robust F0 works as follows. Please also refer to Figure 1 for an

illustration.

(1) Alice, using her input x , constructs “a” points in Rn as follows: For each xi (i ∈ [n]), we create
a point ai =

3zi√
2

ei in Rn (recall that zi is determined by xi). Alice simulates the streaming

algorithm for robust F0-estimation on the set of n points {ai }i ∈[n] in an arbitrary order, and

then sends the final memory configuration to Bob.

(2) Bob, using his input M , constructs the following “b” points: For each k-th edge (i, j) ∈ M ,

create four points in the plane spanned by ei and ej:

b(i , j)j = −
vk
√

2

ei +
2

√
2

ej, b(i , j)i = −
2vk
√

2

ei +
1

√
2

ej,

b(i , j)
−j =

vk
√

2

ei −
2

√
2

ej, b(i , j)
−i =

2vk
√

2

ei −
1

√
2

ej.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:18 Qin Zhang

(recall thatvi is determined bywi). He then simulates the streaming algorithm on the set of 2n

points

{
b(i , j)i ,b(i , j)j ,b

(i , j)
−i ,b

(i , j)
−j

}
(i , j)∈M

in an arbitrary order using the memory configuration

received from Alice as the starting configuration. Let

I ′ = {ai }i ∈[m] ∪
{
b(i , j)i ,b(i , j)j ,b

(i , j)
−i ,b

(i , j)
−j

}
(i , j)∈M

.

denote the input of m = 3n points to the streaming algorithm. Let F̃0 be the output of a

1.1-approximation streaming algorithm for computing F0(I
′). Bob outputs Yes if F̃0 ≥ 1.7n

and No if F̃0 < 1.7n for BHM(I).

Intuitively, in the yes instance, two of the four “b” points created by Bob lie in the quadrant

defined by ai , the origin, and aj , while the other two are simply their reflections across the origin.

The yes instance in Fig. 1 illustrates just one of the four possible scenarios for the yes instance.

On the other hand, in the no instance, none of the four "b" points created by Bob fall within the

quadrant ai -origin-aj . The no instance figure in Fig. 1 also shows just one of the four possible

scenarios for the no instance.

Lemma 5.3. If there is a streaming algorithm that givens a 1.1-approximation of the F0(I
′) using

S bits of space, then the corresponding one-way communication algorithm described above solves
BHM(I) using S bits of communication .

Proof. In the yes instance (cf. Figure 1), the minimum-cardinality F0-partition is as follows:

(1) For each i ∈ [n], form a group Gi = {ai } ∪ {all “b” points in Ball(ai , 1)}.
(2) After the first step, for each (i, j) ∈ M , form a group that contains two remaining “b” points,

whose distance is 1.

The total number of groups is 1.5n.
In the no instance, one of the minimum-cardinality F0-partitions is as follows:

(1) For each i ∈ [n], form a group Gi = {ai } ∪ {all “b” points in Ball(ai , 1)}.
(2) After the first step, for each (i, j) ∈ M , form a group for each of the two remaining “b” points.

Note that the distance of these two points is bigger than 1.

The total number of groups is 2n.
Now, if F̃0 is an approximation of F0 up to a factor of 1.1, then in the yes instance, we always

have F̃0 ≤ 1.5n · 1.1 = 1.65n. While in the no instance, we always have F̃0 ≥ 2n · 0.9 = 1.8n. Since
there is a gap between the two “boundary” values 1.65n and 1.8n, we can set the threshold to 1.7n
and check whether F̃0 > 1.7n or F̃0 < 1.7n to determine if we have a yes BHM instance or a no

instance. □

Theorem 5.1 follows from Theorem 5.2, Lemma 5.3, and Yao’s minimax principle [35].

6 Constant Dimensional Euclidean Spaces
In this section, we consider O(1)-dimensional Euclidean spaces. We show that our results for

F0-estimation and ℓ0-sampling for general metric spaces can be further improved to match the

results in [9, 10].

6.1 Robust F0-Estimation
We try to modify Algorithm 1 to get a streaming algorithm for robust F0 of a well-shaped dataset

in the O(1)-dimensional Euclidean space. We first partition the Euclidean space using a square grid

C of side length 1/
√
d . Thus for each cell C ∈ C, there exists at most one group G ∈ G such that

C ∩G , ∅. On the other hand, for each group G ∈ G, at most κ ≜ κ(d) = O(1) grid cells C satisfy

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:19

Algorithm 4: Robust-F0-Euclidean

Input: a stream of well-shaped dataset Q in d-dimensional Euclidean space with d = O(1),
parameter ϵ

Output: a (1 + ϵ)-approximation of F0(Q)
1 ε ← ϵ/(4κ), z ← 0, Gsample ← ∅

2 foreach point q in the stream do
3 /* if q belongs to some group G, try to maintain the representative cell CqG

as a random cell from those cells that G intersect with the highest zero(·)

value */

4 if ∃G ∈ Gsample s.t. d(qG ,q) ≤ 1 then
5 if �C ∈ CG s.t. q ∈ C then
6 add Cq to CG

7 if zero(Cq) > zero(CqG) then
8 qG ← q, CG ← {Cq}, rG ← 1

9 else if zero(Cq) = zero(CqG) then
10 rG ← rG + 1

11 w.pr.
1

rG
, qG ← q, CG ← {Cq} /* Reservoir sampling */

12 else if zero(Cq) ≥ z then
13 /* for a newly sampled element that doesn’t belong to any existing group,

create a new group G = (q, {Cq }, 1) and add it to Gsample */

14 create a tuple G ≜ (qG , CG , rG) ← (q, {Cq}, 1) and add G to Gsample

15 if
∑
G ∈Gsample |CG | >

10
3κ logκ
ε2

then
16 z ← z + 1

17 /* if representative cell CqG is no longer sampled, delete G */

18 foreach G ∈ Gsample do
19 if zero(CqG) < z then delete G from Gsample

20 /* at the time of query */

21 for j = 1, . . . ,κ do
22 Let X j be the number of groups G ∈ Gsample

with |CG | = j

23 return
∑

j ∈[κ−1]

X j−X j+1

λj
+

Xκ
λκ

C ∩G , ∅. After this setup, we can effectively ignore all points q ∈ G that are not the first point

that falls into the cell Cq , where Cq is the cell that contains point q.

Similar as before, we define a hash function h : C → [N], where N = 2
λ
for a large enough

integer λ. We again assume that there is no collision among the hash values {h(C) | C ∈ C}, which
holds with probability 1 − o(1) when N ≥ m3

(or, λ ≥ 3 logm), wherem is the number of elements

in the data stream. Let zero(C) (C ∈ C) be the number of trailing zeros of h(C).

The Algorithm. Our algorithm is described in Algorithm 4. During the whole streaming process,

we maintain a set of sampled groups G in the format (qG , CG , rG), where qG is a random point of

G that has the largest zero(·) value, CG is the set of cells that contain at least one point in G that

comes after qG , and rG is the counter that we maintain for performing Reservoir sampling. The

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:20 Qin Zhang

main differences between Algorithm 4 and Algorithm 1 are (1) we consider zero(·) of cells instead
of points, and (2) in Algorithm 4, we explicitly maintain all cells that contain at least one point inG
that comes after qG instead of just the number of such cells.

For each incoming point q in the data stream, if it belongs to a sampled group G ∈ Gsample
, we

first check if it is the first point in the cell Cq . If yes, we add Cq to CG . We also try to update qG if

zero(Cq) ≥ zero(CqG), in the same way as that in Algorithm 1.

If q does not belong to any group in Gsample
and zero(Cq) ≥ z, we create a new sampled group. If

the sum of the numbers of cells in CG across all sampled groups G exceeds
10

3κ logκ
ε2

, we increment

the value z and delete all groups G ∈ Gsample
for which zero(CqG) < z.

We have the following theorem.

Theorem 6.1. Algorithm 4 outputs a (1+ϵ)-approximation of the robust F0 of a well-shaped dataset
ofm points in theO(1)-dimensional Euclidean space with probability 0.99 usingO

(
1

ϵ 2

)
words of space.

In the rest of this section, we prove Theorem 6.1. LetW ≜
10

3κ logκ
ε2

, and letM = 2κW = O
(

1

ε2

)
be the space budget (recall that κ = O(1)). W.l.o.g., we assume that F0 ≥ M , since otherwise we can

store all groups in the memory. Let pz ≜
1

2
z be the sample rate at the end of the streaming process.

We have the following lemma, which we condition on in the rest of the proof.

Lemma 6.2. With probability 0.998, it holds that pzF0 ∈
[W

6κ , 2W
]
.

Proof. For the lower bound, if on the contrary that pzF0 <
W
6κ , then pz−1F0 <

W
3κ . Thus, before

the last increment of z, we have

E


∑
G ∈Gsample

|CG |

 ≤ κ · pz−1F0 ≤
W

3

=
10

3κ logκ

3ε2
.

By Lemma 1.6, we have

Pr


∑

G ∈Gsample

|CG | >
10

3κ logκ

ε2

 ≤ exp

(
−

(
10

3κ logκ

ε2
−

2 · 10
3κ logκ

3ε2

))
≤ 0.001.

In other words, with probability 0.999, the last increment would not happen. A contradiction.

For the upper bound, if on the contrary that pzF0 > 2W , then

E


∑
G ∈Gsample

|CG |

 ≥ pzF0 > 2W =
2 · 10

3κ logκ

ε2
.

By a Chernoff bound, we have

Pr


∑

G ∈Gsample

|CG | ≤
10

3κ logκ

ε2

 ≤ Pr


∑

G ∈Gsample

|CG | ≤
1

2

· E


∑
G ∈Gsample

|CG |




≤ exp

(
−

1

12

·
2 · 10

3κ logκ

ε2

)
≤ 0.001.

Therefore, with probability 0.999, z would have already been incremented. A contradiction. □

Similar to the analysis for Algorithm 1, we define the following quantities for any j ∈ [κ].

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:21

• nj : the number of groups G ∈ G such that G intersects with j cells.

• X j : the number of groups G ∈ Gsample
with |CG | = j.

• λj : λj ≜
1−(1−pz)j

j ; we have

λ1 > λ2 > . . . > λκ , (37)

and ∀i ∈ [κ],

λi ∈ [λκ , λ1] ⊆

[
pz −

κ

2

p2

z,pz
]
⊆

[pz
2

,pz
]
, (38)

where the last relation, by pzF0 ≤ 2W (Lemma 6.2), M = 2κW , and the assumption that

F0 ≥ M , we have κpz ≤ 1.

By essentially the same calculation as (8), we get

E[X j] = λjnj + . . . + λκnκ . (39)

We thus define our estimator for |G| as

F̃0 ≜
∑

j ∈[κ−1]

X j − X j+1

λj
+
Xκ

λκ
.

It is easy to see that

E[F̃0] ≜
∑

j ∈[κ−1]

E[X j] − E[X j+1]

λj
+
E[Xκ]

λκ
=

∑
j ∈[κ]

nj = F0. (40)

In the rest of the proof, we show that F̃0 is tightly concentrated on its expectation E[F̃0].

Similar as before, let j∗ be the index such that E[X j∗] > ελκF0 and E[X j∗+1] ≤ ελκF0. We write

the output of Algorithm 4 asU +V , where

U =
∑

j ∈[j∗−1]

X j − X j+1

λj
+
X j∗

λj∗
, (41)

and

V = −
X j∗+1

λj∗
+

∑
j=j∗+1, ...,κ−1

X j − X j+1

λj
+
Xκ

λκ
.

We first analyzeU :

E[U] =
∑

j ∈[j∗−1]

E[X j] − E[X j+1]

λj
+
E[X j∗]

λj∗
=

∑
j ∈[j∗−1]

(
1

λj+1

−
1

λj

)
E[X j+1] +

E[X1]

λ1

. (42)

Set η = ελκF0. By the definition of j∗, we know that E[X j] > ελκF0 for any j ∈ [j
∗]. Therefore, for

any j ∈ [j∗],
η

E[X j]
< 1. On the other hand, by (39) we have E[X j] ≤ λ1F0 for any j ∈ [κ]. Therefore,

η
E[X j]

≥
ελκ F0

λ1F0

=
ελκ
λ1

. By a Chernoff bound, we have for any j ∈ [j∗],

Pr

[��X j − E[X j]
�� ≥ η

]
≤ 2 exp

(
−

η2

3E[X j]

)
≤ 2 exp

(
−
ε2λ2

κF0

3λ1

)
(38)

≤ 2 exp

(
−
ε2pzF0

12

)
Lemma 6.2

≤ 2 exp

(
−

ε2W

12 · 6κ

)
= 2 exp

(
−

10
3κ logκ

12 · 6κ

)
≤

0.001

κ
. (43)

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:22 Qin Zhang

By a union bound over all j ∈ [j∗], we have

Pr

[
|U − E[U]| ≤

2κη

pz

]
(38)

≥ Pr

[
|U − E[U]| ≤

κη

λk

]
(37), (41), (42)
≥ 1 −

∑
j ∈[j∗]

Pr

[��X j − E[X j]
�� ≥ η

]
(43)

≥ 1 − κ ·
0.001

κ
= 0.999. (44)

We next bound V . We have

0 ≤ V ≤
∑

j=j∗+1, ...,κ−1

X j − X j+1

λj
+
Xκ

λκ
≤

1

λκ
· X j∗+1.

By the definition of j∗, we have E[X j∗+1] ≤ ελκF0. By Lemma 6.2, it holds that

Pr

[
X j∗+1 > 3ελκF0

]
≤ exp(−(3ελκF0 − 2ελκF0))

(38)

≤ exp

(
−
εpzF0

2

)
Lemma 6.2

≤ exp

(
−
ϵW

12κ

)
≤ 0.001.

Therefore, with probability 0.999,

V ≤ 3εF0. (45)

Set ε = ϵ/(4κ). By (44) and (45), we have that with probability 0.99, the quantity F̃0 approximates

F0 up to an additive error 2κεF0 + 3εF0 ≤ ϵF0. Since κ is a constant, the space cost is bounded by

M = O
(

1

ε2

)
= O

(
1

ϵ 2

)
.

6.2 Robust ℓ0-Sampling
We can slightly modify Algorithm 2 to obtain a streaming algorithm for robust ℓ0-sampling in the

O(1)-dimensional Euclidean space with the help of the grid partition as described in Section 6.1.

The algorithm is described in Algorithm 5. Compared with Algorithm 2, the difference is that we

only keep the first point of each grid cell that intersects with a sampled group.

We have the following theorem.

Theorem 6.3. Algorithm 5 solves robust ℓ0-sampling on a well-shaped dataset ofm points with
probability 0.99 using O(1) words of space.

The proof of Theorem 6.3 is similar to that of Theorem 3.1. We again set pz =
10

F̃0

, where F̃0 is

a 1.1-approximation of F0. This is sufficient to guarantee that Pr

[��Gaccept

�� ≥ 1

]
≥ 0.999. On the

other hand, the space cost is upper bounded by 2pzκF0 = O(1) with probability 0.999 by a Chernoff

bound, where κ ≜ κ(d) = O(1) is the maximum number of grid cells that a group can intersect.

On the other hand, maintaining a 1.1-approximation of robust F0 using Robust-F0-Euclidean

(Algorithm 4) costs space O(1) words. Therefore, the total space cost is O(1) words.

7 Other Statistical Problems
This paper mainly focuses on two basic statistical problems, namely, distinct elements and ℓ0-
sampling. A few other statistical problems can be solved on well-shaped datasets by adapting

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:23

Algorithm 5: Robust-ℓ0-Sampling-Euclidean
Input: a stream of well-separated dataset Q in d-dimensional Euclidean space with d = O(1)
Output: an element of a group randomly sampled from G(Q)

1 z ← 0, Gsample ← ∅,Gaccept ← ∅

2 foreach point q in the stream do
3 F̃0 ←Robust-F0-Euclidean(q, 0.1), /* F̃0 is a 1.1-approximation of F0 */

4 z ← ⌊log
F̃0

10
⌋

5 foreach G ∈ Gsample do
6 /* if representative cell CqG is no longer sampled, delete G */

7 if zero(CqG) < z then delete G from Gsample

8 if ∃G ∈ Gsample s.t. d(qG ,q) ≤ 1 then
9 /* if q belongs to some group G, update qlast

G , and update qG if necessary */

10 if �C ∈ CG s.t. q ∈ C then
11 add Cq to CG

12 qlast

G ← q

13 if zero(Cq) > zero(CqG) then qG ← q

14 else
15 /* for a newly sampled element that doesn’t belong to any existing group,

create a new group G = (q,q,Cq) and add it to Gsample */

16 if zero(Cq) ≥ z then
17 create a tuple G ≜ (qG ,q

last

G , CG) ← (q,q,Cq) and add G to Gsample

18 /* at the time of query: */

19 for G ∈ Gsample do
20 if zero(Cq last

G
) ≥ z then add G to Gaccept

21 if
��Gaccept

�� = 0 then
22 return “failure”

23 else return a random group G in Gaccept

the algorithms for the noiseless setting. For example, consider the following two basic statistical

problems:

(1) (α, ϵ)-heavy-hitters: identify a set of groups G′ ⊆ G that contains all groups G with sizes

|G | ≥ αm, but excludes all groups with |G | ≤ (α − ϵ)m, wherem is the length of the stream.

(2) Frequency moments Fp (p ≥ 1): compute Fp =
∑
G ∈G |G |

p
.

The Misra-Gries sketch [31] and the AMS-sketch [4] are two algorithms that solve (α, ϵ)-heavy-
hitters and frequency moments Fp (p ≥ 1), respectively. A nice feature in both sketching algorithms,

translating it to the well-shaped data setting, is that we always maintain a representative element

of a subset of groups in the sketch. Therefore, we can easily determine if a newly incoming element

e belongs to any of the existing groups G. Consequently, we can adapt the Misra-Gries sketch and

the AMS-sketch for the two problems on well-shaped datasets using the same amount of space as

on noiseless datasets.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

111:24 Qin Zhang

On the other hand, it is not clear how to define some of these statistical problems for general noisy

datasets. One approach is to introduce an ambiguity parameter similar to that used in F0-estimation.

We leave this to future work.

8 Concluding Remarks
We conclude the paper by discussing a couple of practical aspects and open problems.

We would like to mention two methods that may further reduce time and space costs of our

algorithms in practice. The first is to use the space partition technique, first introduced in [9], to

further improve the space cost. By partitioning the space into cells in such a way that each cell

intersects with at most one group in the F0-partition of the dataset, we can effectively decrease the

number of input elementsm to the number of non-empty cells. More precisely, for each incoming

element q in the data stream, we feed the cell Cq into our algorithms instead of q, where Cq is

the cell that contains q. In Section 6, we have already used this idea to improve the space cost of

F0-estimation and ℓ0-sampling for points in the O(1)-dimensional Euclidean space.

In this work, we are mainly interested in minimizing the space cost of streaming algorithms, and

do not attempt to optimize their running time. The time bottleneck in all of our algorithms is the

step of membership search. That is, for each incoming element q in the data stream, we need to

check whether there is a groupG ∈ Gsample
such that d(qG ,q) ≤ 1. In metric spaces where efficient

LSH schemes are applicable, we can utilize LSH to accelerate the search process, thereby expediting

the whole algorithm.

There are several directions left open after this work: (1) As mentioned in Section 5, for robust

F0-estimation, it would be desirable if we can prove a Ω(
√
m) lower bound for well-shaped datasets

(the no-instance in the current hard input distribution is not well-shaped) and/or incorporate the

approximation factor ϵ into the lower bound. (2) It would be nice if we can design sublinear space

algorithms for turnstile data streams where element deletions are allowed. (3) It would be interesting

to study other statistical problems for which algorithms for noiseless datasets cannot be directly

adapted.

References
[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear measurements. In SODA,

pages 459–467, 2012.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and subgraphs. In

PODS, pages 5–14, 2012.
[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in dynamic graph streams. In APPROX-

RANDOM, pages 1–10, 2013.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. J.
Comput. Syst. Sci., 58(1):137–147, 1999.

[5] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in dynamic graph streams

and the simultaneous communication model. In SODA, pages 1345–1364, 2016.
[6] Ziv Bar-Yossef, T. S. Jayram, and Iordanis Kerenidis. Exponential separation of quantum and classical one-way

communication complexity. In László Babai, editor, STOC, pages 128–137. ACM, 2004.

[7] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct elements in a data

stream. In RANDOM, pages 1–10, 2002.

[8] Kevin Beyer, Peter J Haas, Berthold Reinwald, Yannis Sismanis, and Rainer Gemulla. On synopses for distinct-value

estimation under multiset operations. In SIGMOD, pages 199–210, 2007.
[9] Di Chen and Qin Zhang. Streaming algorithms for robust distinct elements. In Fatma Özcan, Georgia Koutrika, and

Sam Madden, editors, SIGMOD, pages 1433–1447. ACM, 2016.

[10] Jiecao Chen and Qin Zhang. Distinct sampling on streaming data with near-duplicates. In Jan Van den Bussche and

Marcelo Arenas, editors, PODS, pages 369–382. ACM, 2018.

[11] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew McGregor, Morteza

Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with applications to finding matchings and related

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

Robust Statistical Analysis on Streaming Data with Near-Duplicates in General Metric Spaces 111:25

problems in dynamic graph streams. In SODA, pages 1326–1344, 2016.
[12] Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza Monemizadeh. Parameterized

streaming: Maximal matching and vertex cover. In SODA, pages 1234–1251, 2015.
[13] Graham Cormode, S. Muthukrishnan, and Irina Rozenbaum. Summarizing and mining inverse distributions on data

streams via dynamic inverse sampling. In VLDB, pages 25–36, 2005.
[14] Xin Luna Dong and Felix Naumann. Data fusion: resolving data conflicts for integration. Proceedings of the VLDB

Endowment, 2(2):1654–1655, 2009.
[15] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In Algorithms-ESA 2003, pages 605–617.

Springer, 2003.

[16] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate record detection: A survey. IEEE
Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[17] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis of a near-optimal

cardinality estimation algorithm. DMTCS Proceedings, (1), 2008.
[18] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. Journal of Computer

and System Sciences, 31(2):182–209, 1985.
[19] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams and applications. Int. J. Comput.

Geometry Appl., 18(1/2):3–28, 2008.
[20] Sumit Ganguly. Counting distinct items over update streams. Theoretical Computer Science, 378(3):211–222, 2007.
[21] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Exponential separations for one-way

quantum communication complexity, with applications to cryptography. In David S. Johnson and Uriel Feige, editors,

STOC, pages 516–525. ACM, 2007.

[22] Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of data streams. In SPAA, pages
281–291, 2001.

[23] Jeongwan Haah, Aram W. Harrow, Zheng-Feng Ji, Xiaodi Wu, and Nengkun Yu. Sample-optimal tomography of

quantum states. In Daniel Wichs and Yishay Mansour, editors, STOC, pages 913–925. ACM, 2016.

[24] Thomas N Herzog, Fritz J Scheuren, and William E Winkler. Data quality and record linkage techniques, volume 1.

Springer, 2007.

[25] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In

Jeffrey Scott Vitter, editor, STOC, pages 604–613. ACM, 1998.

[26] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding duplicates in streams, and

related problems. In PODS, pages 49–58, 2011.
[27] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct elements problem. In

PODS, pages 41–52, 2010.
[28] Iordanis Kerenidis and Ran Raz. The one-way communication complexity of the boolean hidden matching problem.

CoRR, abs/quant-ph/0607173, 2006.
[29] Christian Konrad. Maximum matching in turnstile streams. In ESA, pages 840–852, 2015.
[30] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: similarity measures and algorithms. In SIGMOD,

pages 802–803. ACM, 2006.

[31] J. Misra and David Gries. Finding repeated elements. Science of Computer Programming, 2(2):143–152, 1982.
[32] Noam Nisan. Psuedorandom generators for space-bounded computation. In Harriet Ortiz, editor, Proceedings of the

22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 204–212.
ACM, 1990.

[33] Ryan O’Donnell and John Wright. Efficient quantum tomography. In Daniel Wichs and Yishay Mansour, editors,

STOC, pages 899–912. ACM, 2016.

[34] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, 1985.
[35] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (extended abstract). In

18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November
1977, pages 222–227. IEEE Computer Society, 1977.

[36] Qin Zhang. Communication-efficient computation on distributed noisy datasets. In SPAA, pages 313–322, 2015.

Received December 2024; revised February 2025; accepted March 2025; revised 20 February 2007; revised 12

March 2009; accepted 5 June 2009

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 111. Publication date: May 2025.

	Abstract
	1 Introduction
	1.1 Preliminaries

	2 Robust F0 for Well-Shaped Datasets
	3 Robust 0-Sampling for Well-Shaped Datasets
	4 General Datasets
	4.1 An Alternative Algorithm for Robust 0-Sampling on Well-Shaped Datasets
	4.2 Robust F0 for General Datasets

	5 Lower Bound for Robust F0
	6 Constant Dimensional Euclidean Spaces
	6.1 Robust F0-Estimation
	6.2 Robust 0-Sampling

	7 Other Statistical Problems
	8 Concluding Remarks
	References

