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ABSTRACT
In this paper we study how to perform distinct sampling in the
streaming model where data contain near-duplicates. The goal of
distinct sampling is to return a distinct element uniformly at random
from the universe of elements, given that all the near-duplicates are
treated as the same element. We also extend the result to the sliding
window cases in which we are only interested in the most recent
items. We present algorithms with provable theoretical guarantees
for datasets in the Euclidean space, and also verify their effectiveness
via an extensive set of experiments.

1 INTRODUCTION
Real world datasets are always noisy; imprecise references to same
real-world entities are ubiquitous in the business and scientific
databases. For example, YouTube contains many videos of almost
the same content; they appear to be slightly different due to cuts,
compression and change of resolutions. A large number of webpages
on the Internet are near-duplicates of each other. Numerous tweets
and WhatsApp/WeChat messages are re-sent with small edits. This
phenomenon makes data analytics more difficult. It is clear that di-
rect statistical analysis on such noisy datasets will be erroneous. For
instance, if we perform standard distinct sampling, then the sampling
will be biased towards those elements that have a large number of
near-duplicates.

On the other hand, due to the sheer size of the data it becomes
infeasible to perform a comprehensive data cleaning step before the
actual analytic phase. In this paper we study how to process datasets
containing near-duplicates in the data stream model [4, 23], where
we can only make a sequential scan of data items using a small
memory space before the query-answering phase. When answering
queries we need to treat all the near-duplicates as the same universe
element.

This general problem has been recently proposed in [9], where
the authors studied the estimation of the number of distinct elements
of the data stream (also called F0). In this paper we extend this line
of research by studying another fundamental problem in the data
stream literature: the distinct sampling (a.k.a. ℓ0-sampling), where at
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the time of query we need to output a random sample among all the
distinct elements of the dataset. ℓ0-sampling has many applications
that we shall mention shortly.

We remark, as also pointed out in [9], that we cannot place our
hope on a magic hash function that can map all the near-duplicates
into the same element and otherwise into different elements, simply
because such a magic hash function, if exists, needs a lot of bits to
describe.

The Noisy Data Model and Problems. Let us formally define the
noisy data model and the problems we shall study. In this paper we
will focus on points in the Euclidean space. More complicated data
objects such as documents and images can be mapped to points in
their feature spaces.

We first introduce a few concepts (first introduced in [9]) to fa-
cilitate our discussion. Let d(·, ·) be the distance function of the
Euclidean space, and let α be a parameter (distance threshold) repre-
senting the maximum distance between any two points in the same
group.

Definition 1.1 (data sparsity). We say a dataset S (α , β)-sparse
in the Euclidean space for some β ≥ α if for any u,v ∈ S we have
either d(u,v) ≤ α or d(u,v) > β . We call maxβ β/α the separation
ratio.

Definition 1.2 (well-separated dataset). We say a dataset S well-
separated if the separation ratio of S is larger than 2.

Definition 1.3 (natural partition; F0 of well-separated dataset).
We can naturally partition a well-separated dataset S to a set of
groups such that the intra-group distance is at most α , and the inter-
group distance is more than 2α . We call this the unique natural
partition of S . Define the number of distinct elements of a well-
separated dataset w.r.t. α , denoted as F0(S,α), to be the number of
groups in the natural partition.

We will assume that α is given as a user-chosen input to our
algorithms. In practice, α can be obtained for example by sampling
a small number of items of the dataset and then comparing their
labels.

For a general dataset, we need to define the number of distinct
elements as an optimization problem as follows.

Definition 1.4 (F0 of general dataset). The number of distinct
elements of S given a distance threshold α , denoted by F0(S,α), is
defined to be the size of the minimum cardinality partition G =
{G1,G2, . . . ,Gn } of S such that for any i = 1, . . . ,n, and for any pair
of points u,v ∈ Gi , we have d(u,v) ≤ α .

Note that the definition for general datasets is consistent with the
one for well-separated datasets.

We next define ℓ0-sampling for noisy datasets. To differentiate
with the standard ℓ0-sampling we will call it robust ℓ0-sampling; but
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we may omit the word “robust” in the rest of the paper when it is
clear from the context. We start with well-separated datasets.

Definition 1.5 (robust ℓ0-sampling on well-separated dataset).
Let S be a well-separated dataset with natural partition G = {G1,G2,
. . . ,Gn }. The robust ℓ0-sampling on S outputs a point u ∈ S such
that

∀i ∈ [n], Pr[u ∈ Gi ] = 1/n. (1)

That is, we output a point from each group with equal probability;
we call the outputted point the robust ℓ0-sample.

It is a little more subtle to define robust ℓ0-sampling on general
datasets, since there could be multiple minimum cardinality par-
titions, and without fixing a particular partition we cannot define
ℓ0-sampling. We will circumvent this issue by targeting a slightly
weaker sampling goal.

Definition 1.6 (robust ℓ0-sampling on general dataset). Let S be
a dataset and let n = F0(S,α). The robust ℓ0-sampling on S outputs a
point q such that,

∀p ∈ S, Pr[q ∈ Ball(p,α) ∩ S] = Θ(1/n), (2)

where Ball(p,α) is the ball centered at p with radius α .

Let us compare Equation (1) and (2). It is easy to see that when S
is well-separated, letting G(p) denote the group that p belongs to in
the natural partition of S , we have

G(p) = Ball(p,α) ∩ S,
and thus we can rewrite (1) as

∀p ∈ S, Pr[q ∈ Ball(p,α) ∩ S] = 1/n. (3)

Comparing (2) and (3), one can see that the definition of robust ℓ0-
sampling on general dataset is consistent with that on well-separated
dataset, except that we have relaxed the sample probability by a
constant factor.

Computational Models. We study robust ℓ0-sampling in the stan-
dard streaming model, where the points p1, . . . ,pm ∈ S comes one
by one in order, and we need maintain a sketch of St = {p1, . . . ,pt }
(denoted by sk(St )) such that at any time t we can output an ℓ0-
sample of St using sk(St ). The goal is to minimize the size of sketch
sk(St ) (or, the memory space usage) and the processing time per
point under certain accuracy/approximation guarantees.

We also study the sliding window models. Let w be the window
size. In the sequence-based sliding window model, at any time step t
we should be able to output an ℓ0-sample of {pℓ−w+1, . . . ,pℓ} where
pℓ is the latest point that we receive by the time t . In the time-based
sliding window model, we should be able to output an ℓ0-sample of
{pℓ′ , . . . ,pℓ} where pℓ′ , . . . ,pℓ are points received in the lastw time
steps t −w+1, . . . , t . The sliding window models are generalizations
of the standard streaming model (which we call the infinite window
model), and are very useful in the case that we are only interested in
the most recent items. Our algorithms for sliding windows will work
for both sequence-based and time-based cases. The only difference
is that the definitions of the expiration of a point are different in the
two cases.

Our Contributions. This paper makes the following theoretical
contributions.

(1) We propose a robust ℓ0-sampling algorithm for well-separated
datasets in the streaming model in constant dimensional Eu-
clidean spaces; the algorithm uses O(logm) words of space
(m is the length of the stream) and O(logm) processing time
per point, and successes with probability (1− 1/m) during the
whole streaming process. This result matches the one in the
corresponding noiseless data setting. See Section 2.1

(2) We next design an algorithm for sliding windows under the
same setting. The algorithm works for both sequence-based
and time-based sliding windows, using O(logn logw) words
of space and O(logn logw) processing time per point with
success probability (1 − 1/m) during the whole streaming
process. We comment that the sliding window algorithm is
much more complicated than the one for the infinite window,
and is our main technical contribution. See Section 2.2.

(3) For general datasets, we manage to show that the proposed ℓ0-
sampling algorithms for well-separated datasets still produce
almost uniform samples on general datasets. More precisely,
it achieves the guarantee (2). See Section 3.

(4) We further show that our algorithms can also handle datasets
in high dimensional Euclidean spaces given sufficiently large
separation ratios. See Section 4.

(5) Finally, we show that our ℓ0-sampling algorithms can be used
to efficiently estimate F0 in both the standard streaming model
and the sliding window models. See Section 5.

We have also implemented and tested our ℓ0-sampling algorithm for
the infinite window case, and verified its effectiveness on various
datasets. See Section A.

Related Work. We now briefly survey related works on distinct sam-
pling, and previous work dealing with datasets with near-duplicates.

The problem of ℓ0-sampling is among the most well studied
problems in the data stream literature. It was first investigated in
[14, 24, 26], and the current best result is due to Jowhari et al. [28].
We refer readers to [13] for an overview of a number of ℓ0-samplers
under a unified framework. Besides being used in various statistical
estimations [14], ℓ0-sampling finds applications in dynamic geomet-
ric problems (e.g., ϵ-approximation, minimum spanning tree [24]),
and dynamic graph streaming algorithms (e.g., connectivity [1],
graph sparsifiers [2, 3], vertex cover [10, 11] maximum matching
[1, 5, 10, 30], etc; see [32] for a survey). However, all the algorithms
for ℓ0-sampling proposed in the literature only work for noiseless
streaming datasets.
ℓ0-sampling in the sliding windows on noiseless datasets can be

done by running the algorithm in [6] with the rank of each item
being generated by a random hash function. As before, this approach
cannot work for datasets with near-duplicates simply because the
hash values assigned to near-duplicates will be different.
ℓ0-sampling has also been studied in the distributed streaming

setting [12] where there are multiple streams and we want to main-
tain a distinct sample over the union of the streams. The sampling
algorithm in [12] is essentially an extension of the random sam-
pling algorithms in [15, 34] by using a hash function to generate
random ranks for items, and is thus again unsuitable for datasets
with near-duplicates.

The list of works for F0 estimation is even longer (e.g., [7, 19, 22,
23, 25, 29]; just mention a few). Estimating F0 in the sliding window



model was studied in [37]. Again, all these works target noiseless
data.

The general problem of processing noisy data streams without a
comprehensive data cleaning step was only studied fairly recently
[9] for the F0 problem. A number of statistical problems (F0, ℓ0-
sampling, heavy hitters, etc.) were studied in the distributed model
under the same noisy data model [36]. Unfortunately the multi-round
algorithms designed in the distributed model cannot be used in the
data stream model because on data streams we can only scan the
whole dataset once without looking back.

This line of research is closely related to entity resolution (also
called data deduplication, record linkage, etc.); see, e.g., [17, 20,
27, 31]. However, all these works target finding and merging all the
near-duplicates, and thus cannot be applied to the data stream model
where we only have a small memory space and cannot store all the
items.

Techniques Overview. The high level idea of our algorithm for the
infinite window is very simple. Suppose we can modify the stream by
only keeping one representative point (e.g., the first point according
to the order of the data stream) of each group, then we can just
perform a uniform random sampling on the representative points,
which can be done for example by the following folklore algorithm:
We assign each point with a random rank in (0, 1), and maintain the
point with the minimum rank as the sample during the streaming
process. Now the question becomes:

Can we identify (not necessarily store) the first point
of each group space-efficiently?

Unfortunately, we will need to use Ω(n) space (n is the number of
groups) to identify the first point of each group for a noisy streaming
dataset, since we have to store at least 1 bit to “record” the first point
of each group to avoid selecting other later-coming points of the
same group. One way to deal with this challenge is to subsample a
set of groups in advance, and then only focus on the first points of
this set of groups. Two issues remain to be dealt with:

(1) How to sample a set of groups in advance?
(2) How to determine the sample rate?

Note that before we have seen all points in the group, the group
itself is not well-defined, and thus it is difficult to assign an ID to a
group at the beginning and perform the subsampling. Moreover, the
number of groups will keep increasing as we see more points, we
therefore have to decrease the sample rate along the way to keep the
small space usage.

For the first question, the idea is to post a random grid of side
length Θ(α) (α is the group distance threshold) upon the point set,
and then sample cells of the grid instead of groups using a hash
function. We then say a group

(1) G is sampled if and only if G’s first point falls into a sampled
cell,

(2) G is rejected if G has a point in a sampled cell, however the
G’s first point is not in a sampled cell.

(3) G is ignored if G has no point in a sampled cell.

We note that the second item is critical since we want to judge a
group only by its first point; even there is another point in the group
that is sampled, if it is not the first point of the group, then we
will still consider the group as rejected. On the other hand, we do

not need to worry about those ignored groups since they are not
considered at the very beginning.

To guarantee that our decision is consistent on each group we have
to keep some neighborhood information on each rejected group as
well to avoid “double-counting”, which seems to be space-expensive
at the first glance. Fortunately, for constant dimensional Euclidean
space, we can show that if grid cells are randomly sampled, then
the number of non-sampled groups is within a constant factor of
that of sampled groups. We thus can control the space usage of the
algorithm by dynamically decreasing the sample rate for grid cells.
More precisely, we try to maintain a sample rate as low as possible
while guarantee that there is at least one group that is sampled. This
answers the second question.

The situation in the sliding window case becomes complicated
because points will expire, and consequently we cannot keep de-
creasing the grid cell sample rate. In fact, we have to increase the
cell sample rate when there are not enough groups being sampled.
However, if we increase the cell sample rate in the middle of the pro-
cess, then the neighborhood information of those previously ignored
groups has already got lost. To handle this dilemma we choose to
maintain a hierarchical sampling structure. We choose to describe
the high level ideas as well as the actual algorithm in Section 2.2.2
after the some basic algorithms and concepts have been introduced.

For general datasets, we show that our algorithms for well-separated
datasets can still return an almost uniform random distinct sample.
We first relate our robust ℓ0-sampling algorithm to a greedy partition
process, and show that our algorithm will return a random group
among the groups generated by that greedy partition. We then com-
pare that particular greedy partition with the minimum cardinality
partition, and show that the number of groups produced by the two
partitions are within a constant factor of each other.

Comparison with [9]. We note that although this work follows
the noisy data model of that in [9] and the roadmap of this paper
is similar to that of [9] (which we think is the natural way for the
presentation), the contents of this paper, namely, the ideas, proposed
algorithms, and analysis techniques, are all very different from that
in [9]. After all, the ℓ0-sampling problem studied in this paper is
different from the F0 estimation studied in [9]. We note, however,
that there are natural connections between distinct elements and
distinct sampling, and thus would like to mention a few points.

(1) In the infinite window case, we can easily use our robust ℓ0-
sampling algorithm to get an algorithm for (1+ϵ)-approximating
robust F0 using the same amount of space as that in [9] (see
Section 5). We note that in the noiseless data setting, the
problem of ℓ0-sampling and F0 estimation can be reduced to
each other by easy reductions. However, it is not clear how to
straightforwardly use F0 estimation to perform ℓ0-sampling
in the noisy data setting using the same amount of space as
we have achieved. We believe that since there is no magic
hash function, similar procedure like finding the represen-
tative point of each group is necessary in any ℓ0-sampling
algorithm in the noisy data setting.

(2) Our sliding window ℓ0-sampling algorithm can also be used
to obtain a sliding window algorithm for (1+ϵ)-approximating
F0 (also see Section 5). However, it is not clear how to extend



Notation Definition
S stream of points
m length of the stream
w length of the sliding window
n = F0(S) number of groups
G/G set of groups / a group
G(p) group containing point p
α threshold of group diameter
G/C grid / a grid cell
CELL(p) cell containing point p
ADJ(p) set of cells adjacent to CELL(p)
Ball(p,α) {q | d(p,q) ≤ α }
ϵ approximation ratio for F0

Table 1: Notations

the F0 algorithm in [9] to the sliding window case, which was
not studied in [9].

(3) In order to deal with general datasets, in [9] the authors in-
troduced a concept called F0-ambiguity and used it as a pa-
rameter in the analysis. Intuitively, F0-ambiguity measures
the least fraction of points that we need to remove in order to
make the dataset to be well-separated. This definition works
for problems whose answer is a single number, which does
not depend on the actual group partition. However, differ-
ent group partitions do affect the result of ℓ0-sampling, even
that all those partitions have the minimum cardinality. In
Section 3 we show that by introducing a relaxed version of
random sampling we can bypass the issue of data ambiguity.

Preliminaries. In Table 1 we summarize the main notations used in
this paper. We use [n] to denote {1, 2, . . . ,n}.

We say x is (1 + ϵ)-approximation of y if x ∈ [(1 − ϵ)y, (1 + ϵ)y].
We need the following versions of the Chernoff bound.

LEMMA 1.7 (STANDARD CHERNOFF BOUND). Let X1, . . . ,Xn
be independent Bernoulli random variables such that Pr[Xi = 1] =
pi . LetX =

∑
i ∈[n] Xi . Let µ = E[X ]. It holds that Pr[X ≥ (1+δ )µ] ≤

e−δ
2µ/3 and Pr[X ≤ (1 − δ )µ] ≤ e−δ

2µ/2 for any δ ∈ (0, 1).

LEMMA 1.8 (VARIANT OF CHERNOFF BOUND). Let Y1, . . . ,Yn
be n independent random variables such that Yi ∈ [0,T ] for some
T > 0. Let µ = E[∑i Yi ]. Then for any a > 0, we have

Pr

∑
i ∈[n]

Yi > a

 ≤ e−(a−2µ)/T .

2 WELL-SEPARATED DATASETS IN
CONSTANT DIMENSIONS

We start with the discussion of ℓ0-sampling on well-separated datasets
in constant dimensional Euclidean space.

2.1 Infinite Window
We first consider the infinite window case. We present our algorithm
for 2-dimensional Euclidean space, but it can be trivially extended to
O(1)-dimensions by appropriately changing the constant parameters.

Let G = {G1, . . . ,Gn } be the natural group partition of the well-
separated stream of points S . We post a random grid G with side
length α

2 on R2, and call each grid square a cell. For a point p, define
CELL(p) to be the cell C ∈ G containing p. Let

ADJ(p) = {C ∈ G | d(p,C) ≤ α },
where d(p,C) is defined to be the minimum distance between p and
a point in C. We say a group G intersects a cell C if G ∩C , ∅.

Assuming that all points have x and y coordinates in the range
[0,M] for a large enough value M . Let ∆ = 2M

α + 1. We assign the
cell on the i-th row and the j-th column of the gridG∩[0,M]×[0,M]
a numerical identification (ID) ((i − 1) · ∆ + j). For convenience we
will use “cell” and its ID interchangeably throughout the paper when
there is no confusion.

For ease of presentation, we will assume that we can use fully
random hash functions for free. In fact, by Chernoff-Hoeffding
bounds for limited independence [18, 33], all our analysis still holds
when we adopt Θ(logm)-wise independent hash functions, using
which will not affect the asymptotic space and time costs of our
algorithms.

Let h : [∆2] → {0, 1, . . . , 2 ⌈2 log∆⌉ − 1} be a fully random hash
function, and define hR for a given parameter R = 2k (k ∈ N)
to be hR (x) = h(x) mod R. We will use hR to perform sampling.
In particular, given a set of IDs Y = {y1, . . . ,yt }, we call {y ∈
Y | hR (y) = 0} the set of sampled IDs of Y by hR . We also call 1/R
the sample rate of hR .

As discussed in the techniques overview in the introduction, our
main idea is to sample cells instead of groups in advance using a
hash function.

Definition 2.1 (sampled cell). A cell C is sampled by hR if and
only if hR (C) = 0.

By our choices of the grid cell size and the hash function we have:

FACT 1. (a) Each cell will intersect at most one group, and each
group will intersect at most O(1) cells.

(b) For any set of points P = {p1, . . . ,pt },
{p ∈ P | h2R (cell(p)) = 0} ⊆ {p ∈ P | hR (cell(p)) = 0}.

In the infinite window case (this section) we choose the repre-
sentative point of each group to be the first point of the group. We
note that the representative points are fully determined by the input
stream, and are independent of the hash function. We will define the
representative point slightly differently in the sliding window case
(next section).

We define a few sets which we will maintain in our algorithms.

Definition 2.2. Let Srep be the set of representative points of all
groups. Define the accept set to be

Sacc = {p ∈ Srep | hR (CELL(p)) = 0},
and the reject set to be

Srej = {p ∈ Srep\Sacc | ∃C ∈ ADJ(p) s.t. hR (C) = 0}.

For convenience we also introduce the following concepts.

Definition 2.3 (sampled, rejected, candidate group). We say a
group G a sampled group if G ∩ Sacc , ∅, a rejected group if
G ∩ Srej , ∅, and a candidate group if G ∩ (Sacc ∪ Srej) , ∅.
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Figure 1: Each square is a cell; each light blue square is a sam-
pled cell. Each gray dash circle stands for a group. Red points
(p1,p2 and p3) are representative points; p1 is in the accept set
and p2 is in the reject set. Gray cells form ADJ(p3). α = 2 in this
illustration.

Figure 1 illustrates some of the concepts we have introduced so
far.

Obviously, the set of sampled groups and the set of rejected
groups are disjoint, and their union is the set of candidate groups.
Also note that Sacc is the set of representative points of the sampled
groups, and Srej is the set of representative points of rejected groups.

We comment that it is important to keep the set Srej, even that
at the end we will only sample a point from Sacc. This is because
otherwise we will have no information regarding the first points of
those groups that may have points other than the first ones falling
into a sampled cell, and consequently points in S\Srep may also be
included into Sacc, which will make the final sampling to be non-
uniform among the groups. One may wonder whether this additional
storage will cost too much space. Fortunately, since each group has
diameter at most α , we only need to monitor groups that are at a
distance of at most α away from sampled cells, whose cardinality
can be shown to be small. More precisely, for a group G, letting p
be its representative point, we monitor G if and only if there exists
a sampled cell C such that C ∈ ADJ(p). The set of representative
points of such groups is precisely Sacc ∪ Srej.

Our algorithm for ℓ0-sampling in the infinite window case is
presented in Algorithm 1. We control the sample rate by doubling
the range R of the hash function when the number of points of Sacc

exceeds a threshold Θ(logm) (Line 10 of Algorithm 1). We will also
update Sacc and Srej accordingly to maintain Definition 2.2.

When a new point p comes, if CELL(p) is sampled and p is the
first point in G(p) (Line 6), we add p to Sacc; that is, we make p
as the representative point of the sampled group G(p). Otherwise
if CELL(p) is not sampled but there is at least one sampled cell in
ADJ(p), and p is the first point inG(p) (Line 8), then we add p to Srej;
that is, we make p as the representative point of the rejected group
G(p).

Algorithm 1: ROBUST ℓ0-SAMPLING-IW

1 R ← 1; Sacc ← ∅; Srej ← ∅
2 κ0 is chosen to be a large enough constant
/* dataset is fed as a stream of points */

3 for each arriving point p do
/* if p is not the first point of a

candidate group, skip it */

4 if ∃u ∈ Sacc ∪ Srej s.t. d(u,p) ≤ α then
5 continue

/* if p is the first point of a

candidate group */

6 if hR (cell(p)) = 0 then
7 Sacc ← Sacc ∪ {p}
8 else if ∃C ∈ adj(p) s.t. hR (cell(C)) = 0 then
9 Srej ← Srej ∪ {p}

10 if |Sacc | > κ0 logm then
11 R ← 2R
12 update Sacc and Srej according to the updated hash

function hR

/* at the time of query: */

13 return a random point in Sacc

On the other hand, if there is at least one sampled cell in ADJ(p)
(i.e., G(p) is a candidate group) and p is not the first point (Line 4),
then we simply discard p. Note that we can test this since we have
already stored the representation points of all candidate groups. In
the remaining case in which G(p) is not a candidate group, we also
discard p.

At the time of query, we return a random point in Sacc.

Correctness and Complexity. We show the following theorem.

THEOREM 2.4. In constant dimensional Euclidean space for a
well-separated dataset, there exists a streaming algorithm (Algo-
rithm 1) that with probability 1 − 1/m, at any time step, it outputs a
robust ℓ0-sample. The algorithm uses O(logm) words of space and
O(logm) processing time per point.

The correctness of the algorithm is straightforward. First, Sacc

is a random subset of Srep since each point p ∈ Srep is included in
Sacc if and only if hR (CELL(p)) = 0. Second, the outputted point is
a random point in Sacc. The only thing left to be shown is that we
have |Sacc | > 0 at any time step.

LEMMA 2.5. With probability 1 − 1/m, we have |Sacc | > 0
throughout the execution of the algorithm.

PROOF. At the first time step of the streaming process, p1 is
added into Sacc with certainty since R is initialized to be 1. Then Sacc

keeps growing. At the moment when |Sacc | > κ0 logm, R is doubled
so that each point in Sacc is resampled with probability 1

2 . After the
resampling,

Pr[
��Sacc�� = 0] ≤

(
1
2

)κ0 logm
≤ 1

m2 . (4)



By a union bound over at mostm resample steps, we conclude that
with probability 1 − 1/m, |Sacc | > 0 throughout the execution of the
algorithm. �

We next analyze the space and time complexities of Algorithm 1.

LEMMA 2.6. With probability (1−1/m) we have Srej = O(logm)
throughout the execution of the algorithm.

PROOF. Consider a fixed time step. Let S = Sacc ∪ Srej. For a
fixed p ∈ Srep, since |ADJ(p)| ≤ 25 (we are in the 2-dimensional
Euclidean space), and each cell is sampled randomly, we have

Pr[p ∈ Srej] ≤ 24
25
· Pr[p ∈ S]. (5)

We only need to prove the lemma for the case Pr[p ∈ Srej] = 24
25 ·

Pr[p ∈ S]; the case Pr[p ∈ Srej] < 24
25 · Pr[p ∈ S] follows directly

since p is less likely to be included in Srej.
For each p ∈ S , define Xp to be a random variable such that Xp =

1 if p ∈ Srej, and Xp = 0 otherwise. Let X =
∑
p∈S rej Xp . We have

X =
��Srej

�� and E[X ] = 24
25 |S |. By a Chernoff bound (Lemma 1.7), we

have

Pr [X − E[X ] > 0.01E[X ]] ≤ e−
0.012 ·E[X ]

3 . (6)

If |S | ≤ 80000 logm then we immediately have
��Srej

�� ≤ |S | =
O(logm). Otherwise by (6) we have

Pr[X > 1.01E[X ]] < 1/m2.

We thus have

1/m2 > Pr[X > 1.01E[X ]]

= Pr[X > 1.01 · 24
25
|S |]

= Pr[X > 0.9696(X +
��Sacc��)]

= Pr[0.0304X > 0.9696
��Sacc��].

According to Algorithm 1 it always holds that |Sacc | = O(logm).
Therefore

��Srej
�� = X = O(logm) with probability at least 1 − 1/m2.

The lemma follows by a union bound over m time steps of the
streaming process. �

By Lemma 2.6 the space used by the algorithm can be bounded by
O(|Sacc | +

��Srej
��) = O(logm) words. The processing time per point

is also bounded by O(|Sacc | +
��Srej

��).
2.2 Sliding Windows
We now consider the sliding window case. Letw be the window size.
We first present an algorithm that maintains a set of sampled points
in Sacc with a fixed sample rate 1/R; it will be used as a subroutine
in our final sliding window algorithm (Section 2.2.2).

2.2.1 A Sliding Window Algorithm with Fixed Sample Rate.
We describe the algorithm in Algorithm 2, and explain it in words
below.

Besides maintaining the accept set and the reject set as that in the
infinite window case, Algorithm 2 also maintains a set A consisting
of key-value pairs (u,p), where u is the representative point of a
candidate group (u can be a point outside the sliding window as long
as the group has at least one point inside the sliding window), and p

Algorithm 2: SW WITH FIXED SAMPLE RATE 1/R
1 for each expired point p do
2 if ∃(u,p) ∈ A then
3 delete (u,p) from A, delete u from Sacc ∪ Srej

4 for each arriving point p do
/* if there already exists a point of

the same group in Sacc ∪ Srej */

5 if ∃u ∈ Sacc ∪ Srej s.t. d(u,p) ≤ α then
6 A← (u,p) ∪A\(u, ·)

/* otherwise we set p as a

representative of its group */

7 else if hR (cell(p)) = 0 then
8 Sacc ← Sacc ∪ {p},A← A ∪ (p,p)
9 else if ∃C ∈ adj(p) s.t. hR (C) = 0 then

10 Srej ← Srej ∪ {p},A← A ∪ (p,p)

Figure 2: Representative points in sliding windows. There are
two different groups, and the red window is the current sliding
window (of size w = 5). Point c is not the representative point of
Group 1 because the window right before it (inclusive) contains
point b which is also in Group 1. Point b is the representative
point because it is the latest point such that there is no other
point of Group 1 in the window right before b.

is the latest point of the same group (thus p must be in the sliding
window). Define A(Sacc) = {p | ∃u ∈ Sacc s.t. (u,p) ∈ A}.

For each sliding window, we guarantee that each candidate group
G has exactly one representative point. This is achieved by the fol-
lowing process: for each candidate groupG, if there is no maintained
representative point, then we take the first point u as the represen-
tative point (Line 8 and Line 10). When the last point p of the
group expires, we delete the maintained representative point u from
Sacc ∪ Srej, and delete (u,p) from A (Line 3).

For a new arriving point p, if there already exists a point u ∈
Sacc ∪ Srej in the same group G, then we simply update the last point
in the pair (u, ·) we maintained forG (Line 6). Otherwise p is the first
point of G(p) in the sliding window. If G(p) is a sampled group, then
we add p to Sacc and (p,p) to A (Line 8); else if G(p) is a rejected
group, then we add p to Srej and (p,p) to A (Line 10).

The following observation is a direct consequence of Algorithm 2.
It follows from the discussion above and the testing at Line 7 of
Algorithm 2.

OBSERVATION 1. In Algorithm 2, at any time for the current
sliding window, we have

(1) Each group has exactly one representative point, which is
fully determined by the stream and is independent of the hash
function. More precisely, a point p becomes the representative



point of group G in the current window if p is the latest point
in G such that the window right before p (inclusive) has no
point in G. See Figure 2 for an illustration.

(2) The representative point of each group in the current window
is included in Sacc with probability 1/R.

2.2.2 A Space-Efficient Algorithm for Sliding Windows.
We now present our space-efficient sliding window algorithm. Note
that the algorithm presented in Section 2.2.1, though being able to
produce a random sample in the sliding window setting, does not
have a good space usage guarantee; it may use space up to w/R
where w is the window size.

The sliding window algorithm presented in this section works
simultaneously for both sequence-based sliding window and time-
based sliding window.

High Level Ideas. As mentioned, the main challenge of the sliding
window algorithm design is that points will expire, and thus we
cannot keep decreasing the sample rate. On the contrary, if at some
point there are too few non-expired sampled points, then we have to
increase the sample rate to guarantee that there is at least one point
in the sliding window belonging to Sacc. However, if we increase
the sample rate in the middle of the streaming process, then the
neighborhood information of a newly sampled group may already
get lost. In other words, we cannot properly maintain Srej when the
sample rate increases.

To resolve this issue we have the “prepare” such a decrease of
|Sacc | in advance. To this end, we maintain a hierarchical set of
instances of Algorithm 2, with sample rates 1/R being 1, 1/2, 1/4, . . .
respectively. We thus can guarantee that in the lowest level (the one
with sample rate 1) we must have at least one sampled point.

Of course, to achieve a good space usage we cannot endlessly
insert points to all the Algorithm 2 instances. We instead make sure
that each level ℓ stores at most

���Sacc
ℓ
∪ Srej

ℓ

��� = O(logm) points, where

Sacc
ℓ

and S
rej
ℓ

are the accept set and reject set respectively in the run
of an Algorithm 2 instance at level ℓ. We achieve this by maintaining
a dynamic partition of the sliding window. In the ℓ-th subwindow
we run an instance of Algorithm 2 with sample rate 1/2ℓ . For each
incoming point, we “accept” it at the highest level ℓ in which the
point falls into Sacc

ℓ
, and then delete all points in the accept and

reject sets in all the lower levels. Whenever the number of points in
Sacc
ℓ

at some level ℓ exceeds the threshold c logm for some constant
c, we “promote” most of its points to level ℓ + 1. The process may
cascade to the top level.

At the time of query we properly resample the points maintained
at each Sacc

ℓ
(ℓ = 0, 1, . . .) to unify their sample probabilities, and

then merge them to Sacc. In order to guarantee that if the sliding
window is not empty then we always have at least one sampled point
in Sacc, during the algorithm (in particular, the promotion procedure)
we make sure that the last point of each level ℓ is always in the
accept set Sacc

ℓ
.

REMARK 1. The hierarchical set of windows reminisces the ex-
ponential histogram technique by Datar et al. [16] for basic counting
in the sliding window model. However, by a careful look one will no-
tice that our algorithm is very different from exponential histogram,
and is (naturally) more complicated since we need to deal with both
distinct elements and near-duplicates. For example, the exponential

Algorithm 3: Robust ℓ0-SAMPLING-SW

1 Rℓ ← 2ℓ for all ℓ = 0, 1, . . . ,L.
2 for ℓ ← 0 to L do

/* create an algorithm instance
according to Algorithm 2 with fixed
sample rate 1/Rℓ */

3 ALGℓ ← (⊥,⊥,⊥,Rℓ)
4 for each arriving point p do
5 for ℓ ← L downto 0 do
6 ALGℓ(p) /* feed p to the instance ALGℓ

*/
7 if ∃ (u,p) ∈ Aℓ then

/* prune all subsequent levels */

8 for j ← ℓ − 1 downto 0 do
9 ALGj ← (⊥,⊥,⊥,Rj )

10 if
���Sacc
ℓ

��� > κ0 logm then
11 j ← ℓ
12 create a temporary instance ALG

13 while (|Sacc
j | > κ0 logm) do

14 (ALG, ALGj ) ← SPLIT(ALGj )
15 ALGj+1 ← MERGE(ALG, ALGj+1)
16 j ← j + 1
17 if j > L then return “error”

18 break

/* at the time of query: */

19 S ← ∅
20 Let c be the maximum index ℓ such that Sacc

ℓ
, ⊥

21 for ℓ ← 1 to c do
22 include each point in the set {p | ∃ (·,p) ∈ Aℓ} to S with

probability Rℓ/Rc
23 return a random point from S

histogram algorithm in [16] partitions the sliding window deter-
ministically to subwindows of size 1, 2, 4, . . .. Suppose we are only
interesting in the representative point of each group, we basically
need to delete all the other points in each group in the sliding win-
dow, which will change the sizes of the subwindows. Handling near
duplicates adds another layer of difficulty to the algorithm design;
we handle this by employing Algorithm 2 (which is a variant of
the algorithm for the infinite window in Section 2.1) at each of the
subwindows with different sample rates. The interplay between these
components make the overall algorithm involved.

The Algorithm. We present our sliding window algorithm in Algo-
rithm 3 using Algorithm 4 and Algorithm 5 as subroutines.

We use ALG to represent an instance of Algorithm 2. For con-
venience, we also use ALG to represent all the data structures that
are maintained during the run of Algorithm 2, and write ALG =
(Sacc, Srej,A,R), where Sacc, Srej are the accept and reject sets re-
spectively, A is the key-value pair store, and R is the reciprocal of
the sample rate.



Algorithm 4: SPLIT(ALGℓ )

1 create instances ALGa = (Sacc
a , S

rej
a ,Aa ,Ra ) and

ALGb = (Sacc
b , S

rej
b ,Ab ,Rb )

2 t = max{t ′ | (pt ′ ∈ Sacc
ℓ
) ∧ (hRℓ+1 (CELL(pt ′)) = 0)}

3 Sacc
a ← {pk ∈ Sacc

ℓ
| (k ≤ t) ∧ (hRℓ+1 (CELL(pk )) = 0)};

S
rej
a ← {pk ∈ S

rej
ℓ
| (k ≤ t) ∧ (hRℓ+1 (CELL(pk )) = 0)};

Aa ← {(u, ·) ∈ Aℓ | u ∈ Sacc
ℓ
}; Ra ← Rℓ+1

4 Sacc
b ← {pk ∈ Sacc

ℓ
| k > t}; Srej

b ← {pk ∈ S
rej
ℓ
| k > t};

Ab ← {(u, ·) ∈ Aℓ | u ∈ Sacc
ℓ
}; Rb ← Rℓ

5 return (ALGa , ALGb )

Algorithm 5: MERGE(ALGa , ALGb )

1 create a temporary instance ALG = (Sacc, Srej,A,R)
2 Sacc ← Sacc

a ∪ Sacc
b ; Srej ← S

rej
a ∪ S

rej
b ; A← Aa ∪Ab ; R ← Ra

3 return ALG

Set Rℓ = 2ℓ for ℓ = 0, 1, . . . ,L = logw . In Algorithm 3 we create
L instances of Algorithm 2 with empty Sacc

ℓ
, S

rej
ℓ
,Aℓ (denoted by

‘⊥’), and sample rates 1/Rℓ respectively. We call the instance with
Rℓ = 2ℓ the level ℓ instance.

When a new point p comes, we first find the highest level ℓ such
that p is sampled by ALGℓ (i.e., p ∈ Sacc

ℓ
), and then delete all the

structures of ALGj (j < ℓ), except keep their sample rates 1/Rj
(Line 5 to Line 9).

If after including p, the size of Sacc
ℓ

becomes more than κ0 logm,
we have to do a series of updates to restore the invariant that the
accept set of each level contains at most κ0 logm points at any time
step (Line 10 to Line 16). To do this, we first split the instance of
ALGℓ into two instances (Algorithm 4). Let point p be the last point
in Sacc

ℓ
which is sampled by hash function hRℓ+1 . We promote all the

points in Sacc
ℓ
∪ Srej

ℓ
arriving before (and include) p to level ℓ + 1 by

resampling them using hRℓ+1 , which gives a new level ℓ + 1 instance
ALG.

We next try to merge ALG with ALGℓ+1 who have the same sample
rate by merging their accept/reject sets and the sets of key-value
pairs (Algorithm 5). The merge may result

���Sacc
ℓ+1

��� > κ0 logm, in
which case we have to perform the split and merge again. These
operations may propagate to the upper levels until we research a
level ℓ in which we have

���Sacc
ℓ

��� ≤ κ0 logm after the merge.
At the time of query, we have to integrate the maintained samples

in all L levels. Since at each level we sample points use different
sample rates 1/Rℓ , we have to resample each point in Sacc

ℓ
with

probability Rℓ/Rc where c is the largest level that has a non-empty
accept set (Line 20 to Line 22).

Correctness and Complexity. In this section we prove the follow-
ing theorem.

THEOREM 2.7. In constant dimensional Euclidean space for
a well-separated dataset, there exists a sliding window algorithm
(Algorithm 3) that with probability 1 − 1/m, at any time step, it

level 0

level 1

level 2

level 3

level 4

sliding window

Sacc

Srej

Figure 3: An illustration of subwindows of a sliding window;
the subwindow at level 0 is an empty set.

outputs a robust ℓ0-sample. The algorithm usesO(logw logm)words
of space and O(logw logm) amortized processing time per point.

First, it is easy to show the probability that Algorithm 3 outputs
“error” is negligible.

LEMMA 2.8. With probability 1 − 1/m2, Algorithm 3 will not
output “error” at Line 17 during the whole streaming process.

PROOF. Fix a sliding windowW . Let G1, . . . ,Gk (k ≤ w) be the
groups in W . The sample rate at level L is 1/RL = 1/2L = 1/w .
Let Xℓ be a random variable such that Xℓ = 1 if the ℓ-th group is
sampled, and Xℓ = 0 otherwise. Let X =

∑k
ℓ=1 Xℓ . Thus E[X ] =

k · 1/RL ≤ w · 1/w = 1. By a Chernoff bound (Lemma 1.8) we have
that with probability 1 − 1/m3, we have X ≤ κ0 logm for a large
enough constant κ0. The lemma then follows by a union bound over
at mostm sampling steps. �

The following definition is useful for the analysis.

Definition 2.9 (subwindows). For a fixed sliding windowW , we
define a subwindowWℓ for each instance ALGℓ (ℓ = 0, 1, . . . ,L) as
follows.WL starts from the first point in the sliding window to the
last point (denoted by ptL ) in A(Sacc

L ). For ℓ = L− 1, . . . , 1,Wℓ starts
from ptℓ+1+1 to the last point (denoted by ptℓ ) in A(Sacc

ℓ
).W0 starts

from pt1+1 to the last point in the windowW .

See Figure 3 for an illustration of subwindows.
We note that a subwindow can be empty. We also note the follow-

ing immediate facts by the definitions of subwindows.

FACT 2. W0 ∪W1 ∪ . . . ∪WL covers the whole windowW .

FACT 3. Each subwindowWℓ (ℓ = 1, . . . ,L) ends up with a point
in A(Sacc

ℓ
).

For ℓ = 0, 1, . . . ,L, let Gℓ be the set of groups whose last points
lie inWℓ , and let Srep

ℓ
be the set of their representative points. From

Algorithm 3, 4 and 5 it is easy to see that the following is maintained
during the whole streaming process.

FACT 4. During the run of Algorithm 3, at any time step, Sacc
ℓ

is
formed by sampling each point in S

rep
ℓ

with probability 1/Rℓ .

The following lemma guarantees that at the time of query we can
always output a sample.



LEMMA 2.10. During the run of Algorithm 3, at any time step, if
the sliding window contains at least one point, then when querying
we can always return a sample, i.e., |S | ≥ 1.

PROOF. The lemma follows from Fact 3, and the fact that ALG0
includes every point in S

rep
0 (R0 = 1). �

Now we are ready to prove the theorem.

(FOR THEOREM 2.7). We have the following facts:

(1) S
rep
0 , S

rep
1 , . . . , S

rep
L are set of representatives of disjoint sets of

groups G0,G1, . . . ,GL . And ∪L
ℓ=0Gℓ is the set of all groups

who have the last points inside the sliding window.
(2) By Fact 4 each Sacc

ℓ
is formed by sampling each point in S

rep
ℓ

with probability 1/Rℓ .
(3) Each point in S

rep
ℓ

is included in S with probability Rℓ/Rc
(Line 22 of Algorithm 3).

(4) By Lemma 2.10, |S | ≥ 1 if the sliding window is not empty.
(5) The final sample returned is a random sample of S .
(6) By Lemma 2.8, with probability (1 − 1/m) the algorithm will

not output “error”.

By the first three items we know that S is a random sample of the
last points of all groups within the sliding window, which, combined
with Item 4, 5 and 6, give the correctness of the theorem.

We now analyze the space and time complexities. The space usage
at each level can be bounded by O(logm) words. This is due to the
fact that

���Sacc
j

��� is always no more κ0 logm, and consequently Aj

has O(logm) key-value pairs. Using Lemma 2.6 we have that with
probability 1 − 1/m2,

���Srej
j

��� = O(logm).1 Thus by a union bound,

with probability (1 − O(logw/m2)), the total space is bounded by
O(logw logm) words since we have O(logw) levels.

For the time cost, simply note that the time spent on each point at
each level during the whole streaming process can be bounded by
O(logm), and thus the amortized processing time per item can be
bounded by O(logw logm). �

2.3 Discussions
We conclude the section with some discussions and easy extensions.

Sampling k Points with/without Replacement. Sampling k groups
with replacement can be trivially achieved by running k instances of
the algorithm for sampling one group (Algorithm 1 or Algorithm 3)
in parallel. For sampling k groups without replacement, we can
increase the threshold at Line 10 of Algorithm 1 to κ0k logm, by
which we can show using exactly the same analysis in Section 2.1
that with probability 1 − 1/m we have |Sacc | ≥ k. Similarly, for the
sliding window case we can increase the threshold at Line 10 of
Algorithm 3 to κ0k logm.

Random Point As Group Representative. We can easily augment
our algorithms such that instead of always returning the (fixed)
representative point of a randomly sampled group, we can return a
random point of the group. In other words, we want to return each
point p ∈ G with equal probability 1

n · |G | .

1We can reduce the failure probability 1/m to 1/m2 by appropriately changing the
constants in the proof.

For the infinite window case we can simply plug-in the classical
Reservoir sampling [35] in Algorithm 1. We can implement this
as follows: For each group G that has a point stored in Sacc ∪ Srej,
we maintain an eG = (v, ct) pair where ct is a counter counting the
number of points of this group, and v is the random representative
point. At the beginning (when the first point u of group G comes)
we set eG = (u, 1). When a new point p is inserted, if there exists
u ∈ Sacc such that d(u,p) ≤ α (i.e., u and p are in the same group),
we increment the counter ct for group G(u), and reset eG = (u,p)
with probability 1

ct . For the sliding window case, we can just replace
Reservoir sampling with a random sampling algorithm for sliding
windows (e.g., the one in [8]).

3 GENERAL DATASETS
In this section we consider general datasets which may not be well-
separated, and consequently there is no natural partition of groups.
However, we show that Algorithm 1 still gives the following guaran-
tee.

THEOREM 3.1. For a general dataset S in constant dimensional
Euclidean space, there exists a streaming algorithm (Algorithm 1)
that with probability 1 − 1/m, at any time step, it outputs a point q
satisfying Equality (2), that is,

∀p ∈ S, Pr[q ∈ Ball(p,α) ∩ S] = Θ( 1
F0(S,α ) ),

where Ball(p,α) is the ball centered at p with radius α .

Before proving the theorem, we first study group partitions gener-
ated by a greedy process.

Definition 3.2 (Greedy Partition). Given a dataset S , a greedy
partition is generated by the following process: pick an arbitrary
point p ∈ S , create a new group G(p) ← Ball(p,α) ∩ S and update
S ← S\G(p); repeat this process until S = ∅.

LEMMA 3.3. Given a dataset S , let nopt be the number of groups
in the minimum cardinality partition of S , and ngdy be the number
of groups in an arbitrary greedy partition. We always have nopt =
Θ(ngdy).

PROOF. We first show ngdy ≤ nopt. Let G(p1), . . . ,G(pngdy ) be
the groups in the greedy partition according to the orders they were
created, and let H1, . . . ,Hnopt be the minimum partition.

We prove by induction. First it is easy to see that G(p1) must
cover the group containing p1 in the minimum partition (w.l.o.g.
denote that group by H1). Suppose that

⋃i
j=1G(pj ) covers i groups

H1, . . . ,Hi in the minimum partition, that is,
⋃i
j=1 Hj ⊆

⋃i
j=1G(pj ),

we can show that there must be a new group Hi+1 in the minimum
partition such that

⋃i+1
j=1 Hj ⊆

⋃i+1
j=1G(pj ), which gives ngdy ≤ nopt.

The induction step follows from the following facts.

(1) pi+1 <
⋃i
j=1G(pj ).

(2) Ball(pi+1,α) ⊆
⋃i+1
j=1G(pj ).

(3) The diameter of each group in the minimum partition is at
most α .

Indeed, by (1) and the induction hypothesis we have pi+1 <
⋃i
j=1 Hj .

Let Hi+1 be the group containing pi+1 in the minimum partition.
Then by (2) and (3) we must haveHi+1 ⊆ Ball(pi+1,α) ⊆

⋃i+1
j=1G(pj ).



We next show nopt ≤ O(ngdy). This is not obvious since the
diameter of a group in the greedy partition may be larger than α
(but is at most 2α), while groups in the minimum partition have
diameter at most α . However, in constant dimensional Euclidean
space, each group in a greedy group partition can intersect at most
O(1) groups in the minimum cardinality partition. We thus still have
nopt ≤ O(ngdy). �

Now we are ready to prove the theorem.

(FOR THEOREM 3.1). We can think the group partition in Al-
gorithm 1 as a greedy process. Let (q1, . . . ,qz ) be the sequence
of points that are included in Sacc, according to their arriving or-
ders in the stream. We can generate a greedy group partition on⋃z
i=1 Ball(qi ,α) as follows: for i = 1, . . . , z, create a new group

G(qi ) ← Ball(qi ,α) ∩ S and update S ← S\G(qi ). Let Gsub =
{G(q1), . . . ,G(qz )}. We then apply the greedy partition process on
the remaining points in S , again according to their arriving orders
in the stream. Let qz+1, . . . ,qngdy be the representative points of the
remaining groups. Let G = {G(q1), . . . ,G(qngdy )} be the final group
partition of S . We have the following facts.

(1) Each group in G intersects Θ(1) grid cell in G.
(2) Each grid cell in G is sampled by the hash function hR with

equal probability.
(3) q1, . . . ,qz are the representative points of their groups in
Gsub.

(4) Algorithm 1 returns a sample randomly from q1, . . . ,qz .

By items 1 and 2, we know that each group in G is included in Gsub
with probability Θ(|Gsub | /|G|). By items 3 and 4, we know that Al-
gorithm 1 returns a random group from Gsub. Therefore each group
G ∈ G is sampled by Algorithm 1 with probability Θ(1/ngdy) =
Θ(1/nopt), where the last equation is due to Lemma 3.3.

Now for any p ∈ S , according to the greedy process and Algo-
rithm 1, there must be some q ∈ S such that G(p) ⊆ Ball(q,α), and
ifG(p) is sampled then q is the sampled point. So the probability that
q is sampled is at least the probability that G(p) is sampled. Finally,
note that if p ∈ Ball(q,α) then we also have q ∈ Ball(p,α). We
thus have

Pr[∃ q ∈ Ball(p,α) s.t. q is sampled] = Ω(1/nopt). (7)

On the other hand, in constant dimensional Euclidean space
Ball(p,α) can only intersect O(1) groups in the greedy partition.
We thus also have

Pr[∃ q ∈ Ball(p,α) s.t. q is sampled] = O(1/nopt). (8)

The theorem follows from (7) and (8). �

It is easy to see that the above arguments can also be applied to
the sliding window case with respect to Algorithm 3.

COROLLARY 3.4. For a general dataset in constant dimensional
Euclidean space, there exists a sliding window algorithm (Algo-
rithm 3) that with probability 1 − 1/m, at any time step, it outputs a
point q such that ∀p ∈ S, Pr[q ∈ Ball(p,α)] = Θ(1/nopt), where S
is the set of all the points in the sliding window, and nopt is the size
of the minimum cardinality partition of S with group radius α .

4 HIGH DIMENSIONS
In this section we consider datasets in d-dimensional Euclidean
space for general d. We show that Algorithm 1, with some small
modifications, can handle (α , β)-sparse dataset in d-dimensional
Euclidean space with β > d1.5α as well.

THEOREM 4.1. In the d-dimensional Euclidean space, for an
(α , β)-sparse dataset with β > d1.5α , there is a streaming algorithm
such that with probability 1 − 1/m, at any time step, it outputs a
robust ℓ0-sample. The algorithm uses O(d logm) words of space and
O(d logm) processing time per item.

REMARK 2. We can use Johnson-Lindenstrauss dimension re-
duction to weaken the sparsity assumption to β ≥ cα log1.5m · α for
some large enough constant cα .

We place a random gridGwith side length dα . Since the dataset is
(α , β)-sparse with β > d1.5α , each grid cell can intersect at most one
group. However, in the d-dimensional space a group can intersect 2d
grid cells in the worst case, which may cause difficulty to maintain
Srej in small space – in the worst case we would have

��Srej
�� = Ω(2d )

while |Sacc | is still small. Fortunately, in the following lemma we
show that for any p ∈ Srep, the probability that p ∈ Srej will not be
too large compared with the probability that p ∈ Sacc.

LEMMA 4.2. For any fixed p ∈ Srep, we have

Pr[p ∈ Srej] ≤ κ1 · Pr[p ∈ Sacc ∪ Srej],
where κ1 ∈ (0, 1) is a constant.

PROOF. For a group G, let Ball(G,α) = {p | d(p,G) ≤ α } where
d(p,G) = minq∈G d(p,q). It is easy to see that Ball(G,α) has a
diameter of at most 3α because the diameter of G is at most α .

Since the random grid has side length dα , the probability that
Ball(G,α) is cut by the boundaries of cells in each dimension is at
most µ = 3

d . If Ball(G,α) is cut by i dimensions, the number of
cells it intersects is at most 2i , and consequently |ADJ(p)| ≤ 2i for
each p ∈ G.

Recall that each cell is sampled with probability 1
R , we thus have

Pr[p ∈ Srej ∪ Sacc]
≤

∑
i≥1

Pr[p ∈ Srej ∪ Srej | |ADJ(p)| = i] · Pr[|ADJ(p)| = i]

≤
d∑
i=0

(
d

i

)
µi (1 − µ)d−i 2i

R

=
(2µ + 1 − µ)d

R

≤
(1 + 3

d )
d

R
= O

(
1
R

)
.

Since Sacc ∩ Srej = ∅, we have

Pr[p ∈ Srej] = Pr[p ∈ Srej ∪ Sacc] − Pr[p ∈ Sacc]
≤ κ1 · Pr[p ∈ Sacc ∪ Srej]

for some constant κ1 ∈ (0, 1). �

By Lemma 4.2, and basically the same analysis as that in Lemma 2.6,
we can bound the space usage of Algorithm 1 byO(d logm) (O(logm)



points in the d-dimensional space) throughout the execution of the
algorithm with probability (1 − 1/m), and consequently the running
time.

We have a similar result for the sliding window case.

COROLLARY 4.3. In the d-dimensional Euclidean space, for
an (α , β)-sparse dataset with β > d1.5α , there is a sliding window
algorithm such that with probability 1 − 1/m, at any time step, it
outputs a robust ℓ0-sample. The algorithm uses O(d logw logm)
words of space andO(d logw logm) processing time per item, where
w is the size of the sliding window.

5 DISTINCT ELEMENTS
In this section we show that our algorithms for robust ℓ0-sampling
can be used for approximating the number of robust distinct elements
in both infinite window and sliding window settings.

Estimating F0 in the infinite window. We first recall the algorithm
for estimating the number of distinct elements on noisefree datasets
by Bar-Yossef et al. [7]. We maintain an integer z initialized to be
0, and a set B consisting of at most κB/ϵ2 items for a large enough
constant κB . For each arriving point, we perform an ℓ0-sampling
with probability 1/2z and add the point to B if sampled. At the
time B > κB/ϵ2, we update z ← z + 1, and re-sample each point
in B with probability 1/2 so that the overall sample probability is
again 1/2z . It was shown in [7] that with probability at least 0.9,
|B | 2z approximates the robust F0 up to a factor of (1 + ϵ). We can
run Θ(logm) independent copies of above procedure to boost the
success probability to 1 − 1/m.

Now we can directly plug our ℓ0-sampling algorithm into the
framework of [7]. We simply replace the threshold κ0 logm at
Line 10 of Algorithm 1 with κB/ϵ2. At the time of query we re-
turn |Sacc | · R as the estimation of the number of distinct groups.
Again, running Θ(logm) independent copies of the algorithm and
taking the median will boost the constant success probability to high
probability.

Estimating F0 in the sliding windows. We can use the ideas from
Flajolet and Martin [23] (which is known as the FM sketch). We run
Θ(1/ϵ2) independent copies of our sliding window algorithm. For
each of the copies, we find the largest ℓ that Sacc

ℓ
includes at least one

non-expired sample. We average all those ℓ’s as ℓ̄. It follows [23] that
with probability 0.9, ϕ2ℓ̄ gives (1 + ϵ)-approximation to the robust
F0 in the sliding window, where ϕ is a universal constant to correct
the bias (see, e.g., [23]). We can then run Θ(logm) copies of above
procedure and taking the median to boost the success probability.
Similarly we can also plug-in our algorithm to HyperLogLog [21].

6 EXPERIMENTS
We have conducted an extensive set of experiments for our algorithm
in the infinite window case. Due to the space constraints we delay
the whole section to Appendix A.

7 CONCLUDING REMARKS
In this paper we study how to perform distinct sampling in the
noisy data stream setting, where items may have near-duplicates
and we would like to treat all the near-duplicates as the same ele-
ment. We have proposed algorithms for both infinite window and

sliding windows cases. The space and time usages of our algorithms
only poly-logarithmically depend on the length of the stream. Our
extensive experiments have demonstrated the effectiveness and the
efficiency of our distinct sampling algorithms.

As observed in [9], the random grid we have used for dealing with
data points in the Euclidean space is a particular locality-sensitive
hash function,2 and it is possible to generalize our algorithms to gen-
eral metric spaces that are equipped with efficient locality-sensitive
hash functions. We leave this generalization as a future work.
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A EXPERIMENTS
In this section, we present our experimental results for Algorithm
1 as well as some implementation details. The algorithm is easy to
implement yet very efficient, and can be of interest to practitioners.

A.1 The Setup

Datasets. We verify our algorithms using the following real and
synthetic datasets.

• Rand5: 500 randomly generated points in R5; each coordi-
nate is a random number from (0, 1).
• Rand20: 500 randomly generated points in R20; each coor-

dinate is a random number from (0, 1).
• Yacht: 308 points taken from the UCI repository yacht hy-

drodynamics data set.3 Each point is in R7, and it measures
the sailing yachts movement.
• Seeds: 210 points taken from the UCI repository seeds data

set.4 Each point is in R8, consisting of measurements of
geometrical properties of kernels belonging to three different
varieties of wheat.

We perform two types of near-duplicate generations on each
dataset. In the first transformation we generate near-duplicates as
follows: We first rescale the dataset such that the minimum pairwise
distance is 1. Then for each point xi (i = 1, 2, . . . ,n), we pick a
number ki uniformly at random from 1, 2, . . . , 100, and add ki near-
duplicate points w.r.t. xi , each of which is generated as follows:

(1) Generate a vector z ∈ Rd such that each coordinate of z is
chosen randomly from (0, 1).

(2) Randomly sample a number ℓ ∈
(
0, 1

2d1.5

)
and rescale z to

length ℓ. Let ẑ be the resulting vector.
(3) Create a near-duplicate point y = xi + ẑ.

Note that each point xi , together with the near-duplicate points
around it, forms a group. We still name the resulting datasets as
Rand5, Rand20, Yacht and Seeds respectively.

3https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
4https://archive.ics.uci.edu/ml/datasets/seeds

In the second transformation, the number of near-duplicates we
generate for each data point follows the power-law distribution.
More precisely, we randomly order the points as x1, x2, . . . , xn ,
and for each point xi , we add ⌈n · i−1⌉ noisy points in the same
way as above. We denote the resulting datasets as Rand5-pl,
Rand20-pl, Yacht-pl and Seeds-pl respectively.

Measurements. For each dataset, we run each of our proposed
sampling algorithms a large number of times (denoted by #runs,
which ranges from 200, 000 to 500, 000), and count the number of
times each group being sampled. We report the following results
measuring the performance of our proposed algorithm.
• pTime: Processing time per item; measured by millisecond.

The running time is tested using single thread.
• pSpace: Peak space usage throughout the streaming process;

measured by word.
We record pTime and pSpace by taking the average of 100 runs
where in each run we scan the whole data stream.

The following two accuracy measurements for the ℓ0-sampling
algorithms follow from [13].
• stdDevNm: Let F0 be the number of groups, and let f ∗ = 1

F0
be the target probability. We calculate the standard deviation
of the empirical sampling distribution and normalize it by f ∗.
• maxDevNm: We calculate the normalized maximum devia-

tion of the empirical sampling distribution as

maxi
{ |fi−f ∗ |

f ∗

}
,

where fi is the empirical sampling probability of the i-th
group.

We will also visualize the number of times each group being
sampled.

All of the eight datasets are randomly shuffled before being fed
into our algorithms as data streams. We return the sample at the end
of a data stream.

Computational Environment. Our algorithms are implemented in
C++ and the visualization code is implemented in python+matplotlib.
We run our experiments in a PowerEdge R730 server equipped with
2 x Intel Xeon E5-2667 v3 3.2GHz. This server has 8-core/16-thread
per CPU, 192GB Memeory and 1.6TB SSD.

A.2 Computing ADJ(p) in Rd
Before presenting the experimental results, we discuss some impor-
tant details of our implementation.

Recall the definition of ADJ(p) introduced in Section 2:

ADJ(p) = {C ∈ G | d(p,C) ≤ α }.
In Section 2 we did not spell out how to compute ADJ(p) in Rd be-
cause our discussion focused on the case d = Θ(1), where computing
ADJ(p) only takes O(1) time. However, the naive implementation
that we enumerate all the adjacent cells of CELL(p) and test for each
cell C whether we have d(p,C) ≤ α takes Θ(d · 3d ) time: we have
3d cells to exam, and each cell has d coordinates. This is expensive
for large d. In the following we illustrate how to compute ADJ(p)
efficiently in practice.

According to Lemma 4.2, the expected size of ADJ(p) is always
bounded by a small constant given a sufficiently large separation

https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://archive.ics.uci.edu/ml/datasets/seeds
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Figure 4: Nearest points of p = (x1,x2) ∈ R2 (red point). The
eight light blue cells are cells adjacent to CELL(p). There are
eight black points, each of which is the nearest point from p in
the corresponding cell

Figure 5: Rand5 dataset. #runs = 200, 000

ratio. Therefore it is possible to compute ADJ(p) more efficiently
if we can avoid the exhaustive enumeration of the adjacent cells
of CELL(p). We approach this by effectively pruning cells that are
impossible to meet the requirement that d(p,C) ≤ α .

To simplify the presentation, we set the side length of the grid G
to be 1 and rescale the value α accordingly. We further identify the
grid with the Cartesian coordinates with the origin 0 = (0, . . . , 0).
Consider a point p = (x1,x2, . . . ,xd ). To calculate the distance from
p to a cell C that is adjacent to CELL(p), we move p to the nearest
point in C and record the distance being moved. The movement can
be done sequentially: first in the direction of x1, and then in the
direction of x2, . . . until xd .

Figure 4 gives an illustration of the nearest points of p in R2.
To enumerate all those nearest points, we iterate the coordinates of
p from x1 to xd . For xi , we have three options: (1) move to ⌊xi ⌋;
(2) move to ⌈xi ⌉; and (3) do not move. Consequently we have 3d
different nearest points, and thus 3d different cells which are the
cells adjacent to CELL(p) including CELL(p) itself. We then perform
the enumeration using a DFS search and prune the search as long as
the accumulated distance exceeds α . The details of this procedure
are presented in Algorithm 6 and Algorithm 7.

A.3 Results and Discussions
We visualize our experimental results in Figure 5-15. Figure 13 and
Figure 14 show the results for time and space respectively, and Figure
15 presents the deviations of the empirical sampling distributions.
Figure 5-12 visualize the empirical sampling distribution of each
dataset.

Figure 6: Rand20 dataset. #runs = 200, 000

Algorithm 6: SEARCHADJ(p, i, s, (y1, . . . ,yi−1,⊥, . . . ,⊥))
/* p = (x1, . . . ,xd ) ∈ Rd; i = 1, 2, . . . ,d is the depth

of the DFS search; s is the square of
the distance of the movement */

1 if s > α2 then
/* the distance of the movement exceeds

α; no need to continue the search */

2 return
3 if i > d then
4 q ← (y1, . . . ,yd )

/* Since q is on the boundary, we add
0.01 · (q − p) to make sure that it moves
inside a cell so that CELL(q′) is
well defined */

5 q′ ← q + 0.01 · (q − p)
6 Emit CELL(q′)
7 return
/* move xi to ⌊xi ⌋ */

8 SEARCHADJ(p, i + 1, s + (⌊xi ⌋ − xi )2,
(y1, . . . ,yi−1, ⌊xi ⌋,⊥, . . .))

/* no

movement */

9 SEARCHADJ(p, i + 1, s,
(y1, . . . ,yi−1,xi ,⊥, . . .))

/* move xi to ⌈xi ⌉ */

10 SEARCHADJ(p, i + 1, s + (⌈xi ⌉ − xi )2,
(y1, . . . ,yi−1, ⌈xi ⌉,⊥, . . .))

Algorithm 7: ADJ(p)
/* p = (x1, . . . ,xd ) ∈ Rd */

1 q ← (⊥,⊥, . . . ,⊥) ∈ Rd
2 return all cells emitted by SEARCHADJ(p, 1, 0,q)

We now briefly discuss these results in words.

Accuracy. From Figure 5-12 we can see that the empirical sampling
distributions of our algorithm are very close to the uniform distri-
bution. This can be further supported by the results presented in
Figure 15 where in all datasets, stdDevNm is no larger than 0.1 and
maxDevNm is no larger than 0.2.



Figure 7: Yacht dataset. #runs = 500, 000

Figure 8: Seeds dataset. #runs = 500, 000

Figure 9: Rand5-pl dataset. #runs = 200, 000

Figure 10: Rand20-pl dataset. #runs = 200, 000

Running Time. From Figure 13 we can observe that Algorithm 1
runs very fast. The processing time per item is only 1 ∼ 3.5 × 10−5

second using single thread.
By comparing the results for datasets Rand5, Rand20, Rand5-pl

and Rand20-pl, we observe that the running time increases when
the dimension d increases. This is due to the fact that manipulating
vectors takes more time when d increases.

Space Usage. Figure 14 demonstrates the space usage of our algo-
rithms on different datasets. We observe that our algorithm is very
space-efficient and the dimension of the data points will typically
affect the space usage.

Figure 11: Yacht-pl dataset. #runs = 500, 000

Figure 12: Seeds-pl dataset. #runs = 500, 000

Figure 13: pTime

Figure 14: pSpace

Figure 15: maxDevNm and stdDevNm
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