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ABSTRACT
We study a fundamental problem in data analytics: similarity search

under edit distance (or, edit similarity search for short). In this prob-

lem we try to build an index on a set of n strings S = {s1, . . . , sn },
with the goal of answering the following two types of queries: (1)

the threshold query: given a query string t and a thresholdK , output
all si ∈ S such that the edit distance between si and t is at most

K ; (2) the top-k query: given a query string t , output the k strings

in S that are closest to t in terms of edit distance. Edit similarity

search has numerous applications in bioinformatics, databases, data

mining, information retrieval, etc., and has been studied extensively

in the literature.

In this paper we propose a novel algorithm for edit similarity

search named MinSearch. The algorithm is randomized, and we

can show mathematically that it outputs the correct answer with

high probability for both types of queries. We have conducted an

extensive set of experiments on MinSearch, and compared it with

the best existing algorithms for edit similarity search. Our experi-

ments show that MinSearch has a clear advantage (often in orders

of magnitudes) against the best previous algorithms in query time,

and MinSearch is always one of the best among all competitors

in the indexing time and space usage. Finally, MinSearch achieves

perfect accuracy for both types of queries on all datasets that we

have tested.
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1 INTRODUCTION
In this paper we study the following problem: given a set of n
strings S = {s1, . . . , sn }, and a query string t , output all strings in S
satisfying certain query criteria. We consider two types of queries

on string similarity under edit distance (ED): (1) the threshold query:
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given a threshold K , output all si ∈ S such that ED(si , t) ≤ K , and
(2) the top-k query: output a set O ⊆ S of k strings such that for

any si ∈ O and sj ∈ O\S , we have ED(si , t) ≤ ED(sj , t). Recall
that ED(s, t) is defined to be the minimum number of insertions,

deletions and substitutions needed to transform s to t .
The problem of similarity search under edit distance (or, edit

similarity search for short) has numerous applications in bioin-

formatics, databases, data mining and information retrieval. For

example, given a database of papers and a new paper, we want to

find out whether the new paper has any preliminary versions, or

whether it is similar to some previous papers for the purpose of pla-

giarism detection. In healthcare, we want to find all DNA sequences

in a database that are similar to a given patient’s DNA sequence;

those similar sequences may provide useful information for the

treatment. Edit similarity search has been studied extensively for

almost two decades [3–5, 8, 10, 11, 14, 15, 20, 23, 24, 27]. We leave

a discussion on the related work to Section 6.

In this paper, we propose a novel algorithm for edit similarity

search named MinSearch. MinSearch is built upon on a string parti-
tion scheme recently proposed for a related problem called edit sim-
ilarity joins [9], where we are given a set of strings S = {s1, . . . , sn }
and a threshold value K , the goal is to output all pairs (si , sj ) such
that ED(si , sj ) ≤ K . However, due to the inherently different nature
of the two problems, we need to make significant modifications

and augmentations in order to adapt the partition technique to the

setting of edit similarity search. One major difference is that in edit

similarity joins, the threshold K is given as an input, and the string

partition algorithm inherently depends on the value K . While in

edit similarity search, in the threshold version K is given at the

time of query, and in the top-k version there is no threshold even

at the query time. To handle these situations we need to design a

hierarchical partition scheme. See Section 2 for the details.

Another issue with the partition scheme in [9] is that it may not

work well on short strings compared with long strings. We found

that this is largely caused by small repeats in the short strings, and

propose a method to fix this issue. We also use a number of filters

to reduce the workload of the verification step so as to improve the

overall performance of MinSearch.
We have conducted an extensive set of experiments; our results

are presented in Section 5. Though MinSearch is randomized and

may have false negatives (theoretically with a very small proba-

bility), we found that MinSearch achieves 100% accuracy on all

datasets that we have tested. We observe that for both short and

long strings, MinSearch significantly outperforms all existing al-

gorithms in terms of query time (often by several orders of mag-

nitudes), and is among one of the best in terms of indexing time
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Notation Definition

S set of input strings S = {s1, . . . , sn }

si ..j substring of s , from the i-th letter to the j-th letter

|s | length of string s

[x] [x] = {1, . . . , x}

Σ string alphabet

n number of input strings

N maximum length of strings in S

q size of q-grams

K edit distance threshold for threshold query

k number of returned strings in top-k query

F F : Σ∗ → (0, 1) a random hash function

Table 1: Table of Notations

and space usage. We view this practical performance as one of the

main contributions of this paper.

2 THE INDEXING ALGORITHM
Overall, our indexing algorithm for each input string works as

follows. We first compute a rank for each letter of the string, and

then use the ranks of the letters to partition the string to a hierarchy

of substrings, each of which is associatedwith a level.We then insert

all substrings at the same level into the corresponding hash table

for the level to the future query lookup.

In the following, we start by presenting the algorithms, and then

give the time and space analysis. We list a set of notations in Table 1.

2.1 The Algorithm
In this section we present the indexing algorithm which will be

used for both threshold query and top-k query.

The Ranks of Letters. The first step of the indexing is to generate
ranks for letters of the input string. Given an input string s , Algo-
rithm 1 returns an array of pairs R = {(pi ,Ri )}, where pi denotes
the index of the letter in s corresponding to the i-th pair, and Ri
stands for its rank.

Intuitively speaking, we assign each letter α in s a value which
is a random hash value of the q-gram starting from α . The rank of

α is the size of the largest neighborhood in which the value of α is

the local minimum. Formally:

Definition 1 (Ranks of letters). Given a string s , let A[i] =
F (si ..i+q−1) for i = 2, . . . , |s | − q + 1, where F : Σq → (0, 1) is a
random hash function. The rank of its i-th (2 ≤ i ≤ |s | − q) letter Ri
is defined as the maximum integer d > 0 such that

∀j ∈ [i − d, i + d] \ {i}, j ∈ [1, |s | − q + 1] and h[i] < h[j].

If such a d does not exist, then we set Ri = 0. Furthermore, we set
the ranks of the 1-st and (|s | + 1)-th letters of s to be∞. The ranks of
letters in s[|s | − q + 2.. |s |] are undefined (and will not be used in our
algorithms).

Algorithm 1 first hashes all q-grams of s using hash function F
to build the array A, and then computes the ranks of letters of s
according to Definition 1. Finally, it includes letters whose ranks are

at least r to the output set R. Note that all letters included in R are

sorted according to their indices in the increasing order. We add the

first and (|s | + 1)-th letters with rank infinite for the convenience

of the subsequent steps of the indexing algorithm.

Algorithm 1 Rank(s, r )

Input: input string s ; minimum rank r
Output: rank array R = {(pi , Ri )}: pi denotes the index of the letter in

s corresponding to the i-th pair, and Ri is its rank
1: build an array A with |s | − q + 1 elements, where the i-th element

A[i] = F (si . .i+q−1), where F : Σq → (0, 1) is a random hash function

2: R ← {(1,∞)}

3: for each i ∈ [ |A |] do
4: x ← 1

5: while i − x ≥ 1 and i + x ≤ |A | do
6: if A[i] < A[i + x ] and A[i] < A[i − x ] then x ← x + 1
7: else
8: exit the while loop

9: end if
10: end while
11: if x > r then
12: R ← R ∪ {(i , x − 1)}
13: end if
14: end for
15: R ← R ∪ {( |s | + 1,∞)}

Algorithm 2 Partition(s,R, start, end)

Input: input string s ; rank array R = {(pi , Ri )} of s ; two indices star t
and end

Output: set of partitions P = {(ssub , l )}, where (ssub , l ) denotes a

substring ssub with level l
1: if end = star t + 1 then
2: return ∅
3: end if
4: maxR = −∞,M ← ∅
5: i ← star t + 1
6: while i < end do
7: if Ri > maxR then
8: maxR = Ri ,M ← {i }
9: end if
10: if Ri =maxR then
11: M ← M ∪ {i }
12: end if
13: i ← i + 1
14: end while
15: P ← ∅

16: M ← {star t } ∪ M ∪ {end } sort elements in M in the increasing

order; denote the j-th element of M by M [j].
17: for each M [j] ∈ M and M [j] , end do
18: u ← M [j], v ← M [j + 1]
19: P ← P ∪ {(spu . .pv−1,min(Rpu , Rpv ))}
20: P ← P∪ Partition(s , R, u , v )
21: end for

The String Partition Process. The next step is to partition each

input string. Given an input string s and the rank array R of s
computed by Algorithm 1, Algorithm 2 returns a set P of partitions

of s . We first introduce a concept called valid partition.

Definition 2 (Valid partition). A substring spi ..pj−1 (j ≥ i+1)
corresponding to ((pi ,Ri ), (pj ,Rj )) is a valid partition if and only if
j = i + 1, or ∀k ∈ {i + 1, . . . , j − 1},min(Ri ,Rj ) > Rk .

We record for each valid partition a level l = min(Ri ,Rj ), which
indicates that the partition will be stored in the hash tableHl . A

partition with a high level is often long, and is thus hard to get



Algorithm 3 BuildIndex(S)

Input: set of input strings S = {s1, . . . , sn }
Output: set of hash tables {(Hi , fi )}, where for the i-th hash table, each

string s is hashed into the fi (s)-th bucket of Hi
1: for each si ∈ S do
2: Ri ← Rank(si , 1)
3: Pi ← Partition(si , Ri , 1, |Ri |)
4: for each (ssub , l ) ∈ Pi do
5: if Hl does not exist then
6: create an empty hash table Hl and initialize a random hash

function fl : Σ∗ → N
7: end if
8: store i in the fl (ssub )-th bucket of Hl
9: end for
10: end for

matched. Consequently, if two strings have a common substring

with high level, then very likely they have small edit distance. With

the level parameter we can organize the hash tables (to be described

in Algorithm 4 and Algorithm 5) in a top-down manner to facilitate

efficient queries.

Let us explain Algorithm 2 briefly in words. The algorithm first

finds the maximum rank (denoted bymaxR), and the corresponding
set of letters whose indices are stored in the arrayM in the increas-

ing order. We also include intoM the starting and ending indices

of the letters in s that we are going to consider (denoted by start
and end). Next, we record the substrings between any two adjacent

indices u,v in M , and call the algorithm recursively with param-

eters start = pu and end = pv . It is easy to see that Algorithm 2

correctly computes all valid partitions satisfying Definition 2.

The Index. We now describe our main indexing algorithm, which

is shown in Algorithm 3.

Given a set of input stringsS = {s1, . . . , sn }, Algorithm 3 returns

a set of hash tables {(Hi , fi )}, where Hi refers to the i-th hash

table with strings as keys, and fi is its hash function for calculating

bucket ID for a given key. The algorithm is pretty straightforward.

It first computes the set of partitions Pi for each string si , and then
for each partition (ssub , l) it adds the string ID into the fl (ssub )-th
bucket ofHl .

At Line 2 we set r = 1 as the parameter for Algorithm 1. This is

because we want to keep as much information as possible at the

indexing stage. In the query algorithms (Algorithm 4 and 5), we

will choose different r in order to make the query more efficient.

Finally we would like to mention that although the string parti-

tion algorithms (Algorithm 1 and 2) are inspired by the one in [9]

(for edit similarity joins), we have made several important and non-

trivial modifications to make it suitable for edit similarity search.

Particularly,

• In edit similarity joins the query distance threshold K is

given, while in the edit similarity search problem K is either

not known in advance (for threshold query) or does not exist

(for top-k query). This is why we need to introduce a hier-

archical partition scheme based on the ranks of individual

letters of the string.

• For edit similarity search we store partitions in different hash

tables according to their levels, which enables us to design

efficient algorithms for threshold and top-k queries. While

in [9] all partitions are stored in the same hash table.

ID Strings

s1 ACGTTCGACTGGTTAG

s2 CCGTTCGAACTGGTTAG

s3 ACATTCGACTGGTTGAG

s4 TCGAACGTTCGAACGT

Table 2: A collection of input strings

x F (x) x F (x) x F (x) x F (x)

CTG 0.01 ACT 0.05 CGA 0.03 GAG 0.06

GTT 0.11 ATT 0.16 TTA 0.19 TAG 0.21

GGT 0.22 TGG 0.26 GAC 0.29 CGT 0.35

TTC 0.38 TCG 0.40 ACG 0.43 TCG 0.45

CCG 0.48 AAC 0.50 GAG 0.52 GAA 0.56

TGA 0.58 TTG 0.62 ACA 0.64 CAT 0.66

Table 3: Hash values F (x) for 3-gram x

Level Hash Tables

6 ACATTCGA→ {s3}, CTGGTTGAG→ {s3}

5 ACGTTCGA→ {s1}, CTGGTTAG→ {s1, s2}
CCGTTCGAA→ {s2}

4 TCGAACGTT→ {s4}, CGAACGT→ {s4}

2 AC→ {s1, s3}, CC→ {s2}, CTG→ {s1, s2, s3}
GTT→ {s2, s4}, CGAA→ {s2}, GTTAG→ {s1, s2}

GTTCGA→ {s1}, GTTGAG→ {s3}
ATTCGA→ {s3}, TCGAAC→ {s4}

1 T→ {s4} GTT→ {s1}, CGA→ {s1, s3}
ATT→ {s3}, CGAAAC→ {s4}

Table 4: Hash tables built with input strings

ACGTTCGACTGGTTAG

ACGTTCGA (l = 5) CTGGTTAG (l = 5)

AC (l = 2)

GTT (l = 1) CGA (l = 1)

CTG (l = 2) GTTAG (l = 2)GTTCGA (l = 2)

Figure 1: Example of string partition process for s1

2.2 A Running Example
Before analyzing the time and space complexity of the indexing

algorithm, we first give a running example. Table 2 shows a col-

lection of input strings s1, s2, s3, s4, and Table 3 shows hash values

for 3-grams returned by function F which is used by Algorithm 1.

Figure 1 visualizes the partitions of s1 as a rooted tree where each

node corresponds to a call of Algorithm 2. Table 4 presents the hash

tables built with input strings returned by Algorithm 3, where the

key for a hash table is a string and the value is a list of IDs.

Let us describe the partition of s1 in more detail. Algorithm 1

returns the rank set R = {(1,∞), (3, 2), (6, 2), (9, 5), (12, 2), (17,∞)}.

Then, we partition s1 recursively. Algorithm 3 calls Algorithm 2

with parameters is = 1, ie = 6. Algorithm 2 finds that (9, 5) is the

one with the largest rank, and produces partitions ACGTTCGA and

CTGGTTAG with l = 5 (min(∞, 5)). It then calls itself recursively

with parameters is = 1, ie = 4 and is = 4, ie = 6. The recursion



stops when ie = is + 1. We have 6 indices in rank set R, and thus

have 5 leaf nodes in the partition tree.

2.3 The Complexity Analysis
Clearly, the running time of Algorithm 3 is dominated by the sum

of the running time of Algorithm 1 and that of Algorithm 2. We

bound two parts separately.

For the convenience of the analysis we assume that each q-gram
is unique and the hash function F has no collision. The latter is

easy to achieve by keeping sufficient precision of the hash values.

We will discuss the validity of the former assumption and how to

further modify our partition algorithm to handle potential issues

in Section 4.1.

Lemma 2.1. The expected running time of Algorithm 1 is bounded
by O(N lnN ).

Proof : First, the arrayA can be constructed inO(N ) time by a rolling

hash (e.g., the one in [12]). For each i ∈ [|A|], the expected time of

computing the rank of s[i] can be upper bounded as follows (x is

the variable initialized at Line 4 of Algorithm 1)

|s |∑
i=1

Pr[x = i] · 2x

= 2 ·

|s |∑
i=1
(Pr[x ≥ i] − Pr[x ≥ i + 1]) · x

= O(1) ·

|s |∑
i=1

(
1

2x + 1
−

1

2x + 3

)
· x

= O(ln |s |) = O(lnN ).

The lemma follows since |A| = O(N ). �

Lemma 2.2. The expected running time of Algorithm 2 is bounded
by O(N lnN ).

Proof : First, if we view that the partition process on each string

produces a tree as that in Figure 1, then it is easy to see that the

total running time at each level of the tree is bounded by O(N ).
The next step is to bound the number of levels of the partition

tree. Let us consider any root-to-leaf pathv1..vt , where nodev1 cor-
responds to the root (the original string), and node vt corresponds
to the leaf substring. Let |vi | denote the length of the correspond-

ing substring of vi . Since the ranks of the letters in the string are

assigned randomly, we have E[|vi+1 |] ≤
|vi |
2

for i = 1, . . . , t − 1.

Define indicator variable Xi = 0 if |vi+1 | ≥
3 |vi |
4

, and Xi = 1

otherwise. By a Markov inequality, we have Pr[Xi = 0] ≤ 2

3
. Let

X =
∑t−1
i=1 Xi . By a Chernoff bound, we have that with probability

at least 1 − 2−Ω(t ), we have X ≥ 3

4
t , which means that (1 ≤) Xt ≤(

3

4

) 3

4
t
· N ,We thus have t = O(lnN ).

Thus the expected running time is bounded by

O(N lnN ) + 2−100 lnN ·O(N · N ) = O(N lnN ),

where we have used the fact that in the worst case, we still have

t ≤ N . �

Combining Lemma 2.1 and Lemma 2.2, and using the linearity

of expectation, we have the following.

Algorithm 4 MinSearch-Threshold (S, t,K )

Input: set of strings S = {s1, . . . , sn }; query string t ; distance threshold
K

Output: O ← {i | si ∈ S; ED(si , t ) ≤ K }
1: {(Hi , fi )} ← BuildIndex(S)

2: O ← ∅, C ← ∅, α ← 120

3: R ← Rank(t , r (t , α , K )) ◃ r (t , α , K ) is defined in Eq. (1)

4: P ← Partition(t , R, 1, |R |)
5: for each (tsub , l ) ∈ P do
6: for each i in the fl (tsub )-th bucket of Hl do
7: if | |si | − |t | | ≤ K then
8: C ← C ∪ {si }
9: end if
10: end for
11: end for
12: remove duplicates in C

13: for i ∈ C do
14: if ED(si , t ) ≤ K then
15: O ← O ∪ {i }
16: end if
17: end for

Lemma 2.3. The expected running time of Algorithm 3 is bounded
by O(nN lnN ).

Finally, it is clear that the space usage of the algorithm is bounded

by the running time. We arrive at the following theorem.

Theorem 2.4. Under the assumption that for any input string, all
of its q-grams are unique, the indexing algorithm (Algorithm 3) uses
O(nN lnN ) time and space in expectation.

3 THE QUERY ALGORITHMS
In this section we describe algorithms for threshold query and top-k
query. They share the same indexing step (Algorithm 3). Define

r (s,α,K) = max

{
1,

⌊
|s | − q + 1 − αK

2αK + 2

⌋}
. (1)

3.1 Threshold Query
The algorithm for threshold query is described in Algorithm 4,

which, given a set of input strings S = {s1, . . . , sn }, a query string

t and a distance threshold K , returns all strings si ∈ S such that

ED(si , t) ≤ K . We note that our indexing can be used for different

thresholds K at query time.

In Algorithm 4 we first build the index (i.e., sets of hash tables)

for the set of input strings S using Algorithm 3. We then generate

the partitions for the query string t using Algorithm 1 and 2. Next,

for each partition (tsub , l) of t , we add strings in the fl (tsub )-th
bucket ofHl into the candidate set C (with a simple filtering step at

Line 7). Finally, we verify all candidates with an exact edit distance

computation algorithm, and add all output strings to O. We have

the following theorem. Due to space constraints, we leave the proof

to Appendix C.

Theorem 3.1. Given a query string t , Algorithm 4 outputs each
si ∈ S with ED(si , t) ≤ K with probability at least 0.99. The expected
running time of Algorithm 4 is O(N logN + nK 2

|H |
+ |C| NK), where

|H | the size of the hash tables and |C| is the number of candidates
for the verification step.



Algorithm 5MinSearch-Topk (S, t,k)

Input: set of strings S = {s1, . . . , sn }, query string t , number of re-

turned results k
Output: O ← top-k closest strings in S to query string t in terms of edit

distance

1: {(Hi , fi )} ← BuildIndex(S)

2: O ← ∅, α ← 120

3: V ← ∅ ◃ set of IDs of strings whose edit distances to t have been
verified

4: R ← Rank(t , 1)
5: P ← Partition(t , R, 1, |R |)
6: sort all the partitions P = {(tsub , l )} according to l in the increasing

order

7: Minl = ∞ ◃ the minimum level to be considered

8: for each (tsub , l ) ∈ P do
9: if |O | = k and l < Minl then
10: return O
11: end if
12: for each i < V and i in the fl (tsub )-th bucket of Hl do
13: if |O | < k then
14: V ← V ∪ {i }
15: dist ← ED(t , si )
16: insert (i , dist ) into O
17: end if
18: if | |si | − |t | | ≤ O .top .dist then
19: V ← V ∪ {i }
20: dist ← ED(t , si )
21: if dist < O .top .dist then
22: insert (i , dist ) into O
23: pop the top element of O

24: Minl ←min(Minl , r (t , α , O .top .dist ))
25: end if
26: end if
27: end for
28: end for

Remark 1. We note that the 0.99 success probability can be am-
plified to

(
1 − 1/n100

)
by repeating the partition process (Line 3 and

4) for O(logn) times and then taking the union of the partitions for
the subsequent search. Though this is often not necessary in practice,
as a single partition is already good enough.

3.2 Top-k Query
The algorithm for top-k query is a bit more involved, and is de-

scribed in Algorithm 5. Given a set of input stringsS = {s1, . . . , sn }
and a query string t , the algorithm outputs k strings in S that are

closest to t in terms of edit distance. The high level idea of the

algorithm is to traverse the hash tables in the order from higher

levels to lower levels. During the visit, it maintains a priority queue,

which includes the current k results with smallest edit distances

we find. At the same time, it keeps track of the lowest level it needs

to visit and terminates when it reaches that level. Finally all strings

in the priority queue are the final outputs.

Let us describe Algorithm 5 in a bit more detail. We first build the

index on the input strings S. Line 2 to 7 are the initialization steps,

where we create an empty priority queue O which will contain

a set of tuples {(si ,disti )} ranked according to disti . The element

with the largest disti is on the top of O (represented as O.top); we
can thus quickly determine whether we should add a new string

to O by comparing its edit distance to t with that of O.top. We

maintain a set V to record the IDs of strings for which we have

verified their edit distances to the query string t , and a variable

Minl which denotes the lowest level hash table that we need to

search from.

We sort the partitions of the query string t according to their lev-
els, and perform the search from the higher level to the lower level

hash tables. If the algorithm reaches a partition with level smaller

thanMinl , it terminates and outputs at Line 10. Otherwise, for each

unverified string in the fl (tsub )-th bucket ofHl , we add it to O if O

has less than k elements (Line 16), or if it has a smaller edit distance

to t than the top one of O. In the latter case the algorithm also

pops the top element and updatesMinl to be r (t, 120,O.top.dist),
which is the lowest level at which any string whose edit distance

to t is smaller than O.top.dist will have substring being hashed to

the hash table at that level. We have the following theorem. For a

string t , let Topk(t) denote the set of k strings in S that have the

smallest edit distances to t .

Theorem 3.2. Given a query string t , Algorithm 5 outputs each
si ∈ Topk(t) with probability at least 0.99. The expected running time
isO(N logk logN + |V | NKmax), whereV is the set of candidates for
the verification step and Kmax = maxi ∈V ED(si , t).

Proof : For convenience, let us assume that if we set r = r (t, 120,K),
then for any si such that ED(si , t) ≤ K , si must have a substring

colliding with t in some buckets in ∪i≥rHi with high probability

using the analysis of [9].

Let O∗ be the exact top-k solution, and O be the output of Al-

gorithm 5. We have |O| = |O∗ | = k . We prove O∗ = O by contra-

diction. Suppose that there exists a pair (si ,di ) ∈ O\O
∗
, then there

must be another pair (sj ,dj ) ∈ O
∗\O with dj ≤ di . Suppose Algo-

rithm 5 first processes si , then we must have sj ∈ ∪z≥diHz , and

thus the algorithm will also process sj , and consequently sj ∈ O
if si ∈ O. A contradiction. Suppose Algorithm 5 first processes sj ,
then since dj ≤ di we also have that sj ∈ O if si ∈ O. Again a

contradiction.

For the running time, similar as before, the expected time for

computing the partition is O(N logN ). The time for maintaining

the priority queue is O(|P| logk) = O(N logk logN ). We have |V |
pairs of strings for which we need to compute the exact edit dis-

tance, which costs O(|V | NKmax) where Kmax = maxi ∈V ED(si , t).
(In the worst case we have Kmax = N , but in practice Kmax is typ-

ically much smaller.) The total running time is O(N logk logN +
|V | NKmax). �

We note that the same amplification (Remark 1) can be applied

to Algorithm 5 to boost the success probability to 1 − 1/n100.

4 FURTHER IMPROVEMENTS
4.1 Improvements on Indexing Algorithms

In our analysis of the partition procedure (Algorithm 2 in Sec-

tion 2) we have made an overoptimistic assumption that all q-grams

are unique. Indeed, if the string is totally random, then setting

q = O(log |Σ | N ) will satisfy this assumption with high probability.

However, real world datasets are never totally random. For exam-

ple, in the DNA datasets that we use for our experiments, we have

observed periodic substrings such as “CATACATACATA”, “ACA-

CACACAC”, “GGGGGG” and “AAAAAAAAAAAAAAA”, and in



Algorithm 6 BuildArray(s)

Input: Input string s
Output: Array A containing hash values of q-grams

1: T ← ∅ ◃ An hash table

2: A[1] ← F (s1. .q )
3: for i = 2, 3, . . . , |s | − q + 1 do
4: if A[i − 1] , F (si . .i−q+1) ∧ F (si . .i−q+1) < T then
5: A[i] ← F (si . .i−q+1)
6: T ← ∅
7: else
8: end ← i + q − 1
9: while (end ≤ |s |)∧(A[i−1] = F (si . .end )∨F (si . .i−q+1) ∈ T )

do
10: end ← end + 1
11: end while
12: A[i] ← F (si . .end )
13: add F (si . .end ) into T
14: end if
15: end for

text datasets, we observe “is is”, “the the”, “barbar” and “inging” etc.

Such periodic substrings are inevitable in real world datasets: they

may come from systematic errors from the biological sequencing,

typos in documents, or the biological sequences themselves. Con-

sider an extreme case of a substring with 15 consecutive “A”s, if

q < 15, then there will be continuous identical q-grams.

Having identical q-grams in a small neighborhood could be prob-

lematic: they will produce the same hash values and cause nearby

letters having the same hash values. Recall that in Algorithm 1 we

only record the rank of a letter if it has the strictly smallest hash

value in a neighborhood of radius r . Thus, repeated q-grams will de-

crease the rank of letters and possibly result in zero index selection

(to be included in R) in a long substring, and the job of the query

algorithm will be difficult (or even impossible) when two similar

strings share a substring with repeated q-grams. This is particularly

true for the top-k query since the search can go down to the very

bottom level of the hash tables. We observe that in practice, for

example, this issue prevents Algorithm 5 to achieve 100% accuracy

on the READS dataset.

We propose a new procedure BuildArray(·) (Algorithm 6) to

replace Line 1 of Algorithm 1 (“A← BuildArray(s)”) to form a new

partition algorithm for the indexing. Given a string s , Algorithm 6

builds an arrayA, whereA[i] refers to a hash value for the i-th letter
of s . The algorithm maintains a tableT to record hash values in the

region where q-grams have repeated hash values. When the hash

value of the current q-gram is different from that of the previous

one and all values in T , we add it to A and empty T . Otherwise, we
increment the ending index (i.e., end) of the substring until we find
a distinct hash value (Line 9).

We note that our algorithm only deals with consecutive identical
q-grams since we only check the previous hash value A[i − 1] at
step i in the for loop. In other words, Algorithm 6 cannot handle

substrings such as “ACACACACAC” and “barbar”. It is actually

very easy to extend this “duplication” detection step by comparing

the current hash value with the previous t > 1 hash values in the

array A. For example, using t = 2 we can already detect “ACA-

CACACAC” and make all hash values generated from this region

distinct. However, this comes with an increased time cost (for the

indexing). On the other hand, avoiding consecutive repeats already

resolves the accuracy issue mentioned above for top-k queries (the

one for which the algorithm with the original partition scheme

cannot achieve perfect accuracy), since now two adjacent letters

already have different hash values.

4.2 Improvements on Query Algorithms

In this section we propose several tricks to further improve the

query algorithms. The first two may be folklore. The third is new

to the best of our knowledge.

String Ordering. The number of strings may be large in a hash

bucket, and checking all of them (i.e., consider them as candidate

output strings in C in Algorithm 4) can be time expensive. It is

obvious that for two strings s and t with ED(s, t) ≤ K , if they share

a common substring x = si ..i+p−1 = tj ..j+p−1 on their optimal

alignment, then we must have i ∈ [j − K, j + K]. We can use this

property to update our indexing and query algorithms to avoid

visiting all the elements inside each hash bucket.

When computing the partitions for each string in Algorithm 2,

we not only record the substring ssub and its level l , but also the

position of the first letter of ssub , denoted by pos . Similarly, in hash

tables built in Algorithm 3, we store not only the string index i
but also the position of the substring pos , as a pair (i,pos). We then

sort all the elements inside each bucket according to its pos in the

increasing order. At the time of query, given the distance threshold

K in the threshold query (or O.top.dist in the top-k query), for a

query (ssub , l) with starting position pos , we only need to check

the substrings in bucket fl (ssub ) with starting positions in [pos −
K,pos + K] using a binary search.

Count Filtering. Exact computation of edit distance in Algo-

rithm 4 (Line 14) and Algorithm 5 (Line 15, 20) can be expensive:

Ukkonen’s algorithm takes timeO(NK)whereN is the string length

and K is the distance threshold. This is often the bottleneck of the

query algorithms (in particular, for top-k query). We can make use

of the count filtering to exclude candidate pairs whose edit distance

cannot be at most K , or at most O.top.dist in the top-k query. The

count filtering is based on the ℓ1 distance of the q-gram vectors.

We first convert each string s to a bag of q-grams, and represent

it as a vector v(s) with dimension |Σ|q . It is easy to see that if

ED(s, t) ≤ K , then we must have ℓ1(v(s),v(t)) ≤ 2qK . We thus can

discard candidate pairs whose ℓ1 distance is larger than 2qK .
We comment that the q value here is different from that of the

q-grams used in our indexing and query algorithms, and in practice

we fix this q to be 2.

Neighborhood Filtering.We propose neighborhood filtering to

further improve the efficiency for the top-k query. This filtering step

is based on the triangle inequality of edit distance: for three strings

s1, s2, s3 with ED(s1, s2) = d1 and ED(s2, s3) = d2, then we must

have ED(s1, s3) ∈ [|d1 − d2 | ,d1 + d2]. When building the index

we store all near neighbors of each string s within edit distance

γ where γ is a small constant parameter (we choose γ = 1 in

our experiments). This can be done using the edit similarity join

algorithm in [9] with threshold K = γ .
We can make use of the near neighbors of strings in the search in

twoways. First, for each element si we add into the priority queueO



with dist = ED(si , t) ≤ O.top.dist (Line 16, 22 of Algorithm 5), we

check all near neighbors sj of si whether disti j +dist < O.top.dist ,
where disti j is the edit distance between si and sj which we have

recorded in the indexing stage. If this is the case then we compute

ED(sj , t) exactly, pop the top element of O if O is full, and insert

(j,distj ) into O. This will reduce the value of O.top.dist and speed

up the “converge” of the search process. Second, for each string

si that cannot be added into O due to dist > O.top.dist , we check
all near neighbors sj of si whether

��disti j − dist �� ≥ O.top.dist , and
add sj to V if this is the case. This early pruning can avoid the

computation of the exact edit distance between sj and t .

5 EXPERIMENTS
5.1 The Setup
Datasets. We will make use of the following datasets, all of which

are publicly available. The detailed statistics of these datasets are

presented in Table 5.

• DBLP: A dataset of DBLP publication records (including the

authors, title and key words of papers) obtained from the

DBLP website.
1
We use the pre-processed dataset from [24],

and convert all letters to uppercase and all special characters

other than letters and numbers to space.

• TREC: A dataset of publication information of papers in 270

medical journals.
2
We concatenate the author, title and ab-

stract of papers into strings, and convert all letters to upper-

case and all special characters other than letters and numbers

to space.

• READS: A dataset contains short DNA sequencing reads,

which was used in the edit similarity joins and search com-

petition [18]. We download the dataset from the competition

website.
3

• UNIREF: A dataset of protein sequences obtained from the

website of UniProt project.
4
We remove all the strings with

length shorter than 200.

• GENOME: A dataset of genome sequences obtained by ran-

domly sampling substrings from Chromosome 20 of 50 peo-

ple. We obtained the dataset from the code release of [26].
5

Algorithms. We select the following state-of-the-art algorithms

for edit similarity search as the competitors, according to the rec-

ommendation of [24]. We download the source codes of these al-

gorithms from their websites.
6
Among them, HS-tree [24] and

Bed-tree [27] are designed for both types of query, Pivotal [4] is

only for threshold query, and Range [5] is only for top-k query. We

will discuss these algorithms in more detail in Appendix B.

Metrics and Parameters. We use the following measurements in

our experiments: indexing time, indexing memory usage, and query

time. For each plot on the query time we perform 100 queries and

then compute the average.

1
https://dblp.uni-trier.de/db/

2
http://trec.nist.gov/data/t9_filtering.html

3
https://www2.informatik.hu-berlin.de/~leser/searchjoincompetition2013/

4
http://www.uniprot.org/

5
https://github.com/kedayuge/Embedjoin

6HS-tree: https://github.com/TsinghuaDatabaseGroup/Similarity-Search-and-Join.

Bed-tree: https://github.com/ZhangZhenjie/bed-tree.

Pivotal: http://people.csail.mit.edu/dongdeng/projects/pivotal/index.html.

Range: http://people.csail.mit.edu/dongdeng/projects/topksearch/index.html.

Datasets n Avg Len Min Len Max Len |Σ| Size(MB)

DBLP 863053 104 21 632 37 87

TREC 233435 1217 80 3947 37 270

READS 1500000 139 86 177 5 199

UNIREF 400000 435 201 5093 25 166

GENOME 50000 5000 4829 5152 4 238

Table 5: Statistics of datasets

For algorithms with input parameters and/or different subrou-

tines (e.g., filtering methods), we always choose the best combi-

nation of parameters and subroutines for the best query time. In

particular, Range and HS-tree have no input parameter, Pivotal
has one parameter q (i.e., q-gram size), and Bed-tree has a number

of parameters to choose, including order type, gram length, bucket
number, maximum bits, gram number, page size, buffer size, max-
imum node size. MinSearch has one parameter α which we will

discuss in Appendix A. We fix q = ⌈log |Σ | N ⌉ which is enough to

avoid repeats in most parts of the strings.

Since MinSearch may have false negatives, we define accuracy

for two type of queries as follows: for threshold query, the accu-

racy is the number of results found by MinSearch divided by the

number of ground truths; note that there is no false positive due

to the exact verification step. For top-k query, given the ground

truth O∗ = {o1,o2, . . . ,ok }, and the output of MinSearch O ′ =
{o′

1
,o′

2
, . . . ,o′k ′} (k

′ ≤ k), we create two setsD = {ED(o1, t), ED(o2, t),

. . . , ED(ok , t)} and D ′ = {ED(o′
1
, t), ED(o′

2
, t), . . . , ED(o′k ′, t)}. We

define the accuracy of the top-k query to be |D ∩ D ′ | /|D |, which
is a more robust accuracy measurements than directly comparing

the two output sets O∗ and O ′ (e.g., |O∗ ∩O ′ | /|O∗ |).
To be fair, we always choose the parameter α in MinSearch such

that MinSearch achieves a 100% accuracy. As we note (see more

details in Appendix A) that a small α value (e.g., α = 3) can already

achieve this goal, compared with α = 120 (Line 2, Algorithm 4)

which we use for the convenience of the theoretical analysis.

5.2 Performance Comparison
In this subsection we report the performance of MinSearch and

compare it with previous algorithms. Due to space constraints we

leave some empirical study of MinSearch to Appendix A.

Time and Space for Indexing.We show the memory usage and

running time for indexing in Table 6.

For threshold query, thememory usage of Pivotal and MinSearch
are the smallest among all algorithms, followed by Bed-tree. HS-tree
uses a much larger amount of memory compared with others. With

respect to the running time, Bed-tree uses the smallest amount

of time. On most datasets MinSearch uses the second smallest

amount of time, and HS-tree is the slowest. We note that although

Bed-tree has the advantage on the indexing time for both types

of queries, its query performance is not as good as the others, as

we shall present shortly.

For top-k query, the memory usage of MinSearch is the best,

followed by Bed-tree. Range and HS-tree use a significantly larger
amount of memory compared with others. With respect to the

running time, Bed-tree and MinSearch are still the best. Range
spends a much longer time than others.

Time for Threshold Query. Figure 2 presents the average query
time when varying edit threshold K . MinSearch is clearly the best

https://dblp.uni-trier.de/db/
http://trec.nist.gov/data/t9_filtering.html
https://www2.informatik.hu-berlin.de/~leser/searchjoincompetition2013/
http://www.uniprot.org/
https://github.com/kedayuge/Embedjoin
https://github.com/TsinghuaDatabaseGroup/Similarity-Search-and-Join
https://github.com/ZhangZhenjie/bed-tree
http://people.csail.mit.edu/dongdeng/projects/pivotal/index.html
http://people.csail.mit.edu/dongdeng/projects/topksearch/index.html
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Figure 2: Running time for threshold query, varying threshold K
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Figure 3: Running time for threshold query, varying number of strings n
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Figure 4: Running time for top-k query, varying k
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Figure 5: Running time for top-k query, varying number of strings n

on all datasets, with 31.1, 235.2, 3.5, 27.6 times speedup over the

best competitors on DBLP(K = 25), TREC(K = 50), UNIREF(K = 25),

GENOME(K = 150) respectively. Among the competitors, HS-tree is

the second on DBLP and TREC datasets, and Pivotal is the second
on UNIREF and GENOME datasets. There is abrupt time increase of

Pivotal on TREC dataset when K > 30. The reason is that when

K is large Pivotal has to choose a smaller q to guarantee qK +
1 ≤ N , which results in a much larger number of candidate pairs

for the verification step. The performance of HS-tree is much

worse on UNIREF compared with GENOME, which is due to the fact

that HS-tree builds a different tree for each string length, and

the variance of string lengths is greater on UNIREF than GENOME.

Bed-tree has a relatively stable performance and stays in the third

place in most cases.

In Figure 3, we show the average query time when varying the

number of strings n. MinSearch always performs the best, with

26.2, 210.6, 2.5, 20.1 times speedup over the best competitors on

DBLP(n = 8 × 10
5
), TREC(n = 2 × 10

5
), UNIREF(n = 4 × 10

5
),

GENOME(n = 5 × 10
4
) datasets respectively. The trend of all the

algorithms is similar; the only exception is that the query time of

Bed-tree increases suddenly on GENOME when n is large.

Time for Top-k Query. Figure 4 shows the average query time

when varying the number of outputs k . We find that the top-k query

is harder compared with the threshold query for all algorithms.

MinSearch is again the best on all datasets, with 6.6, 7.2, 180.1, 66.8



Dataset Algorithm Memory usage(GB) Time(s)

DBLP MinSearch 1.2 15.5

Range 26.8 73.4

Pivotal 0.52 10.6

HS-tree 59.4 17.6

Bed-tree 10.0 6.0

READS MinSearch 4.2 74.1

Range 40.5 276.5

HS-tree 100.4 201.2

Bed-tree 10.1 14.0

TREC MinSearch 3.7 33.1

Pivotal 0.49 49.1

HS-tree 55.0 92.1

Bed-tree 10.1 10.0

UNIREF MinSearch 2.7 39.3

Range 39.9 160.2

Pivotal 0.4 58.5

HS-tree 98.3 49.7

Bed-tree 10.1 8.0

GENOME MinSearch 2.3 55.0

Range 56.2 268.8

Pivotal 0.63 66.8

HS-tree 94.2 123.8

Bed-tree 10.1 9.0

Table 6: Time and space usages for indexing. Pivotal is only
for threshold query, and Range is only for top-k query.

times speedup over the best competitors on DBLP(k = 15), READS(k =
15), UNIREF(k = 15), GENOME(k = 15) datasets respectively. Among

the competitors, HS-tree has the second best performance in most

cases.

In Figure 5, we show the average query time when varying the

number of strings n. MinSearch always performs the best, with

6.3, 3.6, 140.2, 114.2 times speedup over the best competitors on

DBLP(n = 8 × 10
5
), READS(n = 1.5 × 10

6
), UNIREF(n = 4 × 10

5
),

GENOME(n = 5 × 10
4
) datasets respectively. The trends of all the

algorithms are similar.

6 RELATEDWORK AND DISCUSSIONS
In this section we will review the literature on edit similarity search.

We leave more discussion on related work in Appendix D.

Edit similarity search has been studied extensively in the lit-

erature [3–5, 8, 10, 11, 14, 15, 20, 23, 24, 27]. Most algorithms in

these works use the so-called filter-and-verify framework: Given

the query string t , we generate a set of signatures (e.g., substrings)
of t and query the index for each signature. Each sub-query will

give us a set of candidate strings. We may apply some additional

filtering steps on the candidate strings, and then verify the distances

between the remaining strings and t to generate the final output. In
this framework two factors play important roles on the efficiency

of the query: the number of sub-querieswe generate, and the quality
of signatures. We observe in our experiments that to some extent,

the quality of signatures is the key factor top-k queries, while the

number of sub-queries is more critical for threshold queries.

We observe that most existing algorithms do not perform well

on relatively long strings. Naturally, in a dataset of long strings

similar strings may share long substrings. If signatures can capture

these long substrings as potential matches, then we may save a

significant amount of time at the verification step. This is because

long substring matches likely lead to true matches. Many existing

algorithms make use of q-gram based signatures (e.g., [4, 10, 15,

20, 23]), where the value q is typically very small. As a result they

cannot capture long substring matches.
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A EXPERIMENTAL STUDY OF MINSEARCH
In this section we present some empirical study of MinSearch
when varying parameter α and the effects of the improved par-

tition scheme.

Influence of Parameter α for Threshold Query. We plot the

influence of α on accuracy and running time for threshold query

in Figure 6.

We observe that with α = 1 and α = 3, we can already achieve

100% accuracy for threshold query on GENOME and UNIREF respec-
tively. This is much smaller than the theoretical result 120 obtained

in the analysis of [9]. We note again that this phenomenon is con-

sistent with the experiments (for similarity joins) in [9], and is due

to the fact that the theoretical analysis in [9] considers the worst

case and does not optimize on constants. Real world datasets are

much better than the worse case, where similar pairs may share

much longer substrings than the worst case.

The UNIREF dataset requires a larger α compared with GENOME.
This may be because there are both short strings and long strings in

UNIREF, and the threshold may be too large for short strings. While

in GENOME the string length is almost uniform. We also observe that

smaller thresholds give slightly worse accuracy. This is because the

cardinality of pairs of strings with small edit distance is smaller.

Thus, false negatives will have more impacts on the accuracy.

Since α is proportional to the number of partitions, larger α will

lead to (slightly) larger query time in any dataset.

Influence of Parameter α for Top-k Query. We plot the influ-

ence of α on accuracy and running time for top-k query in Figure 7.

The observation for top-k query is similar to that for threshold

query. On UNIREF dataset, when α is small, smaller k is more chal-

lenging for accuracy. This is because our measures allow algorithm

to get “partial credits”, which favors larger k . As expected, when α
is larger, MinSearch is more accurate. We observe that with α = 0.5

and α = 2, we can achieve 100% accuracy for top-k query on GENOME
and UNIREF datasets respectively. Again, as expected, larger α will

lead to slightly larger query time.

Effects of the Improved Partition Scheme.We plot the effects

of the improved partition scheme (Algorithm 6) on accuracy and

running time on READS dataset in Figure 8.

We note that strings in READS are relatively short, and common

substrings between some similar pairs have repeats due to system-

atic sequencing errors. Without the improved partition scheme

we may miss some similar strings and achieve a relatively low

accuracy (80% when k = 15). While with the improved partition

scheme we can achieve 100% accuracy for all k values. Though

we do not include the experimental results here, we notice that

repeated substrings is less of an issue for other datasets; in most

cases the accuracy of the original partitions scheme is already 100%.

The improved partitions scheme slightly increases the running

time of the query algorithm, typically by no more than 50%.

B A DISCUSSION ON COMPETITOR
ALGORITHMS

In our experiments we have compared MinSearch with four state-

of-the-art algorithms for edit similarity search, amongwhich HS-tree,
Bed-tree, and Pivotal are signature based. We would like to add

a bit more discussion on these algorithms, in particular, on the num-

ber of sub-queries they generate and the quality of their signatures.

• HS-tree [24] builds a tree based index for both threshold

and top-k queries. For each string length it builds a different

tree for that string length. The algorithm recursively parti-

tions strings into substrings, generating substrings of length

N ,N /2, . . . , 1. Substrings of the same length are stored in

the nodes on the same level of the tree; the i-th node on

level ℓ of the tree stores the i-th segment of length 2
ℓ
of each

string. An inverted list is built inside each node to enable effi-

cient search at the time of query. Though HS-tree is strong

in terms of signature quality, the number of sub-queries it

needs to make to the index at query time is fairly large – for

the threshold query it is O(NK2) where K is the distance

threshold, which is much larger than the O(N logN ) bound
of MinSearch for large K (e.g., K = 20% · N ).

• Bed-tree [27] is also a tree based algorithm, and can be used

for both threshold query and top-k query. It uses several

word ordering strategies together with the B+-tree struc-

ture to perform the search; ordering strategies include string
orders, gram counting order and gram location order. The
weakness of Bed-tree is that these orders are often not very

informative for the purpose of pruning candidates.

• Pivotal [4] is a prefix filter based algorithm for threshold

query. It tries to improve the original prefix filtering [21] by

selecting signatures with high pruning power and reducing

the number of signatures needed for the query. More pre-

cisely, it gives all q-grams of a string a global order based on

their frequency, and selects the first (Kq + 1) q-grams as the

“prefix” of the string. It then computes pivots of the string as

(K + 1) disjoint q-grams in the prefix of the string using a

dynamic programming procedure. The issue with Pivotal
is that we have to tune the parameter q for different query

threshold K , and the index time/memory usage and query

time are sensitive to q.

We have also compared MinSearch with Range [5], which uses

a very different approach to support top-k query. Intuitively speak-

ing, Range uses a trie data structure to fill multiple dynamic pro-

gramming tables (one for each query string and an input string)

simultaneously. The idea is to use shared common prefixes between

strings can help to avoid filling unnecessary entries of the dynamic

programming tables, and only consider pivotal entries in those ta-

bles. The main issue of Range is that its pruning power is limited if

strings in the dataset do not share long prefixes (e.g., beyond short

string datasets such as names, words, email titles, etc.).

C PROOF OF THEOREM 3.1
The proof for the correctness of the algorithm is similar to the

one in [9], where it was shown that for any pair of strings (s, t)
with ED(s, t) ≤ K , if we partition them at letters with ranks larger

r = r (t,α,K) for α = 120, then with probability 0.99, s and t will
share at least one common partition. The only difference is that in

Algorithm 3 the partitions of each string are stored in different hash

tables, while in the algorithm in [9] all partitions are stored in the

same hash tables. But this is not an issue for the correctness since

in Algorithm 4 we effectively search ∪i≥rHi for each partition of
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Figure 6: Influence of α on accuracy and running time for threshold query
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the query string. More precisely, for each partition of the query

string t , we read its level ℓ (computed in the string partition step)

and search in the corresponding hash tableHℓ .

For the running time, it was shown in [9] that with parame-

ter r = r (t, 120,K) where t is the query string, with probability

(1 − e−Ω(K )), we have |R | = Θ(K). By Lemma 2.3 we have that the

rank computation and partition at Line 3 and 4 take O(N logN )
time in expectation. Assuming that all hash tables have the same

size, and partitions of all strings are evenly distributed into |H |

buckets of any random hash tableH , the running time of Line 5

and 10 can be bounded by O
(
K · nK
|H |

logN
)
. The time cost for

the verification step is O(|C| NK) where |C| is the number of

candidate strings after deduplication, and O(NK) is the running
time for exactly testing whether ED(si , t) ≤ K using, e.g., Ukko-

nen’s algorithm [17]. Therefore the expected total running time is

O
(
N logN + nK 2

|H |
logN + |C| NK

)
.

D MORE RELATEDWORK
As mentioned, edit similarity joins is a closely related problem,

and has been studied extensively in the literature as well [1, 7, 9,

10, 13, 15, 19, 21, 26]. In fact, some algorithms for similarity joins

can also be used for the threshold query in edit similarity search,

such as the AdaptJoin [10] and the QChunk [15]. Note that in the

search problem, we are allowed to spend more time on building the

index in order to speed up the query. While in joins, we target a

good balance of the time usage on the two components. Therefore

algorithms that are good for joins may not fit search well without

non-trivial modifications.

There are also many works studying similarity search on other

distances and similarity measurements [1, 2, 6, 7, 10, 13, 16, 22, 25].

[22] designs algorithms for vector/set-based distances including the

Cosine, Jaccard and Overlap distances; algorithms in [1, 2, 7, 10, 13]

support both vector/set-based distances and edit distance. [6, 16, 25]

give approximation algorithms for the similarity search problem,

where [6] focuses on Hamming distance and [16, 25] study Cosine

and Jaccard distances. It is well known that edit distance is harder to

work with than set/vector-based distances in the sense that there is

no efficient Locality Sensitive Hashing (LSH) for edit distance, while

there are often good ones for vector/set-based distances. For exam-

ple, [25] uses LSH-based ideas for the similarity search problem for

Cosine and Jaccard distances.


	Abstract
	1 Introduction
	2 The Indexing Algorithm
	2.1 The Algorithm
	2.2 A Running Example
	2.3 The Complexity Analysis

	3 The Query Algorithms
	3.1 Threshold Query
	3.2 Top-k Query

	4 Further Improvements
	4.1 Improvements on Indexing Algorithms
	4.2 Improvements on Query Algorithms

	5 Experiments
	5.1 The Setup
	5.2 Performance Comparison

	6 Related Work and Discussions
	References
	A Experimental Study of MinSearch
	B A Discussion on Competitor Algorithms
	C Proof of Theorem 3.1
	D More Related Work

