
MinJoin: Efficient Edit Similarity Joins
via Local Hash Minima∗

Haoyu Zhang

hz30@umail.iu.edu

Indiana University Bloomington

Bloomington, IN, USA

Qin Zhang

qzhangcs@indiana.edu

Indiana University Bloomington

Bloomington, IN, USA

ABSTRACT
We study the problem of computing similarity joins under edit

distance on a set of strings. Edit similarity joins is a fundamen-

tal problem in databases, data mining and bioinformatics. It finds

important applications in data cleaning and integration, collabo-

rative filtering, genome sequence assembly, etc. This problem has

attracted significant attention in the past two decades. However,

all previous algorithms either cannot scale well to long strings and

large similarity thresholds, or suffer from imperfect accuracy.

In this paper we propose a new algorithm for edit similarity joins

using a novel string partition based approach. We show mathemat-

ically that with high probability our algorithm achieves a perfect

accuracy, and runs in linear time plus a data-dependent verification

step. Experiments on real world datasets show that our algorithm

significantly outperforms the state-of-the-art algorithms for edit

similarity joins, and achieves perfect accuracy on all the datasets

that we have tested.

ACM Reference Format:
Haoyu Zhang and Qin Zhang. 2019. MinJoin: Efficient Edit Similarity Joins

via Local Hash Minima. In The 25th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’19), August 4–8, 2019, Anchorage, AK, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3292500.3330853

1 INTRODUCTION
Edit similarity joins is a fundamental problem in the database

and data mining literature, and finds numerous applications in

data cleaning and integration, collaborative filtering, genome se-

quence assembly, etc. In this problem we are given a set of strings

{s1, . . . , sn } and a distance threshold K , and asked to output all

pairs of strings (si , sj) such that ED(si , sj) ≤ K , where ED(·, ·) is

the edit distance function, which is defined to be the minimum

number of insertions, deletions and substitutions to transfer one

string to another. There is a long line of research on edit similarity

joins [1–3, 5, 7–9, 13–16].

Amajor challenge for most existing algorithms, as pointed out by

the recent work [17], is that they do not scale well to long strings

and large edit thresholds. Long strings and large thresholds are

critical for applications involving long sequence data such as big

∗
Authors are supported in part by NSF CCF-1525024, IIS-1633215 and CCF-1844234.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330853

documents and DNA sequences, where a small thresholdK may just

give zero output. For example, in the genome sequence assembly,

in which the first step is to find all pairs of similar reads under

edit distance, the third generation sequencing technology such

as single molecule real time sequencing (SMRT) [10] generates

reads of 1,000-100,000 bps long with 12-18% sequencing errors

(i.e., percentage of insertions, deletions and substitutions). Large

threshold is also identified as the main challenge in a recent string

similarity search/join competition [12], where it was reported that

“an error rate of 20%-25% pushes today’s techniques to the limit”.

Different from previous algorithms which are deterministic and

return the exact answers, in [17] the authors proposed a randomized

algorithm named EmbedJoinwhich is more efficient on long strings

and large thresholds. However, the accuracy (more precisely, the

recall, i.e., the number of pairs found by the algorithm divided by

the total number of similar pairs; the precision of all algorithms

discussed in this paper is always 100%) of EmbedJoin is only 95% -

99% on a number of real-world datasets tested in [17]. The imperfect

accuracy is inherent to EmbedJoin which we shall explain shortly.

The main question we are going to address in this paper is:

Can we solve edit similarity joins efficiently on long
string and large edit threshold while achieving perfect
accuracy with a good probability?

Our Contribution. We propose a novel randomized algorithm

named MinJoin to address the above question. The high level frame-

work of MinJoin is simple: it first partitions each string into a set

of substrings, and then uses hash join on these substrings to find all

pairs of strings that share at least one common substring. At the end

a verification step is used to remove all false positives. Our string

partition scheme works as follows: We first assign each letter α in

the string s a value, which is a random hash value of the q-gram
(q is a value determined by the string length, the threshold K , and
the size of the alphabet) starting from α . We then determine the

anchors of string s using the following strategy: a letter α is an

anchor if and only if its value is the smallest among all letters in a

certain neighborhood of α . At the end we simply partition s at all
of its anchors.

Via a rigorous mathematical analysis we can show that under our

partition scheme, with a good probability, any pair of strings with

edit distance at most K will share at least one common partition.

We can also show that this partition procedure runs in linear time.

We have verified the effectiveness of MinJoin by an extensive

set of experiments. Though in our experiments we do not include a

parallel repetition step which is for the purpose of guaranteeing that

our algorithm achieves perfect accuracy with high probability in

theory (see the discussion in Section 2.2), our experimental results

show that MinJoin is able to achieve perfect accuracy on all datasets

https://doi.org/10.1145/3292500.3330853
https://doi.org/10.1145/3292500.3330853

that were used in [17]. Moreover, MinJoin is faster than all existing

exact (deterministic) algorithms by orders ofmagnitudes on datasets

of long strings and large edit thresholds, and is also faster than

EmbedJoin by a good margin.

Previous Work and Comparisons. Many of the existing algo-

rithms on edit similarity joins also follow the string partition frame-

work. The performance of the algorithm is largely determined by

the number of partitions generated for each string, and the number

of queries made to the indices (e.g., hash tables) to search for similar

strings. We discuss several state-of-the-art algorithms according to

the experimental studies in [6].

QChunk [9] is an exact edit similarity join algorithm based on

string partition. QChunk first obtains a global order σ of q-grams.

It then partitions each string into a set of chunks with starting

positions 1,q + 1, 2q + 1, . . ., and stores the first K + 1 chunks

(according to the order σ) in a hash table. Next, for each string the

algorithm queries the hash table with the string’s first N − (⌈(N −
K)/q⌉−K)+1 q-grams according to σ to check if there is any match,

where N is the string length.
1

PassJoin [8] is another exact algorithm based on string partition.

The algorithm partitions each string s into K + 1 equal-length

segments, and records the i-th segment into an inverted index Li
|s | .

Next, for each string the algorithm queries some of the inverted

indices to find similar strings; the number of queries made for each

string is Θ(K3), which is Θ(N 3) when K is a fixed percentage of N .

VChunk [15] is the one that is closest to MinJoin among all algo-

rithms that we are aware of. In VChunk each string is partitioned

into at least 2K + 1 chunks of possibly different lengths, determined

by a chunk boundary dictionary (CBD). More precisely, each string

is cut at positions of appearances of each word in CBD to obtain its

chunks. The CBD is data dependent and the optimal one is NP-hard

to compute. In [15] the authors proposed a greedy algorithm for

computing a CBD in time O(n2N 2/K), where n is the number of

input strings, and N is the maximum string length.

The recently proposed algorithm EmbedJoin [17] uses a very

different approach. EmbedJoin first embeds each string from the

edit distance metric space to the Hamming distance metric space,

translating the original problem to finding all pairs of strings that

are close under Hamming distance. It then uses Locality Sensitive

Hashing to compute (approximate) similarity joins in the Hamming

space. However, the embedding algorithm employed by EmbedJoin
has a worst case distance distortion K , which can be very large. Al-

though in practice the distortion is much smaller, it still contributes

a non-negligible percentage of false negatives which prevent a

perfect accuracy.

Compared with these existing algorithms, MinJoin has the fol-
lowing major advantages.

• For each string MinJoin only generatesO(K) partitions, and
makes the same amount of queries (for searching similar

strings), which are significantly smaller than QChunk and

PassJoin.
• MinJoin can compute partitions of all strings in timeO(nN),
i.e., linear in the input size, which is even faster than the

computation of CBD in VChunk.

1
Alternatively, for each string we can store the first N − (⌈(N − K)/q ⌉ − K) + 1

q-grams in the hash table, and make queries with the first K + 1 chunks.

• MinJoin is able to reach perfect accuracy on tested datasets,

compared with 95%-99% of EmbedJoin.

AComparison withMinHash Based Approach.Wewould like

to note that MinJoin is quite different from the folklore algorithm

using MinHash, in which for each string we collect all its q-grams

and hash them to numbers, and then pick the one with the smallest

hash value as the signature for the subsequent hash join; to increase

the accuracy we can pick multiple signatures using different hash

functions for each string.

To see the difference, in MinJoin the hash values of the q-grams

are used to partition a string to substrings/signatures, while in the

MinHash based approach theq-grams are the signatures themselves.

In MinJoin we set q to be a small number (more precisely, q =
Θ(log |Σ |(N /K)) where Σ is the alphabet of the string) in order

to make all q-grams distinct in every small neighborhood of the

string. And one partition will give us all the signatures of the string.

While in the MinHash based approach, it is not clear how to find

the best combination of the value q and the number of signatures

(or, hash functions) to use, for the purpose of achieving a perfect

accuracy under a small running time. We are not aware of any

theory for guiding the choices of q and the number of signatures in

the MinHash based approach for edit similarity joins. In Section 4.3

we will show experimentally that MinJoin significantly performs

the MinHash based approach in both accuracy and running time.

More Related Work. There is a large body of work on similarity

joins under edit distance. A large number of the existing algo-

rithms fall into the category called the signature-based approach,
in which we compute for each string a set of signatures, and then

apply various filtering methods to those signatures to select a set

of candidate pairs for verification. All the string partition based

algorithms that we have discussed can be thought as special cases

of the signature-based approach. Other algorithms in this category

include GramCount [5], AllPair [2], FastSS [3], ListMerger [7],

EDJoin [16], and AdaptJoin [14].
There are a few algorithms that use different approaches, includ-

ing the embedding-based algorithm EmbedJoin discussed previ-

ously, the tree-based algorithm M-Tree [4], the enumeration-based

algorithm PartEnum [1], and the trie-based algorithm TrieJoin [13].
However, except EmbedJoin, others’ performance is not as good as

the best partition-based approaches.

Notations.We have listed a set of notations to be used in this paper

in Table 1.

2 A STRING PARTITION SCHEME USING
LOCAL HASH MINIMA

In this section we present the string partition algorithm and analyze

its properties.

2.1 The Algorithm
We start by giving some high level ideas of our partition scheme.

As mentioned, in MinJoin we first partition each string to a set

of substrings, and then find pairs of strings that share at least

one common partition as candidates for verification. Consider a

pair of strings x and y (|x | = |y | = N) with edit distance k . Let
ρ : [N] → [N] ∪ {⊥} be the optimal alignment between x and

y, where ρ(i) = j ∈ [N] means that either x[i] = y[j] or x[i] is

Notation Definition

[n] [n] = {1, 2, . . . ,n}

K edit distance threshold

S set of input strings

si i-th string in S

n number of input strings, i.e., n = |S|

|s | length of string s

si ..j substring of s starting from the i-th
letter to the j-th letter

N maximum string length

Σ alphabet of strings in S

q length of q-gram

Π random hash function Σq → (0, 1)

T number of targeted partitions; T = Θ(K)

r radius for computing local minimum

Table 1: Summary of Notations

Algorithm 1 Partition-String (s,T ,Π)

Input: Input string s , number of targeted partitions T , random
hash function Π : Σq → (0, 1)

Output: Partitions of s : P = {(pos, len)}, where (pos, len) refers a
substring of s starting at the pos-th position with length len

1: P ← ∅

2: A = {a1, . . . ,ap } ← Find-Anchor(s,T ,Π)
3: for each i ∈ [1,p − 1] do
4: P ← P ∪ (ap ,ap+1 − ap)
5: end for

Algorithm 2 Find-Anchor(s,T ,Π)

Input: Input string s , number of targeted substrings T , random
hash function Π : Σq → (0, 1)

Output: The set of anchors A on s
1: A← {1}

2: r ← ⌊
|s |−q+1−T

2T+2 ⌋

3: Initialize an empty array h with |s | − q + 1 elements

4: for each i ∈ [|s | − q + 1] do
5: h[i] ← Π(si ..i+q−1)
6: end for
7: for each i ∈ [1 + r , |s | − q + 1 − r] do
8: Label ← 1

9: for each j ∈ [i − r , i + r] and j , i do
10: if h[i] ≥ h[j] then
11: Label ← 0

12: Exit the for loop

13: end if
14: end for
15: if Label = 1 then
16: A← A ∪ {i}
17: end if
18: end for
19: A← A ∪ {|s |}

substituted by y[j] in the optimal transformation, and ρ(i) =⊥
means that x[i] is deleted in the optimal transformation. If we pick

3-gram Value 3-gram Value 3-gram Value

CTA 0.01 ACG 0.39 GAA 0.69

GCT 0.05 AAA 0.42 AAT 0.74

TGC 0.12 AAC 0.46 ATC 0.77

TAA 0.21 CCT 0.53 GTC 0.83

ACC 0.25 TCG 0.58 TGG 0.89

CGT 0.31 ATC 0.62 GGA 0.91

GTG 0.33 CGA 0.64 GCG 0.97

Table 2: Hash values of 3-grams

any k indices 1 < i1 < · · · < ik < N such that ρ(iℓ) ,⊥ (ℓ ∈ [k]),
partition x at indices i1, . . . , ik to k +1 substrings, and partitiony at

indices ρ(i1), . . . , ρ(ik) to k + 1 substrings, then by the pigeonhole

principle x and y must share at least one common partition.

Of course obtaining an optimal alignment between x andy before
the partition is unrealistic. Our goal is to partition each string

independently, while still guarantee that with a good probability,

any pair of similar strings will share at least one common partition.

We present our partition algorithm in Algorithm 1 and Algo-

rithm 2. Let us briefly describe them in words. Algorithm 1 first

calls Algorithm 2 to obtain all anchors (to be defined shortly) of the

input string s , and then cuts s at each anchor into a set of substrings.
To compute all anchors, Algorithm 2 first hashes all the substrings

of s of length q (i.e., s[1..q], s[2..q+ 1], . . .) into values in (0, 1). Now
we have effectively transferred s to an array h[] of size |s | − q + 1,
with each coordinate taking a value in (0, 1). We call a coordinate i
in h[] a local minimum if its value is strictly smaller than all other

coordinates within a distance r of i (for a pre-specified parameter r ,
call it the neighborhood size). Algorithm 2 outputs the correspond-

ing i-th letter in string s as an anchor. For convenience, in the rest of
the paper we also call a local minimum coordinate in h[] an anchor.

Wewill show that for a pair of stringsx,y, if they share a common

substring σ that is long enough, then there must be at least two

letters u,v in σ such that u and v are two adjacent anchors in both

x and y, which means that if we use anchors to partition x and y,
then they must share at least one common partition. On the other

hand, we know that for two strings of length N and edit distance at

most K , they must share at least one common substring of length

(N −K)/(K + 1). Thus by properly choosing the neighborhood size

r (as a function of the string length and the number of targeted

substrings T), we can guarantee that two similar strings will share

at least one common partition.

A Running Example. Before analyzing Algorithm 1 we first give

a running example. Table 2 presents the hash values of all 3-grams

in S under the hash function Π. Table 3 presents a collection of

input strings S = {s1, s2, s3, s4, s5} and their lengths. We want to

find all pairs of strings with edit distance less than or equal toK = 4.

Table 4 presents the partitions of strings obtained by Algorithm 2

under parameter T = 3. We also calculate the neighborhood size r
for each string based on its string length and the parameter T .

Considering string s1 as an example, its 6-th 3-gram “CTA” has

a smaller hash value than all its neighbors within distance r = 2

(i.e., “TGC”, “GCT”, “TAA”, “AAC”). Thus “CTA” is selected as an an-

chor of s1. Same to the 14-th 3-gram “CTA”. We then partition s1 to
{ACGTG, CTAACGTG, CTAACGTA}. We next find that the strings

ID String Length

s1 ACGTGCTAACGTGCTAACGTG 21

s2 AAACGTGCTAACGTGCTAACCT 22

s3 TCGAATCGTCGAATCGTCGAA 21

s4 TCGAATCGTCGAATCGTGGAA 21

s5 GTGCGAATCGTCGAATCGTCG 21

Table 3: Input strings

ID Partitions of string r

s1 ACGTG, CTAACGTG, CTAACGTA 2

s2 AAACGTG, CTAACGTG, CTAACCT 2

s3 TCGAAT, CGTCGAAT, CGTCGAA 2

s4 TCGAAT, CGTCGAAT, CGTGGAA 2

s5 GTGCGAAT, CGTCGAAT, CGTCG 2

Table 4: Partitions of strings by Algorithm 1 (T = 3)

s1, s2 share a common partition “CTAACGTG”, s3, s4 share a com-

mon partition “TCGAAT”, and s3, s4, s5 share a common partition

“CGTCGAAT”, which give the following candidate pairs: (s1, s2),
(s3, s4), (s3, s5), (s4, s5). After computing the exact edit distance of

each pair, we output (s1, s2), (s3, s4), (s3, s5) as the final answer (i.e.,
those whose edit distances are no more than K = 4).

Discussions. We would like to discuss two items in more detail.

First, we require the value of an anchor in the hash array h[] to be

strictly smaller than its 2r neighbors. The purpose of this is to reduce
the number of false positives generated by periodic substrings

with short periods; false positives will increase the running time

of the verification step of the MinJoin algorithm. In real world

datasets, periodic substrings are often caused by systematic errors,

and may be shared among different strings. For example, consider

the following periodic substring on genome data “. . .AAAAAAAA

. . . ” produced by sequencing errors, if we allow the value of an

anchor to be equal to its neighbors, thenwemay havemany anchors

in this substring. Consequently, two strings both containing such a

substring will be considered as a candidate pair even that they are

very different elsewhere.

Second, we use different neighborhood size r for strings of dif-

ferent lengths. More precisely, we set r = ⌊
|s |−q+1−T

2T+2 ⌋ where

T = Θ(K) is an input parameter standing for the number of targeted

partitions. The purpose of doing this, instead of choosing a fixed r
for all strings, is again to reduce false positives. Indeed, if we choose

the same r for all strings, then long strings will generate many par-

titions, since in order to achieve perfect accuracy we cannot set r
to be too large at the presence of short strings. Consequently, the

large number of partitions generated by long strings will contribute

to many false positives. This is in contrast to VChunk, who cuts the

string whenever it finds a word in CBD appearing on the string.

Consequently two strings of very different length but sharing a

relatively long substring are likely to be considered as a candidate

pair, producing a false positive for the verification.

2.2 The Analysis
We now analyze the properties of Algorithm 1. Our goal is to un-

derstand how many partitions Algorithm 1 will generate (which

GEN50kS UNIREF

Figure 1: The CDFs of numbers of partitions on each string
returned by Algorithm 1 on GEN50kS and UNIREF datasets,
with parameters T = 100 and T = 25 respectively.

will contribute to the running time of MinJoin as we shall see in
Section 3), and what is the probability for two similar strings to

share a common partition.

To keep the analysis clean, we assume that in any r -neighborhood
of the array h[] all the coordinates are distinct, which is true if (1)

we assume that all corresponding q-grams are different, and (2) the

hash function Π : Σq → (0, 1) does not produce a collision when

applying to q-grams. The later can be easily satisfied if we keep

an O(logN)-bit precision (N is the maximum string length) in the

range of Π, in which case there is no hash collision with probability

1 − 1/NΩ(1)
. For the former, we set q = 3 log |Σ |(N /T). Note that

by our choice of r we have r ≈ N /(2T). If all letters in a substring

of size r are random, then the probability that two q-grams in this

substring are the same is 1/|Σ|q =
(
T
N

)
3

. By a union bound with

probability 1−o(1) all q-grams in a substring of size 2r are different.
We emphasize that this assumption is only used for the convenience

of the analysis, and Algorithm 1 works without this constraint.

The following lemma states that the number of anchors pro-

duced by Algorithm 2 is concentrated around T , the number of

targeted partitions. The proof is a bit technical, and we leave it to

Appendix A.1 due to the space constraints.

Lemma 2.1. Given an input string and a parameter T , for any
c > 0, the number of anchors generated by Algorithm 2, denoted by
X , satisfies Pr[|X −T | ≥

√
cT] < 1/c .

Wehave empirically verified the concentration result in Lemma 2.1

on two real world datasets (to be introduced in Section 4); see Fig-

ure 1. It is clear that the number of partitions Algorithm 1 generates

are tightly concentrated around the number of target partitions T .

We next analyze another key property of our local minimum

based partition: Given two similar strings, what is the probability

that they share a common partition? We give the following lemma.

Again due to the space constraints, we leave the technical proof to

Appendix A.2.

Lemma 2.2. For two strings s, t with ED(s, t) ≤ K , let Ps and Pt
be the partitions outputted by Algorithm 1 (setting T = 120K) on s
and t respectively. Assume |s | = ω(Kq). The probability that Ps and
Pt share a common partition is at least 0.98.

Remark 1 (Choice of T). We note that the choice of T (= 120K)
in Lemma 2.2 is overly “pessimistic” – it is just for the convenience of
analysis. Moreover, we only considered one pair of common substring
of length L ≈ |s | /K , while the average length of the (at most) K + 1

pairs of common substrings between s and t in the optimal alignment
is at least s−KK+1 ≈ |s | /K . A finer analysis which considers all pairs of
common substrings in the optimal alignment can reduce the value of
T all the way down to a value close to K , while still guarantee that Ps
and Pt share a common partition with a good probability. However,
the analysis is a bit cumbersome and we will leave it to the full version
of this paper. The main point of this remark is that in practice we can
just set T ≈ K , or even smaller since in real-world datasets multiple
edits may occur in the same location, which effectively increases the
average length of common substrings. In our experiments we find that
T ∈ [K/5,K] are good choices for all the datasets we have tested.

Parallel repetitions for boosting the success probability. Though

the success probability in Lemma 2.2 is only 0.98, and it is only for

each pair of similar strings, we can easily boost it to high probability

for all pairs of similar strings using parallel repetitions. We can

repeat the partition process for each string for logn times using

independent randomness, and then union all the partitions of the

string. Now for each pair of similar strings, the probability that they

share a common partition is at least 1−0.02logn ≥ 1−1/n5. We then

use a union bound on the at most n2 pairs of similar strings, and get

that the probability that all pairs of similar strings share at least one

common partition is at least 1 − 1/n3. We note in our experiments

that we do not need this boosting procedure since a single run of

the partition process already achieves perfect accuracy.

Theorem 2.3. If we apply Algorithm 1 augmented by the parallel
repetition discussed above on all input strings, then with probability
1 − n−Ω(1), all pair of strings with edit distances at most K will share
at least one common partition. The expected running time of the
algorithm is logn times the input size, and the space needed is also
logn times the input size.

Proof : The correctness follows directly from Lemma 2.2 and the

discussion of parallel repetition above. In the rest of the proof we

focus on the time and space. In fact, to show the claimed time

and space usage we can just show that the time and space for

partitioning one string s (by Algorithm 1) is linear in terms of the

string length |s |.
The running time of Algorithm 1 is dominated by that of its

subroutine Algorithm 2. The hash values of all q-grams of s can be

computed by the Rabin-Karp algorithm (the rolling hash) in O(|s |)
time. For Line 7-18 of Algorithm 2, since each number in h[] is a
random hash value, the inner for-loop (Line 9-14) runs inO(1) time

in expectation. Therefore the total running time of Algorithm 1 is

O(|s |) in expectation.

Clearly, the space usage of Algorithm 1 is also O(|s |). �

3 THE MINJOIN ALGORITHM
We now present our main algorithm MinJoin, depicted in Algo-

rithm 3. We briefly explain it in words below.

The MinJoin algorithm has three stages: initialization (Line 1 -

4), join and filtering (Line 5 - 20) and verification (Line 21 - 25). In

the first stage, we initialize an empty set C for candidate pairs and

an empty hash table D, generate a random hash function Π, and
sort all strings according to their lengths for the pruning.

In the join and filtering stage, we compute the partitions for

each input string using Algorithm 1. For each partition (pos, len),
which refers the substring of si with length len and pos is the

Algorithm 3 MinJoin (S,K,T)

Input: Set of input strings S = {s1, . . . , sn }, distance threshold K ,
number of targeted partitions T

Output: O ← {(si , sj) | si , sj ∈ S; i , j;ED(si , sj) ≤ K}
1: O ← ∅, C ← ∅ ◃ C : collection of candidate pairs

2: Pick a hash function f : Σ∗ → N and initialize an empty hash

table D

3: Generate a random hash function Π : Σq → (0, 1)
4: Sort strings in S first by string length increasingly, and second

by the alphabetical order

5: for each si ∈ S (in the sorted order) do
6: P ← Partition-String(si ,T ,Π)
7: for each (pos, len) ∈ P do
8: for each (j,posj , lenj) in the f ((si)pos ..pos+len−1)-th

bucket of D do ◃ f (·) is the hash function picked at Line 2

9: if
��|si | − ��sj ���� ≤ K then

10: if
��pos − posj �� + ��(|si | − pos) − (��sj �� − posj)�� ≤ K

then
11: C ← C ∪ (si , sj)
12: end if
13: else
14: Remove (j,posj , lenj) from D
15: end if
16: end for
17: Store (i,pos, len) in the f ((si)pos ..pos+len−1)-th bucket

of D

18: end for
19: end for
20: Remove duplicate pairs in C

21: for each (x,y) ∈ C do
22: if ED(x,y) ≤ K then
23: O ← O ∪ (x,y)
24: end if
25: end for

index of its first character on si , we find all tuples (j,posj , lenj) in
f ((si)pos ..pos+len−1)-th bucket of hash tableD (that is, we perform

a hash join). We use two rules to prune the candidate pairs we have

found. The first condition (Line 9) says that if the lengths of si and sj
differ by larger than K , then it is impossible to have ED(si , sj) ≤ K .
Consequently it is impossible to have ED(sj , si′) ≤ K for any i ′ > i .

The second condition (Line 10) concerns the following scenario:

if si and sj match at indices pos and posj , which divides both

strings into two substrings ν1 = (si)1..pos−1,ν2 = (si)pos .. |si | , and
µ1 = (sj)1..posj−1, µ2 = (sj)posj .. |sj | . If pos and posj are indeed

matched in the optimal alignment, then we must have ED(ν1, µ1) +
ED(ν2, µ2) ≤ K, in which case we have

��(|si | − pos) − (��sj �� − posj)��+��pos − posj �� ≤ K .
We add all pairs of strings that pass the two filtering conditions

to the candidate set C, and then perform a deduplication step at the

end since each pair can potentially be added into C multiple times.

In the verification stage, we verify whether each pair of strings in

C indeed have edit distance at most K , using the standard dynamic

programming algorithm by Ukkonen [11]. Due to this verification

step our algorithm will never output any false positive. On the

other hand, by Theorem 2.3, if we augment the string partition

scheme with parallel repetition, then MinJoin will not produce any

false negative with probability 1 − 1/nΩ(1). Therefore MinJoin will

achieve perfect accuracy with probability 1 − 1/nΩ(1).

Time and Space Analysis. Let N be the maximum string length

in the set of input strings S, and n = |S|. By Theorem 2.3 the

running time of the partition (without the parallel repetition) is

bounded by O(nN).
The total number of pairs that are fed into the filtering steps

(Line 9, 10) inherently depends on the concrete dataset. Suppose

partitions of all strings are evenly distributed into |D| buckets of

the hash table D (this is indeed what we have observed in our

experiments), then we can upper bound this number by O
(
nK
|D |

)
2

with probability 0.99. To see this, by the proof in Lemma 2.1 we

know that the expected number of partitions of each string is T =
Θ(K). By linearity of expectation, the expected number of partitions

of all n strings is nT . Therefore the total number of actual partitions

is bounded by O(nK) with probability 0.99 by a Markov inequality.

The verification step can be done in O(|C| NK) where C is the set

of the candidate pairs.

The space usage is clearly bounded byO(nN), that is, the size of
the input.

Theorem 3.1. The MinJoin algorithm has the following theoreti-
cal properties. Consider the case that we augment the string partition
procedure at Line 6 with logn parallel repetitions.
• It achieves 100% accuracy with probability 1 − 1/nΩ(1).
• Assuming that the partitions of all strings are evenly dis-
tributed into the buckets of the hash table, the running time of
MinJoin is bounded by

O

(
nN logn +

(
nK

|D|

)
2

+ |C| NK

)
with probability 0.99, where C is the set of the candidate pairs
MinJoin produces before the verification step.
• The space usage of MinJoin is logn times the size of input.

4 EXPERIMENTS
In this section we present our experimental studies. We start by

describing the datasets and algorithms used in our experiments.

We then provide a detailed study of the performance of MinJoin.
Finally, we compare MinJoin with the state-of-the-art algorithms

for edit similarity joins.

4.1 Setup of Experiments
We implemented our algorithms in C++ and performed experiments

on a Dell PowerEdge T630 server with 2 Intel Xeon E5-2667 v4

3.2GHz CPU with 8 cores each, and 256GB memory.

Datasets.We use the datasets in [17] which are publicly available.
2

Table 5 describes the statistics of tested datasets.

UNIREF: A dataset consists of UniRef90 protein sequence data

obtained fromUniProt Project.
3
The sequenceswhose lengths

are smaller than 200 are removed, and the first 400,000 pro-

tein sequences are extracted.

2
See the documentation from the project website of [17]: https://github.com/kedayuge/

Embedjoin

3
http://www.uniprot.org/

Datasets n Avg Len Min Len Max Len |Σ|

UNIREF 400000 445 200 35213 25

TREC 233435 1217 80 3947 37

GEN50kS 50000 5000 4829 5152 4

GEN20kS 20000 5000 4829 5109 4

GEN20kM 20000 10000 9843 10154 4

GEN20kL 20000 20000 19821 20109 4

GEN80kS 80000 5000 4814 5109 4

GEN320kS 320000 5000 4811 5154 4

Table 5: Statistics of tested datasets (from [17])

TREC: A dataset consists of titles and abstracts from 270medical

journals. The title, author, and abstract fields are extracted

and concatenated. Punctuation marks are converted into

white space and all letters are in uppercase.

GEN-X-Y’s: Datasets contain 50 human genomes obtained from

the Personal Genomes Project,
4
where X denotes the num-

ber of strings (range from 20k to 320k), and Y denotes the

string length (S ≈ 5k, M ≈ 10k, L ≈ 20k). Each string is a

substring randomly sampled from the Chromosome 20 of

human genome.

Algorithms.We compare MinJoin with the state-of-the-art algo-

rithms for edit similarity joins discussed in the introduction, in-

cluding PassJoin[8], QChunk[9], VChunk[15], EmbedJoin[17]. All
codes are downloaded from the corresponding project websites.

Measurements and Choices of Parameters.We use three met-

rics to measure the performance of tested algorithms: time, space,

and accuracy.

We note that except MinJoin and EmbedJoin which are random-

ized and may have false negatives, all other tested algorithms are

deterministic and output the exact number of similar pairs, and

thus their accuracy is always 100%. According to our theoretical

analysis (Theorem 2.3 and Remark 1), by setting T appropriately

and using logn repetitions of the string partition procedure (Algo-

rithm 1), MinJoin can output all similar pairs with a high proba-

bility. In practice, we found that a single execution of Algorithm 1

with T ∈ [K/5,K] can already achieve 100% accuracy on all tested

datasets.
5
In fact, as we shall see in Figure 2 and Figure 3, varying

T in this range will not change the accuracy by much, but it does

slightly affect the running time since larger T will introduce more

false positives for verification.

In the rest of this section we will always write the accuracy for

EmbedJoin on the plots, and omit that for MinJoin if it is 100%.
We always choose the best parameters of other tested algorithms.

QChunk has two parameters: q (the size of q-gram) and indexing

method. We found that the indexchunk always performs better than

indexgram on all datasets, and we always choose the best q for each

experiment. VChunk has a parameter scale to tune. PassJoin has

no parameter. EmbedJoin has three parametersm, r , z. We choose

the parameters based on the recommendation of [17]: We select the

best combinations of parameters to achieve at least 95% accuracy

on UNIREF and TREC datasets, and at least 99% accuracy on GEN50kS

4
https://www.personalgenomes.org/us

5
Whenever there is an exact algorithm that finishes in a reasonable amount of time so

that we get to know the ground truth.

https://github.com/kedayuge/Embedjoin
https://github.com/kedayuge/Embedjoin
http://www.uniprot.org/
https://www.personalgenomes.org/us

UNIREF GEN50kS

Figure 2: Influence of T on accuracy

UNIREF GEN50kS

Figure 3: Influence of T on running time

UNIREF GEN50kS

Figure 4: Running time of different parts of MinJoin, varying
K .

dataset; and we select r = z = 7,m = 15 − ⌊log
2
x⌋ on the rest of

datasets, where x% is the edit threshold.

Each result is an average of 5 independent runs. For MinJoin
we fix the randomness at the beginning so that all runs return the

same result on the same dataset.

4.2 Experiments for MinJoin
We first show the performance of MinJoin. We will start by investi-

gating the influence of parameter T on running time and accuracy,

and then present the running time of different stages of MinJoin.

Influence of Parameter T . We study empirically how parameter

T influences the accuracy and the running time of MinJoin. We

present the influence of T on the accuracy and running time in

Figure 2 and 3 respectively. As predicted by theory, both time and

accuracy increase when T increase. We also tested different edit

thresholds K . We observe that when K is larger, we need a larger

T to maintain the 100% accuracy, which is also consistent with

the theory where we need to pick T = Θ(K). As mentioned in

Section 4.1, we found that setting T in the range [K/5,K] is good
for all the tested datasets.

Running Time of Different Parts of MinJoin. We have also

measured the running time of different parts of MinJoin, including

(a) Running time (b) Accuracy

Figure 5: Performance of the MinHash based algorithm on
GEN50kS dataset with K = 100. (a) The running time of the
MinHash based algorithm as amultiple of that of MinJoin at
100% accuracy. (b) The accuracy of the MinHash based algo-
rithm.

input read, string partition, hash join and filtering, and verification.

We present in Figure 4 the running time of MinJoin on (1) reading

the input strings, (2) partitioning strings, (3) performing the hash

join and filtering, and (4) verification varying the edit threshold K .
Certainly, the input read time will not change for different K . We

observe that the time for join and filtering increases slightly when

K increases, that for partition is stable, and that for verification

increases considerably when K increases. On UNIREF dataset, the
string partitioning as well as join and filtering steps are bottleneck,

and on GEN50kS dataset, the string partition step is bottleneck. The

verification step takes the smallest amount of time in most cases.

4.3 A Comparison with MinHash
Before going to the main body of the experimental study, we try to

argue that the folklore MinHash based algorithm is not competitive

with MinJoin. The reason that we discuss it separately is that this

folklore algorithm has two parameters for which we do not have

any guideline for the tuning. We thus try to present its performance

by testing different combinations of these parameters.

As mentioned in the introduction, the MinHash based algorithm

is straightforward: we convert each string into a set which consists

of the hash values of all q-grams of the string, and then pick the

smallest value as the signature of the string for the subsequent hash

join. To boost the accuracy, we can use ℓ such MinHash functions,

and get ℓ signatures for each string. Applying ℓ hash functions to get

the signatures is expensive. A standard optimization method is to

use only one hash function, and then select the top-ℓ smallest hash

values as the signatures. This is what we use in our experiments.

Figure 5 shows the running time and accuracy of the MinHash

based algorithm when varying the number of hash signatures ℓ

and the length of signature q. The running time is shown as a

multiple of MinJoin at 100% accuracy. We find that the running

time and accuracy of the MinHash based algorithm depend on

the two parameters q and ℓ: When increasing parameter ℓ, both

running time and accuracy increase; when increasing parameter q,
the running time first decreases and then increases a little bit, and

the accuracy decreases. We observe the accuracy and running time

are sensitive to parameters, and there is no principle on how to

select them for edit similarity joins. This is in contrast to MinJoin
where the only parameter is T (the targeted number of partitions),

and we have already discussed how to choose T both theoretically

and practically. Moreover, even we choose the best combination

of ℓ and q, the running time of the MinHash based algorithm is

still at least 5 times of that of MinJoin at 100% accuracy. We thus

conclude that MinJoin outperforms the MinHash based algorithm

in all aspects.

4.4 A Comparison with the State-of-the-Art
We now compare MinJoin with the state-of-the-art algorithms for

edit similarity joins (QChunk, PassJoin, VChunk and EmbedJoin).
We will make use of UNIREF, TREC and GEN50kS for a basic compar-

ison. These datasets are of modest size so that all algorithms can

finish within 24 hours. We then use larger genome datasets to test

the scalability of all algorithms.

Effects of the Edit Threshold K . Figure 6 presents the running
time of different algorithms on UNIREF, TREC and GEN50kS when

varying the edit threshold K . Compared with EmbedJoin, MinJoin
clearly has the advantage on the accuracy (100% versus 95-99%). The

running time of MinJoin is similar to EmbedJoin on UNIREF and

TREC, and is better than EmbedJoin by a factor of 4.5 on GEN50kS
(K = 150). We observe that MinJoin has a significant advantage

over all the exact algorithms on running time: MinJoin outperforms

the best exact algorithm by a factor of 2.3 in UNIREF (K = 25), 12.3

on TREC (K = 50), and 26.7 on GEN50kS (K = 150). The running

time of PassJoin increases quickly when K becomes large; this is

consistent to the theory that the query time in PassJoin for each
string is proportional to K3

. VChunk performs relatively well on

UNIREF, butmuchworse on TREC and GEN50kS. Thismay be because

the preprocessing time of VChunk has a quadratic dependence on
string length N , which is larger in TREC and GEN50kS than UNIREF.

Effects of the Input Size n. Figure 7 presents the running time

of different algorithms on UNIREF, TREC and GEN50kS when vary-

ing the number of input strings n. MinJoin again has similar run-

ning time as EmbedJoin on UNIREF and TREC, and much better

on GEN50kS (plus the accuracy advantage). The running time of

MinJoin is better than the best exact algorithm by a factor of 2.2

on UNIREF (n = 400, 000), 9.5 on TREC (n = 200, 000), and 16.2

on GEN50kS (n = 50, 000). The trends of running time of all algo-

rithms increase near linearly in terms of n, except VChunk whose
performance deteriorates significantly when n increases on TREC
and GEN50kS, which may again due to the expensive preprocessing

step.

Scalability of the Algorithms. Finally we test all algorithms on

larger datasets. Figure 8 presents the results of the running time

when we scale string length up to 20,000 and the edit threshold K
up to 20% of the string length. Figure 9 presents the results when

we scale the number of strings up to 320,000, and K up to 20% of

the string length. The first plot of Figure 9 is just a repeat of that of

Figure 8. For MinJoin we always set the number of targeted parti-

tion T to be K/5, which already makes the accuracy of MinJoin to

be 100% on those points where there is at least one exact algorithm

that can finish.

We note that some algorithms cannot produce some of the points,

which may be because they cannot finish within 24 hours, or there

are some implementation issues (e.g., memory overflow). In cases

when there is no exact algorithm that can finish in time, the accuracy

of EmbedJoin is computed using the result returned by MinJoin as
the ground truth.

We observe that MinJoin generally outperforms EmbedJoin by
2 ∼ 5 times on the running time. The advantage slightly decreases

when the number of strings n or the string length N increases. This

is because when n or N increases, the verification time (O(NK) per
pair where K is also proportional to N in our plots) will increase

faster than other parts of the algorithm. On the other hand, the

accuracy of EmbedJoin, using MinJoin as the baseline, is about

96%-99%.

All the exact algorithms do not scale well on these large datasets.

On the smallest dataset GEN20kS, PassJoin and QChunk can run

up to the 8% edit threshold, while VChunk can only go up to the

4% threshold. Their running times deteriorate significantly when

K increases. Only PassJoin can produce some points on GEN20kL
and GEN80kS. On GEN320kS none of the exact algorithms can finish

within 24 hours.

Memory Usage. We have also compared the memory usage of all

tested algorithms. Again MinJoin has the best performance. Due

to the space constraints we leave the details to Appendix B.1.

5 CONCLUSION
In this paper we have presented MinJoin, an algorithm for edit

similarity joins based on string partition using local hash min-

ima. MinJoin has rigorous mathematical properties, and signifi-

cantly outperforms previous methods on long strings with large

edit thresholds. We feel that local hash minima based string par-

tition is a natural and elegant way for solving the edit similarity

join problem: it can be applied to each string independently by a

linear scan, without any synchronization between strings or global

statistics of the datasets. It also works very well with a simple

hash join data structure for computing the candidate string pairs.

Moreover, even MinJoin is a randomized algorithm, it can easily

achieve perfect accuracy on all of the datasets that we have tested.

We believe MinJoin is the right choice for edit similarity joins in

many applications.

REFERENCES
[1] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient Exact

Set-Similarity Joins. In VLDB. 918–929.
[2] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up all

pairs similarity search. In WWW. 131–140.

[3] Thomas Bocek, Ela Hunt, Burkhard Stiller, and Fabio Hecht. 2007. Fast similarity
search in large dictionaries. University.

[4] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient Access

Method for Similarity Search in Metric Spaces. In VLDB. 426–435.
[5] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukr-

ishnan, and Divesh Srivastava. 2001. Approximate String Joins in a Database

(Almost) for Free. In VLDB. 491–500.
[6] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. 2014. String Similarity

Joins: An Experimental Evaluation. PVLDB 7, 8 (2014), 625–636.

[7] Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Efficient Merging and Filtering

Algorithms for Approximate String Searches. In ICDE. 257–266.
[8] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. 2011. PASS-JOIN: A

Partition-based Method for Similarity Joins. PVLDB 5, 3 (2011), 253–264.

[9] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and Xuemin Lin. 2011. Efficient

exact edit similarity query processing with the asymmetric signature scheme. In

SIGMOD. 1033–1044.
[10] Richard J Roberts, Mauricio O Carneiro, and Michael C Schatz. 2013. The advan-

tages of SMRT sequencing. Genome biology 14, 6 (2013), 405.

[11] Esko Ukkonen. 1985. Algorithms for Approximate String Matching. Information
and Control 64, 1-3 (1985), 100–118.

[12] Sebastian Wandelt, Dong Deng, Stefan Gerdjikov, Shashwat Mishra, Petar Mi-

tankin, Manish Patil, Enrico Siragusa, Alexander Tiskin, WeiWang, JiayingWang,

and Ulf Leser. 2014. State-of-the-art in string similarity search and join. SIGMOD
Record 43, 1 (2014), 64–76.

UNIREF TREC GEN50kS

Figure 6: A comparison on running time, varying K . The percentages on plots stand for accuracy of EmbedJoin.

UNIREF (K = 20) TREC (K = 40) GEN50kS (K = 100)

Figure 7: A comparison on running time, varying n. The percentages on plots stand for accuracy of EmbedJoin.

GEN20kS GEN20kM GEN20kL

Figure 8: Scalability of different algorithms, varying N . The percentages on plots are accuracies of EmbedJoin.

GEN20kS GEN80kS GEN320kS

Figure 9: Scalability of different algorithms, varying n. The percentages on plots are accuracies of EmbedJoin.

[13] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2010. Trie-Join: Efficient Trie-

based String Similarity Joins with Edit-Distance Constraints. PVLDB 3, 1 (2010),

1219–1230.

[14] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix

filtering?: an adaptive framework for similarity join and search. In SIGMOD.
85–96.

[15] Wei Wang, Jianbin Qin, Chuan Xiao, Xuemin Lin, and Heng Tao Shen. 2013.

VChunkJoin: An Efficient Algorithm for Edit Similarity Joins. IEEE Trans. Knowl.
Data Eng. 25, 8 (2013), 1916–1929.

[16] Chuan Xiao, Wei Wang, and Xuemin Lin. 2008. Ed-Join: an efficient algorithm

for similarity joins with edit distance constraints. PVLDB 1, 1 (2008), 933–944.

[17] Haoyu Zhang and Qin Zhang. 2017. EmbedJoin: Efficient Edit Similarity Joins

via Embeddings. KDD (2017), 585–594.

A MISSING PROOFS
A.1 Proof of Lemma 2.1
Proof : Consider the arrayh[1.. |s |−q+1] constructed in Algorithm 2;

h[i] is the hash value of the i-th q-gram of s . Letw = |s | −q + 1− 2r .
For i = 1, . . . ,w , define a random variable Xi whose value is 1 if
h[i + r] is the smallest coordinate in the window h[i ..i + 2r], and 0

otherwise. LetX =
∑
i ∈[w] Xi , which is the total number of anchors

generated by Algorithm 2. We now analyze the random variable X .

We start by computing its expectation. Recall that we have set

r to be ⌊
|s |−q+1−T

2T+2 ⌋ at Line 2 of Algorithm 2. For simplicity we

ignore the floor operation whose effect is negligible to the analysis.

E[X] =
∑
i ∈[w]

E[Xi] =
∑
i ∈[w]

Pr[Xi = 1] =
w

2r + 1
= T . (1)

We next compute the variance.

Var[X] =
∑
i ∈[w]

Var[Xi] +
∑
i,j

Cov[Xi ,X j]

=
∑
i ∈[w]

Var[Xi] +
1

2

∑
i

∑
j,i

Cov[Xi ,X j]. (2)

We compute the two terms of (2) separately. For the first term,∑
i ∈[w]

Var[Xi] =
∑
i ∈[w]

(
E[X 2

i] − (E[Xi])
2

)
= w ×

(
1

2r + 1
−

1

(2r + 1)2

)
≤

w

2r + 1
. (3)

For the second term of (2), by the definition of the covariance,

Cov[Xi ,X j] = E[XiX j] − E[Xi]E[X j]

= E[XiX j] −
1

(2r + 1)2
.

We analyze E[XiX j] in three cases.

Case I. |i − j | ≥ 2r + 1. It is easy to see that in this case Xi and X j
are independent, since their corresponding windows h[i ..i + 2r]
and h[j ..j + 2r] are disjoint. We thus have E[XiX j] = E[Xi]E[X j],

and consequently Cov[Xi ,X j] = 0.

Case II. |i − j | ≤ r . In this case, h[i + r] is inside the window

h[j ..j+2r], and symmetricallyh[j+r] is inside thewindowh[i ..i+2r].
Thus if Xi = 1 then we must have X j = 0, and if X j = 1 then

we must have Xi = 0. Therefore E[XiX j] = 0, and consequently

Cov[Xi ,X j] = −
1

(2r+1)2 .

Case III. r < |i − j | < 2r +1. The analysis for this case is a bit more

complicated. Consider two windowsWi = h[i ..i + 2r] andWj =

h[j ..j+2r]which overlap.We divide their union into three areas; see

Figure 10 for an illustration. Area 2 denotes the intersection of the

two windows, and Area 1 and Area 3 denote the coordinates that

are only inWi andWj respectively. It is easy to see that the number

of coordinates in Area 1 and Area 3 are equal; let α (r < α < 2r + 1)
denote this number.

We write

E[XiX j] = Pr[Xi = 1,X j = 1]

= Pr[X j = 1 | Xi = 1] · Pr[Xi = 1]

Figure 10: Illustration of windowsWi ,Wj when r < |i − j | <
2r + 1. Black square represents the central coordinate of the
window. The squares in same column correspond to same
coordinate in the array h[]; we duplicate them for the illus-
tration purpose.

= Pr[X j = 1 | Xi = 1] ·
1

2r + 1
.

We thus only need to analyze Pr[X j = 1 | Xi = 1]. Define a random

variable Y such that Y = 1 if the central coordinate of Wi (i.e.,

h[i + r]) is smaller than all coordinates in Area 3. We have

Pr[X j = 1 | Xi = 1]

= Pr[X j = 1 | Xi = 1,Y = 1] · Pr[Y = 1 | Xi = 1] +

Pr[X j = 1 | Xi = 1,Y = 0] · Pr[Y = 0 | Xi = 1]. (4)

Note that (Xi = 1)∧(Y = 1) implies that the central coordinate of

Wi is smaller than all coordinates inWj , which, however, does not

give any information about the relationship between all coordinates

inWj . We thus have

Pr[X j = 1 | Xi = 1,Y = 1] = Pr[X j = 1] =
1

2r + 1
. (5)

On the other hand, (Xi = 1) ∧ (Y = 0) implies that the central

coordinate ofWi is smaller than all coordinates in Area 2, and is

larger than some coordinate in Area 3. We thus know that the

minimum coordinate ofWj must lie in Area 3. Therefore X j = 1

if and only if the central coordinate ofWj is larger than all other

coordinates in Area 3. We get

Pr[X j = 1 | Xi = 1,Y = 0] = 1/α . (6)

Plugging in (5) and (6) to (4), we have

Pr[X j = 1 | Xi = 1]

=
1

2r + 1
· Pr[Y = 1 | Xi = 1] +

1

α
· Pr[Y = 0 | Xi = 1]

≤
1

α
≤

1

r + 1
.

Consequently we have

Cov[Xi ,X j] ≤
1

2r + 1
·

1

r + 1
−

1

(2r + 1)2
<

1

(2r + 1)2
.

Summing up, we have

Cov[Xi ,X j]

= − 1

(2r+1)2 , |i − j | ≤ r

< 1

(2r+1)2 , r < |i − j | < 2r + 1

= 0. |i − j | ≥ 2r + 1

(7)

Plugging (3) and (7) to (2), we get

Var[X] <
w

2r + 1
+
1

2

·w · 2r ·

(
1

(2r + 1)2
−

1

(2r + 1)2

)
=

w

2r + 1
= T . (8)

UNIREF TREC GEN50kS

Figure 11: A comparison on memory usage, varying K .

UNIREF (K = 20) TREC (K = 40) GEN50kS (K = 100)

Figure 12: A comparison on memory usage, varying n.

By (1), (8), and the Chebyshev’s inequality, we have that for any

constant c > 0,

Pr[|X −T | ≥
√
cT] < 1/c .

�

A.2 Proof of Lemma 2.2
Proof : Since ED(s, t) ≤ K , we have |t | ∈ [|s | − K, |s | + K], and
s and t must share a common substring of length at least L =
(|s | − K)/(K + 1) in the optimal alignment.

Let γ be such a common substring. Let rs = ⌊
|s |−q+1−T

2T+2 ⌋, and

let η =
L−q+1−2rs

2rs+1 . When running Algorithm 2 on s , by an almost

identical argument as that for the proof of Lemma 2.1, we have that

the number of anchors X on γ satisfies

Pr[|X − η | ≥
√
cη] < 1/c . (9)

For T = 120K and |s | = ω(Kq), we have

η =
L − q + 1 − 2rs

2rs + 1

≥

(
|s | − K

K + 1
− q + 1 − 2rs

)
·

T + 1

|s | − q + 2

≥ 115. (10)

Plugging (10) to (9), we have with probability at least (1 − 1/100) =

0.99 that

X ≥ η −
√
100η > 4, (11)

which means that with probability 0.99 there are at least four an-

chors on γ .
Let a1,a2,a3,a4 be four anchors on γ when processing s using

Algorithm 2. Let rt = ⌊
|t |−q+1−T

2T+2 ⌋. Since ED(s, t) ≤ K and T =
120K , it holds that |rt − rs | ≤ 1. In the case that rt = rs = r , a2

and a3 must also be anchors when processing t using Algorithm 2,

since an anchor is fully determined by a neighborhood of size r .
For the case when |rt − rs | = 1, w.l.o.g., assume that rs = r and

rt = r + 1. Now the probability that a2 is still an anchor when

processing t , given the fact that a2 is an anchor when processing

s , is at least 1 − 1/(r + 1). Same argument holds for a3. Thus with

probability 0.99−2/(r+1) ≥ 0.98 (note that r = rs = ⌊
|s |−q+1−T

2T+2 ⌋ =

ω(1) given |s | = ω(qK) and T = 120K), a2 and a3 are also anchors
when processing t .

Finally, observe that once s and t share two adjacent anchors a2
and a3, they must share at least one common partition. �

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 Comparisons on Memory Usage with the

State-of-the-Art
Figure 11 and Figure 12 present the memory usage of different algo-

rithms on UNIREF, TREC and GEN50kS when varying edit threshold

K and the number of input strings n. While the difference on the

memory usage is not as large as running time, MinJoin still per-

forms the best among all algorithms. The performance of PassJoin
is clearly worse than others on TREC and GEN50kS.

	Abstract
	1 Introduction
	2 A String Partition Scheme Using Local Hash Minima
	2.1 The Algorithm
	2.2 The Analysis

	3 The MinJoin Algorithm
	4 Experiments
	4.1 Setup of Experiments
	4.2 Experiments for MinJoin
	4.3 A Comparison with MinHash
	4.4 A Comparison with the State-of-the-Art

	5 Conclusion
	References
	A Missing Proofs
	A.1 Proof of Lemma 2.1
	A.2 Proof of Lemma 2.2

	B Additional Experimental Results
	B.1 Comparisons on Memory Usage with the State-of-the-Art

