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Abstract
Recent advancements in quantum technologies, particularly in quantum sensing and simulation,
have facilitated the generation and analysis of inherently quantum data. This progress underscores
the necessity for developing efficient and scalable quantum data management strategies. This goal
faces immense challenges due to the exponential dimensionality of quantum data and its unique
quantum properties such as no-cloning and measurement stochasticity. Specifically, classical storage
and manipulation of an arbitrary n-qubit quantum state requires exponential space and time. Hence,
there is a critical need to revisit foundational data management concepts and algorithms for quantum
data. In this paper, we propose succinct quantum data sketches to support basic database operations
such as search and selection. We view our work as an initial step towards the development of
quantum data management model, opening up many possibilities for future research in this direction.
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1 Introduction

Quantum information and computing, rooted in the principles of quantum mechanics, have
emerged as an important field of study with far-reaching effects across a broad spectrum
of disciplines. Central to the concept of quantum computing are quantum bits (or qubits),
which set themselves apart from classical bits due to their ability to exist in a superposition of
states, allowing a quantum computer to offer the potential computational advantage against
classical computing.

Although significant advancements have been made in the development of quantum
algorithms after several decades of research, only a handful provably outperform their
classical counterparts. Notable examples include Shor’s algorithm for factorization [54],
Grover’s algorithm for search [22], and linear system solvers [26]. These quantum algorithms
typically start by encoding classical input data into quantum states, execute a series of
quantum operations, and then measure the resulting quantum states and carry out specific
post-processing on the measurement outcomes. The reasons for the difficulties in the design
of quantum algorithms that can outperform classical counterparts on classical input data
remain elusive.

In this paper, we take a different perspective, directing our attention towards quantum
data themselves. The nature, along with scientific experiments spanning physics, chemistry,
material science, biology, and other fields, generates massive quantities of quantum data
every day. Sources include Hawking Radiation, Cosmic Microwave Background, quantum
effects in neutron stars, quantum states in ultra-cold atoms, quantum information in DNA
replication, etc. In many scenarios, there is a need for us to preserve quantum data that has
been collected from nature or generated in labs for future analysis. For example, scientists
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often use photons collected from remote stars to study the properties of those astronomical
objects. It would be beneficial to store those photons as quantum states in a database,
since it may not be feasible to collect fresh photons from those astronomical objects at
the time of data analysis. In the case that the quantum states are prepared in the labs,
generating fresh copies of quantum states on demand is often time-consuming. Let us
use quantum simulation as an example. Quantum simulation is a prominent advantage of
quantum computers, with significant implications for numerous areas of scientific research,
including computer-aided drug design [50], high-energy physics [41], quantum chemistry [58]
and many-body physics [55]. Quantum simulation typically relies on solving the Schrödinger
equation for the underlying Hamiltonian. The Hamiltonian is implemented by a quantum
circuit, which is applied to an initial quantum state to generate target quantum states. The
construction of the Hamiltonians and the preparation of the target states can be rather
time-consuming.1 Storing the generated molecular quantum states in a database would
eliminate the need to repeat the state preparation procedures during data analysis.

Once the quantum states are stored in a database, and assuming each state is associated
with additional information such as the nature sources recorded at the time of collection or
parameters of the experimental setup used to produce them, numerous applications can be
envisioned. For example, if scientists receive photons from an unknown remote star, they
can search a photon database to find a matching quantum state. Upon finding a match, they
can retrieve its associated properties and other information, such as the time and method of
its previous observation. They may also want to sort the states using a local observable (see
Definition 9 in Section 3) with respect to certain properties (such as energy or momentum)
to get an order of the photons in the database, aiding in the understanding of the spectrum
of the corresponding stars in the universe. In quantum simulation, if we want to produce
molecular states with average energy levels above a certain threshold relative to a specific
local observable, we can perform a selection operation in our database to identify those states,
and then use the associated parameters for the experimental setup to produce more of such
quantum states.

Nevertheless, quantum data management remains in its infant stage. Some of the
previously mentioned motivating examples are more like anticipated future problems. There
has been research that leverages quantum data for learning or optimization, such as quantum
machine learning [33, 24, 3], quantum variational optimization algorithm [28, 17]. and
quantum neural network [52, 48, 18, 31, 45, 20]. However, their primary focus is on the
sample complexity (namely, the number of copies of the quantum state needed for the task)
and the convergence to optimal points, rather than on developing methods for the efficient
representation and storage of quantum data for subsequent analysis.

In this paper, we introduce several quantum data sketches to support basic database
operations in a sustainable and efficient manner. This paper does not aim to formulate a
comprehensive quantum data management model. Rather, we view our work as an initial step
towards developing a sustainable model for representing, querying, and analyzing quantum
data at scale.

Unique Challenges in the Quantum World. The quantum world possesses several
unique properties, such as superposition and entanglement, that can be leveraged to reduce
resource usage in computing and information exchange. However, some of these features also

1 For instance, the Hamiltonian of the two-dimensional Fermi-Hubbard model on an 8× 8 lattice already
requires approximately 107 Toffoli gates [43], which directly contribute to the query time if states need
to be generated from scratch at query.
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post significant challenges to quantum data management. We highlight a few below.
Post-Measurement State Disturbance. The only way to extract information from a

quantum state is to perform quantum measurements and observe probabilistic outcomes.
However, each measurement has the effect of perturbing the quantum state. This characteristic
implies that a quantum state might not be reusable post-measurement. In other words, we
may need to consume many identical copies of a quantum state in order to derive enough
useful information about it. This phenomenon is in stark contrast with the classical setting,
in which we can consistently access the same data element for a number of times, always
yielding the same result.

No-cloning. A natural thought to resolve the issue caused by state disturbance is to
clone the quantum state before the operations. Unfortunately, the no-cloning theorem (see,
e.g., [46]) in quantum mechanics asserts that it is impossible to create an exact copy of an
arbitrary unknown quantum state.

Lack of Large-Scale Quantum Storage Systems. At the time of writing this paper, we are
not aware of any reliable large-scale quantum storage systems. One reason for this is that
qubits are highly susceptible to environmental disruptions such as temperature variations,
electromagnetic radiation, or particle interactions. These disruptions lead to what is known
as decoherence [40], resulting in the loss of quantum information.

Moreover, due to the quantum state disturbance and the no-cloning principle, even if
we successfully build viable large-scale quantum storage systems in the future, we still need
many identical copies of the quantum state for any nontrivial database operation. This
implies that in order to accommodate an unlimited number of database operations (i.e., to
be sustainable), we must prepare an unlimited number of copies for each quantum state in
the storage, which is certainly not practical.

An alternative approach is to first learn the classical description of each quantum state and
store it in a classical memory for future operations. Indeed, we believe that for the purpose
of quantum data management, we have to store quantum states in the classical format.
However, learning and storing the full information of a quantum state as a classical object is
both time and space expensive, as the dimensionality of a quantum state is exponential in
terms of the number of qubits.

We thus propose to design succinct classical representations (or, sketches) of quantum
states that can be used to perform database operations efficiently. Based on the particular
database operation it is intended to support, each sketch preserves only partial information
of a quantum state. This is also the reason why we may be able to make the size of the
sketch to be o(d), where d is the dimension of the quantum state. We also note that the
sample complexity for constructing data sketches is a secondary consideration for database
management systems, as it is just a one-time preprocessing step in the database design. This
is where our work departs from the quantum state learning/tomography literature, which we
will discuss in Section 1.1.

Our Contribution. We give the first systematic approach to designing space-efficient
sketches for quantum states. These sketches can then be used to develop time-efficient
algorithms for basic database operations. In particular:
1. In Section 3, we have formalized a set of basic database operations for quantum data,

including search, selection, sorting, and join. These operations differ from those for
classical data as they inherently incorporate approximation in their definitions.

2. Our main technical results are the first set of classical vector sketches that preserve,
up to a distortion of (1 + ι) for an arbitrarily small ι > 0, the trace distance of the
quantum states with probability (1− δ). Our sketches have sizes O(log(1/δ)/ι2), which is
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independent of the dimension of the states. Coupled with efficient nearest neighbor search
via locality sensitive hashing, they can be used to support the search and join operations
with time sublinear in the database size and independent of the state dimension. See
Section 4.1.

3. We make use of classical shadow seeds of quantum states [37] to approximate the
expectation value of any given k-local observable (to be defined in Section 3.3) using
time and space independent of the dimension of the state. We also present a new hybrid
quantum-classical algorithm to accelerate the query time. This sketch can be used for
selection and sorting operations. See Section 4.2.

Paper Outline. In Section 2, we review some background on quantum information and
computing as well as tools for classical data management. In Section 3, we define a set
of basic database operations for quantum data. After these preparations, in Section 4,
we present our classical sketches of quantum states and illustrate how to perform various
database operations using these sketches. We review works that are most relevant to this
paper in Section 1.1 and propose several directions for future research in Section 5.

1.1 Related Work
We are not aware of any prior work on designing classical sketches of quantum data, except
for the paper [37] discussed in Section 4.2. There have been effort aiming to introduce
quantum computing, quantum algorithms and quantum machine learning to the database
community [13, 61, 44, 57, 9, 59]. We refer the readers to the recent tutorial [25] for an
overview of these works. However, these initiatives either attempt to design and perform
database operations directly on quantum data (i.e., assuming database elements are stored
as quantum states) or focused on speeding up databases query optimization and transactions
on classical data, setting them apart from the objectives pursued in this paper.

There are works [60, 38] focusing on applying classical data compression techniques (such
as quantization) to the quantum state vector during quantum simulation. We note that our
approach with sketches is quite different, as we aim to extract relevant information (often
independent of the quantum states’ dimension) for various database operations.

Quantum State Learning. Many studies have explored the task of characterizing and
learning properties of a quantum state using multiple copies of the state, including approximate
state discrimination [12], quantum state discrimination [29], quantum state tomography [23, 49],
quantum state property testing [27], quantum state certification [7], shadow tomography [2, 6],
and pretty good tomography [1].

In the problem of approximate state discrimination, we are promised that a query quantum
state φ belongs to a set S of quantum states. The algorithm’s task is to return a state ψ ∈ S
such that D(φ, ψ) ≤ ε. The algorithm for approximate state discrimination proposed in
[12] can be used together with the equality testing to handle the search operation when the
available number of copies of the query state is limited, at the cost of larger time and space
complexities. However, the need of fresh copies of database states for equality testing would
undermine the long-term sustainability of the database system.

The problem of quantum state discrimination is very similar: We are again promised
that the query state φ belongs to a set S, but now the algorithm needs to return the exact φ.
Harrow and Winter [29] gave an algorithm for this problem where the sample complexity of
the query state depends on a parameter F , which is the maximum pairwise fidelity of states
in the set S.
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In the quantum state tomography, we wanted to learn an unknown quantum state up to
a trace distance ε. Optimal sample complexity Θ̃(d/ε2) has been identified [23, 49].

Quantum state property testing [27] and quantum state certification [7] can be seen as
relaxations of aforementioned problems. In the former, we are given a query state φ and a
set S of quantum states, and asked to test whether φ ∈ S or φ is ε-far from S (that is, for
any state ψ ∈ S, we have D(φ, ψ) > ε), and in the latter, we are given a query state φ and
a known state ψ, and asked to test whether φ = ψ or D(φ, ψ) > ε. The main issue with
property testing and certification in the setting of data management is that the decision can
be arbitrary even if the query state is very close to (but not the same as) a database state.

Both shadow tomography and pretty good tomography focus on approximating φ†Miφ

for a query state φ and a set of known binary measurements {Mi} [2, 6], or a distribution on
them [1]. However, these algorithms cannot be used for the (η, ε)-selection for an arbitrary
observable M given at the time of query. Their running time is also polynomial in terms of
the state dimension d. Recently, Gong and Aaronson [21] generalized shadow tomography to
a fixed set of measurements with multiple outcomes.

To the best of our knowledge, all the previous work on quantum state learning focuses on
the sample complexity, but not on the space complexity for representing the quantum states
for various data management operations.

2 Preliminaries

We start by giving a gentle introduction of the basics of quantum information and computing,
particularly for readers who are not in the field yet. For a comprehensive treatment on this
topic, we refer the readers to standard textbooks in the field, such as [46].

Quantum States and Qubits. The first axiom of quantum mechanics is concerned with
quantum state as a way to describe a quantum system, such as a qubit. For accessibility of
the paper we focus on pure state that are represented by complex-valued vectors. Moreover,
we assume that each quantum data point is stored in n-qubits. Therefore, the dimentionality
of the space is d = 2n. In that case, the quantum stats are unit-norm vectors in Cd.
Following the Dirac bra-ket notation, a vector u ∈ Cd is simply denoted by the ket |u〉. As
an example, a qubit is a 2-dimensional vector represented as |φ〉 = α0 |0〉 + α1 |1〉, where
|α0|2 + |α1|2 = 1. This decomposition is typically called a superposition. A well-known
superposition is the state 1√

2 (|0〉 + |1〉). Similarly, an n-qubit state is represented by a
superposition as |u〉 =

∑
x1···xn∈{0,1}n αx1···xn |x1 · · ·xn〉 , where

∑
x1···xn∈{0,1}n α

2
x1···xn = 1.

For compactness, we use |i〉 to represent each |x1 · · ·xn〉, where i is the decimal representation
of the binary string x1 · · ·xn.

Quantum Operations. The second axiom of quantum mechanics states that the evolution
of quantum states are described via unitary transformation. A unitary transformation is
represented by a unitary matrix U such that U†U = UU† = I. If the initial state is |φ〉, then
the evolved state is U |φ〉. In quantum computing U is typically implemented in terms of
elementary quantum logical gates. In this perspective, one can study the gate complexity of
implementing U . This axiom implies a unique feature of quantum, known as the no-cloning
principle that prohibits making copies of quantum data. As a result one needs to adopt data
management procedures that abide this rule.

Quantum Measurements. The third axiom of quantum mechanics asserts that any
classical information about a quantum state is obtained viameasuring it. The act of measuring
a quantum system will collapse the quantum state inevitably. The specific outcome of a

CVIT 2016
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measurement is probabilistic and is governed by the Born’s law. These probabilities are
determined by the initial state of the system and the nature of the interaction between the
system and the measuring device. Measuring in an n-qubit system is typically modeled
in the so-called computational basis. When the quantum state is in the superposition
|φ〉 =

∑
i αi |i〉, the outcome of the measurement in the computational basis is going to be

i ∈ [2n] with probability pi = |αi|2. For instance, measuring the state 1√
2 (|0〉+ |1〉) produces

a random uniform binary output. The stochasticity of quantum measurements is another
feature that calls for probabilistic data management frameworks. Moreover, the state collapse
phenomenon significantly complicates the tasks, as the quantum state cannot be entirely
“recycled” following a measurement.

One may attempt to think of a quantum state |φ〉 =
∑
i αi |i〉 - as far as measurement is

concerned - as a discrete probability distribution {p1, . . . , pd}, but there are two fundamental
differences. First, the coefficients (called amplitudes) αi’s are complex numbers that make
superposition and interference possible. Second, the probability of an outcome in quantum
mechanics is found by taking the absolute square of the amplitude, that is, pi = |αi|2.

In general, a certain measurementM on a quantum state can be obtained in three stages:
(i) applying an appropriate quantum operator U to the state, (ii) measuring the evolved
state U |φ〉 in the computational basis; and (iii) applying classical post processing on the
measurement outcomes. This procedure is compactly modeled as a matrix M called an
observable that is multiplied by the original state |φ〉. The eigenvalues of M represent the
possible values of the measurement outcomes. Moreover, byM(|φ〉) we denote the probability
distribution of the measurement outcomes after applyingM on |φ〉. Because the outcomes
are probabilistic, we are often interested in their expectation values. The expectation of the
outcome distributed by M(|φ〉) is equal to 〈φ|M |φ〉, where 〈φ| is the complex conjugate
transpose of the vector |φ〉.

Standard Math Notations Versus Dirac Notations. As this paper is intended for an
audience within the database community, we recognize that the Dirac bra-ket notation might
appear unfamiliar to database researchers without a background in quantum information
and computing. To simplify, in the main text we express a pure quantum state as a column
vector with dimensions denoted as d, and use φ and φ† to denote |φ〉 and 〈φ|, respectively.
We use φ†Mφ to denote the expectation value 〈φ|M |φ〉 of an observable M . Throughout
the paper, we reserve the notations φ and ψ for quantum states.

We have also included a more formal (but still gentle) introduction of quantum information
and computing using Dirac bra-ket notations in Appendix A. We will use Dirac bra-ket
notations in all the proofs in the appendix.

Trace Distance. Given two quantum states φ and ψ, we define their trace distance to be
D(φ, ψ) =

√
1− |ψ†φ|2. The trace distance is the most widely used distance measure for

quantum states in the literature.

2.1 Performance Metrics

In the context of quantum data, similar to classical database design, the efficiency of space and
time is crucial during database initialization, indexing, and querying. Minimizing the number
of quantum state copies used for constructing sketches is also important, as obtaining state
copies can be costly and they cannot be fully recycled due to post-measurement disturbance.
However, as we mentioned earlier, sample complexity is a secondary consideration in the
data management setting, since the sketch-building/initialization is a one-time process.
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A unit-time quantum operation comprises standard single-qubit gates like the Hadamard
gate, Pauli gates, phase gate, and T gate, as well as a two-qubit gate, such as the Controlled-
NOT (CNOT) gate, that enables entangling operations.2 The combination of these gates is
sufficient to approximate any unitary operation to arbitrary accuracy. We call these gates
unit gates, and define the size of a circuit (for representing a unitary operation) to be the
number of unit gates in the circuit.

As mentioned, a typical quantum measurement M on n qubit systems consists of a
unitary operator UM followed by measurement in computational basis and classical post
processing. Assuming that the classical post processing is polynomial, the overall time cost is
typically dominated by the gate complexity of UM. It has been shown in [56] that a circuit
depth of Θ(2n/n) (i.e., Θ(d/ log d)) is needed for constructing an arbitrary unitary operator
U . To simplify matters, we assume that both executing an arbitrary d-dimensional quantum
measurement and preparing an arbitrary d-dimensional state require O(d) quantum time.

2.2 Nearest Neighbor in High Dimensions
As quantum states are inherently high dimensional, even after effective sketching and
summarization that we will illustrate in the subsequent sections, we will thus use Approximate
Nearest Neighbor (ANN) via Locality Sensitive Hashing (LSH) to further speed up some
database operations. This subsection will take a brief detour from our discussion of quantum
data management.

I Definition 1 ((r, β)-ANN-search). Let X be a database containing a set of vectors in Rd
and q ∈ Rd be a query vector. Let dist(·, ·) be a distance function. If there is at least one
vector p ∈ X with dist(p, q) ≤ r, return any p′ ∈ X with dist(p′, q) ≤ βr. Otherwise, either
return a p′ ∈ X with dist(p′, q) ≤ βr or return ∅.

Let us focus on the case that the distance function dist(·, ·) is `1 or `2. Indyk and
Motwani [39] showed that (r, β)-ANN can be solved efficiently via LSH. The idea is that we
first apply multiple hash functions to each vector in X; this part can be pre-computed and
stored as an indexing. At the time of query, we apply the same set of hash functions to the
query vector q. We then run over all vectors p ∈ X such that p and q collide (i.e., fall into
the same bin) on at least one hash function, and return the first vector p if dist(p, q) ≤ βr.
If no such p found after traversing a certain number of vectors in X, we return ∅.

We will use ANN(q,X, r, β) to denote the (r, β)-ANN search for a query vector q in database
X. The following is a summary of results on LSH-based ANN for `1/`2 distances.

I Theorem 2 ([39, 15, 5]). For dist(·, ·) being `1 or `2, a database X of m vectors, and a
d-dimensional vector q, there is an algorithm that solves ANN(q,X, r, β) using O(dm+m1+γ)
space and O(dmγ) classical time, where γ ≈ 1/β for `1 distance and γ ≈ 1/β2 for `2 distance.

I Remark 3. We note that if we do not terminate the algorithm after encounter the first p ∈ X
such that dist(p, q) ≤ βr, then the same algorithm can return a subset Y ⊆ X including all
vectors p such that dist(p, q) ≤ r, and excluding all vectors p such that dist(p, q) ≥ βr.
I Remark 4. We can also use LSH to find a set J of pairs of vectors such that J includes all
pairs (p, q) such that dist(p, q) ≤ r, and excludes all pairs (p, q) such that dist(p, q) ≥ βr.
To this end, we first hash all vectors, and then check the distances of all pairs of vectors that
collide on at least one hash function.

2 We refer the readers to [46] for a detailed introduction of these gates.
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3 Basic Operations on Quantum Data

The characteristics of quantum information dictate that we can only obtain an approximation
of a quantum state φ with a finite number of quantum state copies. A celebrated result in
quantum state tomography states that to learn an unknown n-qubit quantum state φ up
to a trace distance ε, we already need Ω

(
d/ε2

)
copies of the quantum state, where d = 2n

is the dimension of φ [23, 49]. We thus consider two quantum states φ, ψ with D(φ, ψ) ≤ ε
the same state. Consequently, all the operations that we support in a quantum database
also need to be approximate. The precise definition of ‘approximation’ varies for different
operations.

In this section, we formulate basic quantum data operations that we aim to support using
our proposed sketches. When we say the return of a quantum state φ, we are referring to its
identifier.

3.1 Equality Test
In the classical data setting, the equality test on two data objects returns 1 if p = q, and
returns 0 otherwise. In the quantum setting, since we cannot distinguish two quantum states
using o(d/ε2) copies of the states if their trace distance is at most ε, we need to introduce
the approximation version of the equality test:

I Definition 5 ((ε, β)-equality-test). Given two quantum states φ and ψ, output 1 if D(φ, ψ) ≤
ε, and 0 if D(φ, ψ) > βε. The output can be arbitrary if ε < D(φ, ψ) ≤ βε.

In words, we consider two quantum states the same if their trace distance is at most ε,
and different if their trace distance is more than βε. If the distance falls between the two
values, then the decision can be arbitrary. The gap between yes and no is inevitable for
quantum data.

Given two quantum states φ and ψ, which may be unknown, the standard method for
estimating their trace distance is the swap test [8]. The algorithm uses a controlled-SWAP
gate (can be implemented using O(n) = O(log d) unit gates) and two single-qubit Hadamard

gates. The test outputs 1 with probability 1+|φ†ψ|2
2 = 1− D(φ,ψ)2

2 , and 0 otherwise. Therefore,
using Oβ

( 1
ε2 log 1

δ

)
such tests (the constant hidden in the big-O depends on the constant β),

we can differentiate the case D(φ, ψ) > βε from D(φ, ψ) ≤ ε with a probability 1− δ.
The main issue with this algorithm is that we have to consume fresh copies of database

states for each equality test, which is unsustainable for a database system that is designed to
answer an unlimited number of queries.

3.2 Search and Join
In the classical data setting, given a set of objects X = {p1, . . . , pn} and a query object q,
the search operation returns some pi ∈ X such that pi = q if such pi exists, and ∅ otherwise.
In the quantum setting, again due to the difficulty of distinguishing two quantum states
within a distance of ε, we propose the following approximation version.

I Definition 6 ((ε, β)-search). Given a query state φ and a database X, if there exist a state
ψ ∈ X such that D(φ, ψ) ≤ ε, return a state ψ′ ∈ X with D(φ, ψ′) ≤ βε. Otherwise, either
return a state ψ′ ∈ X with D(φ, ψ′) ≤ βε or return ∅.

In other words, if there exists a state in the database which has a trace distance no more
than ε from the query state φ, we return a state in X whose distance is no more than βε
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from φ (similar to the ANN search). Else if all states in the database have distances larger
than βε from the query state, we return ∅. In other cases, we either return a database state
with distance no more than βε from the query state or return ∅.

The most straightforward way is to perform the (ε, β)-equality-test for each database
state ψ ∈ X with the query state φ. By the above algorithm for equality test (setting
δ = 1/m2), we can determine with probability (1−mδ) = (1− o(1)) whether there exists a
state ψ ∈ X such that the (ε, β)-equality-test on φ and ψ returns 1. The above procedure
takes O

(
m log d logm/ε2) quantum time, which is linear in terms of the number of states in

the database. Another significant limitation of this method is the necessity of using fresh
copies of the database states for each search operation because of the equality test, making
the database system unsustainable.

A closely related operation to search is join, which is one of the most important operations
in relational database systems. We introduce the quantum version of natural join as follows.

I Definition 7 ((ε, β)-natural-join). Given two databases X and Y of quantum states, we want
to output a set that includes all pairs of states (φ, ψ) (φ ∈ X,ψ ∈ Y ) such that D(φ, ψ) ≤ ε,
and excludes all pairs (φ, ψ) such that D(φ, ψ) > βε. The decisions for other pairs can be
arbitrary.

3.3 Selection and Sorting
In relational databases for classical data, selection is typically denoted by σθ(R), where R is a
relation and θ is a propositional formula that involves an attribute, a comparison operator in
the set {<,>,≤,≥,=, 6=}, and a constant value for comparison (e.g., age ≥ 8). However, in
the quantum data setting, quantum states cannot be directly compared. We can only apply
a measurementM on the state φ and get a random outcome according to the distribution
M(φ). As a classical analog, we would say a person’s age is 5 with probability 0.6 and 10
with probability 0.4.3 We thus look at the expectation value φ†Mφ for the observable M
corresponding toM.

The quantity φ†Mφ holds significant importance in quantum mechanics (see, e.g., the
textbook [51]). It can be used to provide an estimate of the system’s average energy in a
particular state, describe the level of non-classical correlations between entangled particles,
quantify quantum information such as entropy, coherence, and entanglement, etc.

We define the ε-approximate ‘≥’ selection operation for quantum data as follows.

I Definition 8 ((η, ε)-selection). Given a database X, an observable M , a threshold η, and
an error parameter ε, return a set of states S ⊆ X such that S includes all database states φ
such that φ†Mφ ≥ η, but excludes all φ such that φ†Mφ ≤ η − ε.

Note that the ε-approximate equality selection can be implemented by taking the difference
between (η − ε, ε)-selection and (η + 2ε, ε)-selection, which includes all φ with η − ε ≤
φ†Mφ ≤ η + ε and excludes all φ with φ†Mφ ≤ η − 2ε or φ†Mφ ≥ η + 2ε. In the context of
approximation, we can consider ‘<’ and ‘>’ the same as ‘≤’ and ‘≥’, respectively.

We also note that (ε, β)-search can also be handled by looking at φ†Mφ for a specific
observable M , although this solution is not as efficient as that using the particular sketches

3 This assembles probabilistic databases, but in the quantum data setting the probability distribution is
not given explicitly, and the support size of the distribution is exponential in terms of the number of
qubits of each quantum state.
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that we shall design for the search operation. We have included a reduction from (ε, β)-search
to (η, ε)-selection in Appendix D.

In the context of databases, we are particularly interested in the following type of
observables.

I Definition 9 (k-local observable). An observable O of a system with n qubits is called
k-local if it can be written as a sum of a constant number of terms, each acting on at most k
qubits. For instance, a 2-local observable in a 3-qubit system might look like:

O = O12 ⊗ I3 + I1 ⊗O23,

Where O12 and O23 are operators acting on the pairs of qubits (1,2) and (2,3) respectively,
while I3 and I1 are the identity operators acting on the remaining qubits.

k-local observables have been well studied in the literature (see [11, 42] and references
therein). They are interesting because, in most practical scenarios, our goal is to identify
specific properties of a quantum state (e.g., the energy, momentum, or spin of a photon) that
rely on a small subset of qubits of the state. This is similar to the classical setting where
most queries depend on a few attributes of a relational database table. For example, suppose
we want to retrieve all records in a table containing patient information for individuals aged
80 years or older with systolic blood pressure at least 140, we only need to look at two
attributes in the table: age and blood pressure. If we view each qubit of a quantum state as
an attribute (e.g., spin, position, momentum, polarization, etc.), then a k-local observable
performs selection on at most k attributes of the quantum state.

A related problem of selection is sorting. As a motivation, we would like to sort a set of
given quantum states according to their average energy with respect to an observable determ-
ined by a particular application. Note that there is no natural order between the quantum
states themselves. Therefore, introducing an observable and computing the expectation value
is somewhat necessary to establish a total order between the quantum states.

We define the sorting operation with respect to an observable M as follows. Similar to
the selection operation, we introduce an additive approximation ε in the sorted order.

I Definition 10 (ε-sorting). Given a database X of m states, an observable M , and an
error parameter ε, return an order (φ1, φ2, . . . , φm) of the states in X such that for all
i = 1, . . . ,m− 1, we have φi†Mφi ≤ φi+1

†Mφi+1 + ε.

4 Sketches for Quantum Data Operations

In this section, we introduce two quantum data sketches, vector sketches and shadow seeds,
which are summaries of the original states for efficiently handling previously mentioned
database operations.

Before delving into the details, let us use metaphors to provide some very high-level
intuition of the two data summarizing methods. The vector sketches can be seen as capturing
snapshots of the state from different angles, while each shadow seed can be seen as a piece of
information gleaned from the state. Using multiple shadow seeds, we can reconstruct the
original state at varying levels of resolution.

4.1 Vector Sketches for Equality-Test, Search, and Join
The concept of vector sketch is to represent a quantum state φ as a vector in Rt with t� d

instead of a vector in Cd, while preserve certain distance properties. In this section, we
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design vector sketches for quantum states and then use them to conduct equality test, search,
and join.

A natural way to construct the sketch is to take a number of random measurements on
φ, and write down the measurement outcomes as a vector. The following result is due to
Sen [53], rewritten for pure quantum states.

I Theorem 11 ([53]). Let φ and ψ be two pure quantum states in Cd. With probability
at least

(
1− e−Ω(d)) over the choice of a random measurement basisMd = {M1, . . . ,Md},

there exists a universal constant c ∈ (0, 1) such that

c ·D(φ, ψ) ≤ ‖Md(φ)−Md(ψ)‖1 ≤ D(φ, ψ). (1)

Theorem 11 connects the trace distance of two quantum states to the `1 distance of their
measurement outcome distributions. We note that the distortion in (1), D(φ, ψ)/(cD(φ, ψ)) =
1/c, is a big constant whose value left unspecified in [53].

VectorsMd(φ) andMd(ψ) are discrete distributions with outcomes {1, 2, . . . , d}. It is well-
known that for a discrete distribution µ over a domain of size d, using Θ

(
(d+ log(1/δ))/ε2

)
samples we can obtain an empirical distribution µ̃ such that ‖µ− µ̃‖1 ≤ ε with probability
1− δ (see, e.g., [10]).

I Corollary 12. Let M̃d(φ) and M̃d(ψ) be the empirical distributions of measurement
outcomes by applying Md in Theorem 11 to cs(d + log(1/δ))/ε2 (for a sufficiently large
constant cs) copies of φ and ψ, respectively. With probability 1− δ − e−Ω(d), we have

c ·D(φ, ψ)− ε ≤
∥∥∥M̃d(φ)− M̃d(ψ)

∥∥∥
1
≤ D(φ, ψ) + ε,

where c ∈ (0, 1) is a universal constant.

We can view M̃d(φ) and M̃d(ψ) as two empirical probability vectors. However, since
d = 2n for a n-qubit state, it is both space-expensive to store M̃d(φ) and time-expensive to
use it for database operations.

Embedding to L1-space. We aim to address the issue of efficiency in both time and space
by showing that there is another distribution of measurements whose number of outcomes
is independent of the state dimension d, for which a similar connection exists between the
trace distance of two quantum states and the `1 distance of the corresponding measurement
outcome distributions. Moreover, the distortion of our sketching can be made arbitrarily
close to 1 (compared with 1/c in (1)). It is worth noting that this distortion will significantly
impact the efficiency of the search and join operations, as we will discuss shortly.

Our result is summarized in the following theorem.

I Theorem 13. Let φ and ψ be two pure d-dimensional quantum states. For any ι > 0,
there is a distribution π of measurements with k = clog(1/δ)/ι2 outcomes for a sufficiently
large constant c, such that a measurementMk sampled randomly from π satisfies

(1− ι)D(φ, ψ) ≤
√
d

k
cτ‖Mk(φ)−Mk(ψ)‖1 ≤ (1 + ι)D(φ, ψ)

with probability at least (1 − δ), where cτ ∈ [0.48,
√

2] is a universal computable constant.
Additionally, the measurement sampling can be completed in O(log8 d) time, and the sampled
measurement can be represented as a quantum circuit with a gate complexity of O(log2 d).
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Proof Overview. At a high level, our approach leverages form dimension reduction through
quantum measurements. We make use of a technique called pretty good measurement [36]
to generate random projective quantum measurementsM with k outcomes. The output of
these measurements are random vectors serving as the embedding of the state φ into Rk.

We start by picking a random basis for Cd based on the Haar measure [35]. Let
xt, yt (t = 1, . . . , d) be independent Gaussian random variables with mean zero and variance
σ2 = 1

2d , and let g , (c1, . . . , cd) ∈ Cd be a random vector where ct = xt + iyt. We repeat
this process and generate d complex Gaussian random vectors g1, . . . , gd. These vectors
are linearly independent with probability one; but they are not necessarily orthonormal.
We make use of pretty good measurement to orthogonalize and normalize these vectors.
More precisely, we construct the operator (matrix) Γ ,

∑
t∈[d] g

†
t gt, and define the vector

γt , Γ−1/2gt for each t ∈ [d]. We can show that γ1, . . . , γd are linearly independent and
are orthonormal. Moreover, the distribution of γt is unitary invariant, and hence the Haar
measure. Intuitively, γt is distributed uniformly over surface of the unit sphere in Cd. Next,
we randomly group γt’s into k groups and form random projection operators as

Πj =
∑

`∈[d/k]

(γj` )
†γj` . (j = 1, . . . , k)

Let Mk = {Π1, · · · ,Πk} be the corresponding measurement. Clearly, M is a valid meas-
urement with probability one. This random measurement facilitates an embedding of the
quantum states in Cd into Rk. We carefully analyze the distortion of the embedding (i.e.,
the outcome distribution by applyingMk to the quantum state) using tools from the con-
centration of measures and properties of the Haar distribution. We show that the distortion
of this embedding is no more than (1 + ι) with probability (1− δ) when k = c log(1/δ)/ι2 for
a constant c. The complete proof can be found in Appendix B.1.

The measurement construction described above could require polynomial time in d.
However, we demonstrate that it can be sampled more efficiently from the Clifford group
in classical time O(log8 d), leveraging the properties of unitary 2-designs from quantum
information theory. The details are provided in Appendix B.1.1. J

To approximate
√

d
k cτ‖Mk(φ)−Mk(ψ)‖1 up to an additive error ε, we have to approx-

imate ‖Mk(φ)−Mk(ψ)‖1 up to ε′ = ε√
d/k·cτ

. We have the following immediate corollary.

I Corollary 14. For any ι > 0, let k = c log(1/δ)/ι2 for a sufficiently large constant c, and
let M̃k(φ) and M̃k(ψ) be the empirical distributions of the outcomes by applying independent
random measurements Mk in Theorem 13 to csd/ε2 (for a sufficiently large constant cs)
copies of φ and ψ, respectively. With probability at least 1− δ, we have

(1− ι)D(φ, ψ)− ε ≤
√
d

k
cτ

∥∥∥M̃k(φ)− M̃k(ψ)
∥∥∥

1
≤ (1 + ι)D(φ, ψ) + ε,

where cτ ∈ [0.48,
√

2] is the same constant in Theorem 13.

Embedding to L2-space. The sketch we have constructed for the L1-space can also be
applied to the L2-space, albeit through a different analysis. The `2 distance is interesting
since we know from Theorem 2 that `2 enjoys a slightly better ANN scheme in term of time
and space complexities, which will be useful for speeding up search and join operations. The
proof of the following theorem can be found in Appendix B.2.
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I Theorem 15. Let φ and ψ be two pure d-dimensional quantum states. For any ι > 0,
there is a distribution π of measurements with k = c log(1/δ)/ι2 outcomes for a sufficiently
large constant c, such that a measurementMk sampled randomly from π satisfies

(1− ι)D(φ, ψ) ≤
√
d

2‖Mk(φ)−Mk(ψ)‖2 ≤ (1 + ι)D(φ, ψ)

with probability at least 1− δ. Additionally, the measurement sampling can be completed in
O(log8 d) time, and the sampled measurement can be represented as a quantum circuit with a
gate complexity of O(log2 d).

For a discrete distribution µ over a domain of size d for any d ≥ 1, it takes Θ
(
log(1/δ)/ε2

)
samples to obtain an empirical distribution µ̃ such that ‖µ− µ̃‖2 ≤ ε with probability 1− δ
(see, e.g., [10]). We have the following corollary.

I Corollary 16. For any ι > 0, let k = clog(1/δ)/ι2 for a sufficiently large constant c, and
let M̃k(φ) and M̃k(ψ) be the empirical distributions of the outcomes by applying independent
random measurementsMk in Theorem 15 to csd log(1/δ)/ε2 (for a sufficiently large constant
cs) copies of φ and ψ, respectively. With probability 1− δ, we have

(1− ι)D(φ, ψ)− ε ≤
√
d

2

∥∥∥M̃k(φ)− M̃k(ψ)
∥∥∥

2
≤ (1 + ι)D(φ, ψ) + ε.

Johnson-Lindenstrauss Lemma in Our Context. It is natural to ask whether existing
dimension reduction techniques, such as the Johnson–Lindenstrauss (JL) lemma, can be
applied directly to the d-dimensional vector representation α(φ) = (α1, . . . , αd) ∈ Cd of a
quantum state φ, or the outcome distribution p(φ) = (p1, . . . , pd) ∈ Rd (pi = |αi|2) when
measured in the computational basis. After all, we can use quantum tomography to learn
the representation (α1, . . . , αd) approximately. We would like to first point out that a
direct application will not work, since we can construct simple examples demonstrating
inherent distortions between the trace distance of quantum states and the `1/`2 distances
of their d-dimensional vector representations (α(φ) or p(φ)), even when all the coordinates
are real-valued and before any dimension reduction step. We leave the detailed examples
and calculation to Appendix C. In our examples, for the α(φ) vector representation, the
distortions between the trace distance of quantum states and the `1 and `2 distances of
the two corresponding vectors are at least

√
d/6 and

√
1.5, respectively. And for the p(φ)

vector representation, the distortions between the trace distance of quantum states and the
`1 and `2 distances of the two corresponding vectors are at least

√
3 and

√
3d/4, respectively.

Moreover, the JL lemma only takes real vectors.
We also note that there exists a near-linear lower bound for dimension reduction in the

L1 space [4], indicating that, unlike the JL lemma for L2 space, dimension reduction in the
L1 space is not generally possible.

We note that there is a way to circumvent the issues for embedding quantum states
into the L2 space: for each state φ, we write its density matrix φφ† as a real-valued 2d2

dimensional vector vφ. By some calculation, we can show that the `2 distance of vφ and
vψ preserves the trace distance of the two original pure states φ and ψ. We then perform
dimension reduction on the vectors vφ using the JL lemma. Our sketching algorithm has
the following advantages compared with this “full tomography plus JL lemma” approach
(setting the error probability δ = 0.01):
1. The memory usage of our sketch construction is independent of d, while the memory

needed for storing the classical vector representation of the quantum state φ is O(d) and
that for the density matrix φφ† is O(d2).
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2. Our sketch construction takes Õ(d/ε2) time, while the full (pure) quantum state tomo-
graphy takes O(d2/ε5) [19] time and the dimension reduction using the JL lemma needs
another O(d2/ε2) time.

These comparisons demonstrate that our sketch construction using direct quantum meas-
urements significantly outperforms the method of first converting the quantum state to its
classical description followed by dimension reduction, both in terms of time and space, which
are the main focus of this paper.

We now apply our embedding results to database operations.

The Equality-Test Operation. We observe that Corollary 14 and Corollary 16 directly
provide a way for solving (ε, β)-equality-test. We just set ι = ε = ε

2 , and use the `1 or
`2 distances between the two vector sketches M̃k(φ) and M̃k(ψ) to estimate D(φ, ψ) up
to an additive error ε with probability 1 − δ. The running time is bounded by O(k) =
O(log(1/δ)/ε2).

The Search Operation. We now illustrate how to use vector sketches and approximate
nearest neighbor (ANN) to perform (ε, β)-search on quantum states.

Let ε and (1+ι) be the additive error and multiplicative error in Corollary 14/Corollary 16
for building

{
M̃k(φ)

∣∣∣ φ ∈ X}, respectively. We assume that an LSH indexing structure

has already been built on top of M̃k(φ)’s to achieve the time and space usages stated in
Theorem 2. To handle (ε, β)-search, we call ANN

(
M̃k(φ),

{
M̃k(ψ)

∣∣∣ ψ ∈ X} , (1 + ι)ε, βnn
)
,

where βnn = β/(1 + ι+ ε/ε) is the parameter for the tradeoff between the distortion and
the time/space complexity in ANN. By Corollary 14/Corollary 16 and Theorem 2, if there
exists a state ψ ∈ X such that D(φ, ψ) ≤ ε, then ANN returns a state ψ′ ∈ D such that
D(φ, ψ′) ≤ βε. On the other hand, ANN either returns a state ψ′ ∈ D with D(φ, ψ′) ≤ βε,
or returns ∅.

By Theorem 2, it takes O(kmγ) = O(mγ logm/ε2) classical time to perform the search.
The space for storing the LHS index is O(km + m1+γ) = O(m logm/ε2 + m1+γ), where
γ ≈ 1/βnn for `1 and γ ≈ 1/β2

nn for `2.
We note that in the above approach, we have to make sure that βnn ≥ 1. In other words,

we can only handle (ε, β)-search with β ≥ (1+ ι+ ε/ε). However, since ε and ι can be positive
constants arbitrarily close to 0, we can essentially handle all constants β > 1. Certainly,
the higher the value of β, the larger βnn that we can pick for reducing the query time and
space usage in the ANN search. In practice, a reasonably large constant β may be okay, as
the trace distance between two quantum states that are generated by separate entities or
experiments is typically much larger than that between two states originating from the same
entity or experiment (due to quantum noise or preparation errors).

Setting δ = 1/m2, ι = 0.01 and ε = 0.01ε, we have βnn ≥ 0.98β, and consequently
γ ≤ 1.05/β2. Applying our vector sketch with respect to the `2 distance and the corresponding
ANN search, we have the following theorem.

I Theorem 17. There is an index of size O
(
m logm
ε2 +m

1+ 1.05
β2
)
, using which we can solve

(ε, β)-search on a database of m quantum states with success probability 1− o(1) and classical
time O

(
m

1.05
β2 · logm

ε2

)
.

Note that the index space cost is independent of d, and the query time is sublinear in m
(for β >

√
1.05) and independent of the state dimension d.

The Join Operation. The sketch-based approach can also be used for join. Given a set of
sketch vectors

{
M̃k(φ)

∣∣∣ φ ∈ X}, we can apply the same hashing process as that for the
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ANN search, and then verify (by computing the actual distance) all pairs of vectors that
collide on at least one hash function. The space cost is the same as that of the search. The
query time is dependent on the size of the join output, but it is still independent of the state
dimension d.

4.2 Shadow Seeds for Selection and Sorting
In this section, we develop a classical data summarization that can be used to estimate
the expectation value φ†Mφ for an arbitrary k-local observable M . We make use of the
classical shadow tomography (CST), introduced in [37], to approximate φ†Mφ up to a small
additive error. CST tries to extract minimal information about the quantum state, without
performing complete tomography, to estimate certain properties of the state described by
observables.

For completeness, let us briefly describe the CST procedure using Pauli measurements.
For each of the N copies of φ, we select n unitary operators, U1, . . . , Un, randomly and
independently from the set {I,H, S†H}, where H is the Hadamard gate and S =

√
Z is the

square root of the Pauli-Z gate; see Appendix A.2 for their matrix representations. We then
apply Uj to the j-th qubit of φ and measure the state on the computational basis. The result
is a binary string b1, . . . , bn ∈ {0, 1}. The n pairs {bj , index(Uj))}nj=1 form a row vector,
where index(Uj) is the index of Uj in the set {I,H, S†H}. We then repeat this process for
N times, getting N rows, forming the seed matrix A(φ) = {bi,j , index(Ui,j)}i∈[N ],j∈[n]. We
call A(φ) the shadow seeds. Clearly, A(φ) can be stored using O(nN) classical bits, since
each entry of A(φ) belongs to {0, 1} × {0, 1, 2}.

At the time of query, given a k-local observable M , we first construct k-local classical
shadows φ̃i of the database state φ from each row i ∈ [N ] of its seed matrix A(φ) with
respect to the k-local observable M . Suppose M depends non-trivially on the k qubits
indexed by Q , {q1, . . . , qk}. Let e0 = (0, 1)T , e1 = (1, 0)T be the standard basis vectors
in the two dimensional plane. For each row i ∈ [N ] and column j ∈ Q, we first construct
a vector vi,j = Ui,jebi,j . Next, we construct the i-th shadow as a 2k × 2k matrix ρ̂i =⊗

j∈Q

(
3vi,jv†i,j − I

)
, where I is the 2 × 2 identity matrix. Finally, the estimator for

φ†Mφ is given by T = 1
N

∑
i∈[N ] tr{Mρ̂i}. The following theorem states that T is a good

approximation of the expectation value φ†Mφ.

I Theorem 18 (Based on [37]). The above procedure prepares an N × n shadow seed matrix
A(φ) given N copies of an n-qubit quantum state φ, such that for any given k-local observable
M , if N ≥ 4k‖M‖2∞log(1/δ)/ε2, the estimator T approximates φ†Mφ up to an additive error
ε with probability (1− δ) using A(φ). Moreover, the time for computing φ†Mφ using A(φ) is
bounded by O

(
22kN

)
(∝ 16k), and the space for storing A(φ) is O(Nn) classical bits.

Note that the space cost and query time are both independent of the state dimension d.
Typically, the k-local observable M can be expressed as a quantum circuit with poly(k)

gate complexity. In this case, we propose a new estimation algorithm to further improve the
total query time from O(16k) to O(9k) (omitting other less critical factors) by an approach
we call QCQC (quantum→classical→quantum→classical). We have the following theorem,
whose proof can be found in Appendix B.3.

I Theorem 19. There is a procedure for preparing an N × n shadow seed matrix A(φ)
given N copies of an n-qubit quantum state φ, such that for any given k-local observable
M with poly(k) gate complexity, if N ≥ 9k‖M‖2∞log(1/δ)/ε2, we can approximate φ†Mφ up
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to an additive error ε with probability (1− δ) using A(φ). Moreover, the quantum time for
computing φ†Mφ using A(φ) is bounded by O (Npoly(k)) (∝ 9k), and the space for storing
A(φ) is O(Nn) classical bits.

The Selection Operation. It is easy to see that Theorem 19 directly implies an algorithm
for handling (η, ε)-selection: Setting δ = 1/m2, we can estimate φ†Mφ up to an additive
error ε with probability (1− 1/m2) for each n-qubit database state φ using an N ×n shadow
seed matrix, where N ≥ 9k‖M‖2∞ · 2 logm/ε2. By a union bound over m database states, we
can solve the (η, ε)-selection problem with probability (1− 1/m). The query time is bounded
by Nm · poly(k) = 9km logm · poly(k)‖M‖2∞/ε2.

I Theorem 20. There is an index of size O
(
9knW 2logm/ε2), using which we can solve

for any k-local observable M (‖M‖∞ ≤W ) the (η, ε)-selection on a database of m n-qubit
quantum states with success probability (1− o(1)) and quantum time 9kmlogmW 2poly(k)/ε2.

The Sorting Operation. Since the shadow seed matrix can be used for estimating the
expectation value φ†Mφ up to an additive error ε, we can use it for ε-sorting with the same
space and time complexity as that for the selection operation.

5 Conclusion and Future Work

In this paper, we have defined basic database queries for quantum data and proposed several
classical sketches of quantum states to facilitate these queries. We consider our work a
preliminary step towards a comprehensive quantum data management system. Numerous
questions and directions remain open following this work. We list a few below.

Support More Data Operations. This paper primarily focuses on two basic database
operations: search and selection, along with several related operations. We would like to
expand the support to more complex operations for data analytics, such as clustering and
classification, for which we may need to develop new classical summaries of the quantum
states for the sake of efficiency.

Mixed States. In various scenarios, such as when the description of a quantum system
is unknown due to quantum noise, the use of a density operator (or, density matrix) for
describing mixed quantum states becomes more convenient. Suppose the quantum system is
in one of a collection of d-dimensional pure states {φ1, . . . , φk}, we can represent a mixed
quantum state as ρ =

∑k
i=1 piφiφi

†, where p1, . . . , pk ≥ 0 and
∑k
i=i pi = 1. We can view ρ as

a convex combination of outer products of pure states φi, where each φiφi† is associated with
a probability pi. We anticipate that results presented in this paper can be extended to mixed
states, although the technical aspects of this generalization require further investigation.

The Integration with the Theory of Relational Databases. A key feature of our
proposed model is that quantum data is represented entirely in the classical format. This
unique aspect enables us to integrate our model with established theories related to indexing,
query execution, and query optimization in relational databases designed for classical data.
However, the integration process will likely require the redesign of multiple components to
accommodate the inherent differences stemming from the distinct definitions of database
operations for quantum data.
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A More Preliminaries

A.1 Basics of Quantum Information (A More Formal Approach)

Quantum States and Qubits. We can represent a d-dimensional pure quantum state as a
vector in Cd. Using the standard Dirac bra-ket notation, we write |φ〉 =

∑d−1
i=0 αi |i〉 , where

|0〉 , |1〉 , . . . , |d− 1〉 is an orthonormal basis in Cd (referred as the computational basis), and
αi’s are called amplitudes with the property

∑d−1
i=0 |αi|

2 = 1.
Let 〈φ| denote the conjugate transpose of |φ〉, and let 〈φ|ϕ〉 and |φ〉〈ϕ| denote the inner

product and outer product of vectors |φ〉 and 〈ϕ|, respectively.
A qubit is a 2-dimensional quantum state and can be represented as |φ〉 = α0 |0〉+ α1 |1〉,

where |α0|2 + |α1|2 = 1. Generally, a n-qubit state can be represented as

|φ〉 =
∑

x1···xn∈{0,1}n
αx1···xn |x1 · · ·xn〉 ,

where {|x1 · · ·xn〉} are the computational basis states of the n-qubit system, and it holds
that

∑
x1···xn∈{0,1}n |αx1···xn |

2 = 1.
A quantum state is called separable if it can be written as a tensor product of at least

two states |φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φk〉, which is often abbreviated as |φ1〉 |φ2〉 · · · |φk〉, or
|φ1φ2 · · ·φk〉. Otherwise, the state is called entangled. A classical entangled state is the Bell
state |φ〉 = |00〉+|11〉√

2 .

Quantum Operations. There are two types of quantum operations. The first is called
unitary transformation. That is, we apply a unitary operator U to a quantum state |φ〉 and get
U |φ〉.4 This type of operation is used to describe the evolution of a closed quantum system.
The second type of operations are measurements. Quantum measurements are the interface
to obtain classical information about quantum states. Under the POVM (Positive Operator
Valued Measures) formalism, a quantum measurement M is described as a collection of
d× d positive semi-definite operators {Mi} with

∑
iMi = I; each Mi is associated with a

measurement outcome oi, which can be chosen by the experimentalist. When performingM
on a quantum state |φ〉, the probability of getting the outcome oi is given by 〈φ|Mi|φ〉. Let
M(|φ〉) be the probability distribution of the measurement outcomes after applyingM on
|φ〉.

A projective measurement is a special case of a POVM whereMi’s are projective operators,
i.e., M2

i = Mi. An example of a projective measurement is the measurement on the
computational basis where Mi = |i〉〈i|. Any POVM can be written as a unitary operator U
followed by a projective measurement.

Observables are physical variables that can be measured. An observable is represented
by a Hermitian operator M whose eigenvalues are the set of possible outcomes. The
observable spectrally decomposes as M =

∑
i λiMi, where Mi represents the projector onto

the eigenspace ofM associated with the eigenvalue {λi}. The observableM can be associated
with the measurementM = {Mi} with outcomes {λi}. The expected value of an observable
on a state |φ〉 is expressed as E[M(|φ〉)] = 〈φ|M |φ〉.

When we say a measurement is performed on a d-dimensional quantum state |φ〉 in the
computational basis, we mean that the measurementM = {M0,M1, . . . ,Md−1} with Mi =
|i〉〈i| is applied on |φ〉. It is noteworthy that the probability of observing the measurement

4 A unitary operator is a linear operator U such that UU† = U†U = I.
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outcome oi, denoted by 〈φ|Mi|φ〉, is equal to |〈φ|i〉|2 = |αi|2, wherein αi is the i-th amplitude
of the quantum state |φ〉.

A crucial property of quantum mechanics is that each measurement would cause a
disturbance to the quantum states. If the measurement outcome is oi, then the post-
measurement state of |φ〉 can be written as

|φ′〉 = Bi |φ〉√
〈φ|B†iBi|φ〉

,

where Bi satisfies B†iBi = Mi. This particular phenomenon significantly complicates the
quantum data management, as the quantum state cannot be entirely “recycled” following a
measurement.

Trace Distance. Given two quantum states |φ〉 and |ψ〉, we define their trace distance to
be

D(|φ〉 , |ψ〉) = 1
2‖|φ〉〈φ| − |ψ〉〈ψ|‖1 =

√
1− |〈ψ|φ〉|2.

The trace distance is the most widely used distance measure for quantum states in
the literature. It also has a nice physical meaning: Let M = {Mi} be a POVM, and let
pi , 〈φ|Mi|φ〉 and qi , 〈ψ|Mi|ψ〉. That is, pi and qi are the probabilities of obtaining meas-
urement outcome oi on |φ〉 and |ψ〉, respectively. We have D(|φ〉 , |ψ〉) = maxM

∑
i |pi − qi|,

which implies that if two quantum states are close in terms of trace distance, then any
measurement conducted on these quantum states will yield probability distributions that are
close in terms of the total variance distance. In other words, two quantum states that are
close in terms of the trace distance are statistically indistinguishable under measurements.

A.2 Some Basic Quantum States and Gates
We list the vector representations of some basic quantum states that we need to use in this
paper.
|0〉:

|0〉 =
(

1
0

)
|1〉:

|1〉 =
(

0
1

)
|+〉:

|+〉 = 1√
2

(
1
1

)
|−〉:

|−〉 = 1√
2

(
1
−1

)
|+i〉:

|+i〉 = 1√
2

(
1
i

)
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|−i〉:

|−i〉 = 1√
2

(
1
−i

)
We make use of two basic quantum gates:
Hadamard gate

H = 1√
2

[
1 1
1 −1

]
.

It turns |0〉 to (|0〉+ |1〉)/
√

2, and turns |1〉 to (|0〉 − |1〉)/
√

2.
Phase gate

S =
[
1 0
0 i

]
.

It leaves |0〉 unchanged, and turns |1〉 to i |1〉.
Another ser of special unitary operators are the Pauli operators defined as:

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

Here, I is the identity operator, X represents a bit-flip operation, Z represents a phase-flip
operation, and Y combines both bit-flip and phase-flip with an imaginary phase factor.

A.3 Clifford Group
In this paper, we make use of a special class of quantum unitary operations called the Clifford
group, which is a fundamental construct in quantum information theory. The Clifford
group consists of unitary operations that map Pauli operators to other Pauli operators.
Furthermore, the Clifford group is known for its efficient classical simulation, as described by
the Gottesman-Knill theorem [47]. Any unitary in in this group can be implemented (up to
a global phase factor) using a circuit with only Hadamard, Phase, and CNOT gates. The
formal definition of the Clifford group is given below.

I Definition 21. The Clifford group Cn on n-qubits is defined as the normalizer of the Pauli
group Pn under the action of conjugation, that is

Cn = {U ∈ U(2n) |UPU† ∈ Pn, ∀P ∈ Pn},

where Pn = 〈iI,Xj , Yj , Zj | j = 1, . . . , n〉 is the n-qubit Pauli group generated by the identity
I and the Pauli matrices X,Y, Z on each qubit, along with the phase factor i.

A.4 Mathematical Tools
I Lemma 22 (Hoeffding’s inequality). Let X1, . . . , Xn ∈ [0, 1] be i.i.d. random variables and
X = 1

n

∑n
i=1Xi. Then

Pr[|X −E[X]| > t] ≤ 2 exp
(
−2t2n

)
.

I Lemma 23 (Generic Chernoff bound). For any a ∈ R and random variable X with moment
generating function MX(t) := E[etX ],

Pr[X ≥ a] ≤ inf
t>0

MX(t)e−ta.
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I Lemma 24 (Berry-Esseen theorem). Let X1, X2, ..., Xn be i.i.d. random variables with
E[Xi] = 0,E

[
X2
i

]
= σ2 <∞ and E

[
X3
i

]
= ρ <∞. If Yn := 1

σ
√
n

∑
j Xj, then

|Pr[Yn ≤ x]− φN (x)| ≤ cρ

σ3√n
,

where φN (x) is the CDF of N(0, 1) and c ≤ σ2 is a constant.

B Missing Proofs

B.1 Proof of Theorem 13

Measurements Construction. We first describe how to generate random measurements.
We start by picking a random basis for Cd based on the Haar measure, which can be done
using a Gaussian ensemble of pure states as is used in [30]: Let xt, yt (t = 1, . . . , d) be
independent Gaussian random variables with mean zero and variance σ2 = 1

2d , and let
g , (c1, . . . , cd) ∈ Cd be a random vector where ct = xt + iyt. We repeat this process and
generate d Gaussian random vectors (written in the ket notation) |g1〉 , . . . , |gd〉.

We next create an orthonormal basis for Cd using |g1〉 , . . . , |gd〉. It is clear that with
probability one, |gt〉’s are linearly independent, which means that they span Cd. However,
they are not necessarily orthogonal. To address this issue, we use the pretty good measurement
technique [35]. Define the operator Γ ,

∑
t∈[d] |gt〉〈gt|, and define the vector |γt〉 , Γ−1/2 |gt〉

for each t ∈ [d].
We note that computing Γ−1/2 may be time expensive. In Section B.1.1, we will discuss

a more efficient measurement construction via t-design, which is a concept in quantum
information theory that generalizes the idea of random sampling over the unitary group U(d)
of d× d unitary matrices.

B Claim 25. The set {|γt〉 : t ∈ [d]} forms an orthonormal basis for Cd.

Proof. Observe that

∑
t∈[d]

|γt〉〈γt| = Γ−1/2

∑
t∈[d]

|gt〉〈gt|

Γ−1/2 = I.

Moreover, |γt〉 are linearly independent since |gt〉’s are linearly independent. Hence, |γt〉’s
are orthonormal. J

We also note that the distribution of |γt〉 is unitary invariant. Hence, it is the Haar measure.
Next, we randomly group |γt〉’s into k groups and form random projection operators as

Πj =
∑

`∈[d/k]

∣∣∣γj`〉〈γj` ∣∣∣ , j = 1, . . . , k. (2)

LetMk = {Π1, · · · ,Πk} be the corresponding measurement. Clearly,M is a valid POVM
with probability one.

The Analysis of Distortion. LetMk(|φ〉) andMk(|ψ〉) be the probability distributions
of the measurement outcomes when the states are |φ〉 and |ψ〉, respectively. Then, the total
variation distance between the two probability distributions can be written as

‖Mk(|φ〉)−Mk(|ψ〉)‖1 =
∑
j∈[k]

|tr{Πj |φ〉〈φ|} − tr{Πj |ψ〉〈ψ|}| =
∑
j∈[k]

|tr{ΠjA}|, (3)
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where we have used the Born’s law and set A , |φ〉〈φ| − |ψ〉〈ψ|.
We next show that A has two eigenvalues ±D(|φ〉 , |ψ〉), where D(·, ·) is the trace distance.

To this end, suppose |ω〉 is an eigenstate of A, and A |ω〉 = λ |ω〉, where λ ∈ R as A is a
Hermitian operator. Multiplying both sides by 〈φ| gives

〈φ|A|ω〉 = 〈φ|ω〉 − 〈φ|ψ〉 〈ψ|ω〉 = λ 〈φ|ω〉 . (4)

Similarly, multiplying both sides by 〈ψ| gives

〈ψ|A|ω〉 = 〈ψ|φ〉 〈φ|ω〉 − 〈ψ|ω〉 = λ 〈ψ|ω〉 . (5)

Combining (4) and (5) gives

(1 + λ) 〈ψ|ω〉 = 〈ψ|φ〉 〈φ|ω〉 = 〈ψ|φ〉 1
1− λ 〈φ|ψ〉 〈ψ|ω〉 .

Hence, (1− λ)(1 + λ) = |〈φ|ψ〉|2, which implies

λ = ±
√

1− |〈φ|ψ〉|2 = ±D(|φ〉 , |ψ〉). (6)

Now without loss of generality, let |1〉 and |2〉 denote the two eigenstates of A. Hence,

A = |λ|(|1〉〈1| − |2〉〈2|). (7)

The right-hand side of (3) can be written as∑
j∈[k]

|tr{ΠjA}| = |λ|
∑
j∈[k]

| 〈1|Πj |1〉 − 〈2|Πj |2〉| (8)

= |λ|
∑
j∈[k]

∣∣∣∣∣∣
∑

`∈[d/k]

∣∣∣〈1
∣∣∣γj`〉∣∣∣2 − ∣∣∣〈2

∣∣∣γj`〉∣∣∣2
∣∣∣∣∣∣. (9)

Let W j
` , d

(∣∣∣〈1
∣∣∣γj`〉∣∣∣2 − ∣∣∣〈2

∣∣∣γj`〉∣∣∣2). Combining (3) and (9), we have

‖Mk(|φ〉)−Mk(|ψ〉)‖1 = |λ|
∑
j∈[k]

∣∣∣∣∣∣
∑

`∈[d/k]

1
d
W j
`

∣∣∣∣∣∣.
Multiplying both sides of the above equality by

√
d
k gives

√
d

k
‖Mk(|φ〉)−Mk(|ψ〉)‖1 = |λ|

k

∑
j∈[k]

∣∣∣∣∣∣ 1√
d/k

∑
`∈[d/k]

W j
`

∣∣∣∣∣∣
(6)= D(|φ〉 , |ψ〉)

k

∑
j∈[k]

∣∣∣∣∣∣ 1√
d/k

∑
`∈[d/k]

W j
`

∣∣∣∣∣∣. (10)

We try to analyze the expectation and variance of each W j
` . First, note that E

[
W j
`

]
= 0,

because the distribution of
∣∣∣γj`〉 is unitary invariant, which implies that

∣∣∣〈1
∣∣∣γj`〉∣∣∣2 and∣∣∣〈2

∣∣∣γj`〉∣∣∣2 have an identical distribution.
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The variance of W j
` equals to

σ2
W , Var

[
W j
`

]
= E

[
|W j

` |
2
]

= d2E
[(∣∣∣〈1

∣∣∣γj`〉∣∣∣2 − ∣∣∣〈2
∣∣∣γj`〉∣∣∣2)2

]
= 2d2

(
E
[
|〈1|γ〉|4

]
−
(

E
[
|〈1|γ〉|2|〈2|γ〉|2

]))
, (11)

where |γ〉 is a random pure state generated based on the Haar measure. Since the Haar
measure is invariant under Unitary transformation, 〈1|γ〉 and 〈2|γ〉 have the same joint
distribution as U11 and U21, where U is a random unitary matrix (a Haar unitary) and Uij
refers to the entry on the iths row and jth column of U . Note that all entries Uij of a Haar
unitary U are identically distributed [34]. Moreover, they can be written as Uij = reiθ with
the distribution given by d−1

π (1 − r2)d−2r∂r∂θ where r ∈ [0, 1] and θ ∈ [0, 2π]. Therefore,
the distribution of |U11|2 is given by (d− 1)(1− r)d−2∂r. Consequently, from (11) we have

σ2
W = 2d2 (E [|U11|4

]
−E

[
|U11|2|U21|2

])
. (12)

The first expectation in (12) calculates as

E[|U11|4] = (d− 1)
∫ 1

0
r2(1− r)d−2∂r = (d− 1)B(3, d− 1),

where B(·, ·) is the Beta function that is defined as

B(α, β) =
∫ 1

0
rα−1(1− r)β−1∂r.

The Beta function at positive integers can be calculated combinatorically as

B(m,n) = (m+ n)/(mn)(
m+n
m

) .

Therefore,

E
[
|U11|4

]
= (d− 1)(d+ 2)/(3(d− 1))(

d+2
3
) = 2

d(d+ 1) .

Similarly, the second expectation in (12) equals to

E
[
|U11|2|U21|2

]
= 1
d(d+ 1) .

Consequently, (12) reduces to

σ2
W = 2d2

(
2

d(d+ 1) −
1

d(d+ 1)

)
= 2d
d+ 1 . (13)

Implying that σ2
W ≤ 2. Now we continue our investigation of Equality (10). Let

Zj ,
1√
d/k

∑
`∈[d/k]

W j
` .

(10) simplifies to

Q ,

√
d

k
‖Mk(|φ〉)−Mk(|ψ〉)‖1 = D(|φ〉 , |ψ〉) · 1

k

∑
j∈[k]

|Zj |. (14)
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Let

U ,
Q−E[Q]
D(|φ〉 , |ψ〉) = 1

k

∑
j∈[k]

(
|Zj | −E

[
|Zj |

])
. (15)

Applying the generic Chernoff bound (Lemma 23) to U gives

Pr[U ≥ η] ≤ inf
t>0

MU (t)e−tη, (16)

where MU (t) = E
[
etU
]
is the moment generating function.

Let t0 , ηk/2. We use t = t0 to upper bound the RHS of (16). Since Zj ’s are i.i.d., we
have

MU (t0) =
∏
j∈[k]

E
[
exp

(
t0
k

(
|Zj | −E

[
|Zj |

]))]
=
(
MŨ

(
t0
k

))k
=
(
MŨ

(η
2

))k
, (17)

where Ũ := |Zj | −E
[
|Zj |

]
. Apply Taylor’s expansion on MŨ

(
η
2
)
around η = 0, we have

MŨ

(η
2

)
= MŨ (0) +M ′

Ũ
(0) · η2 +M

′′

Ũ
(0) · 1

2

(η
2

)2
+ ζη, (18)

where ζη ≤ cηη3 (for a universal constant cη > 0) is the remainder term.
It is clear that MŨ (0) = 1. By the definition of the moment generating function,

M ′
Ũ

(0) = E
[
Ũ
]

= 0 and

M
′′

Ũ
(0) = Var

[
Ũ
]

= Var
[
|Zj |

]
≤ Var

[
Zj
]

= Var
[
W j
`

]
= σ2

W ,

(18) simplifies to the following:

MŨ

(η
2

)
≤ 1 + σ2

W

2

(η
2

)2
+ cηη

3 ≤ 1 +
(η

2

)2
+ cηη

3,

where we have used the fact that σ2
W ≤ 2 (see (13)).

In the rest of the analysis, we will focus on the parameter η ≤ 1
8cη ; the actual value of η

will be determined later.
Hence, by (17) we have

MU (t0) ≤
(

1 +
(η

2

)2
+ cηη

3
)k
≤ exp

(
η2k

4 + cηη
3k

)
, (19)

where in the second inequality we have used the fact
(
1 + x

k

)k ≤ ex.
Plugging (19) to (16), we have

Pr(U ≥ η) ≤ exp
(
η2k

4 + cηη
3k

)
· exp

(
−η

2k

2

)
= exp

(
−Ω(η2k)

)
.

where we have used cηη3k ≤ η2k
8 since η ≤ 1

8cη .
For the other direction, we have

Pr [U ≤ −η] = Pr [−U ≥ η] ≤MU (−t0)e−t0η ≤ exp
(
−Ω(η2k)

)
. (20)

Hence, for any δ ∈ (0, 1), setting k = ck

(
1
η2 log 1

δ

)
for a sufficiently large constant ck > 0,

we have that |U | ≤ η with probability at least (1− δ). Combining (20), (15), and (14), we
have that with probability at least (1− δ),∣∣∣∣∣

√
d

k
·
‖Mk(|φ〉)−Mk(|ψ〉)‖1

D(|φ〉 , |ψ〉) −E[|Z|]

∣∣∣∣∣ ≤ η, (21)
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where Z is distributed identically as Zj ’s.
It remains to investigate E[|Z|]. We show that E[|Z|] = Θ(1). By the definition we know

that

E[Z] = 1√
d/k

∑
`∈[d/k]

E[W 1
` ] = 0.

We start with the upper bound.

E[|Z|] ≤
√

E[|Z|2] =
√

E[Z2] =
√

Var[Z] = σW ≤
√

2. (22)

For the lower bound, Markov inequality implies that

E [|Z|] ≥ aPr [|Z| > a] ,

for any a > 0. Since Z is distributed identically as sum of i.i.d. random variables {W 1
` }`∈[d/k]

with E[W 1
` ] = 0, E[(W 1

` )2] = σ2
W , and E[(W 1

` )3] < +∞, by the Berry-Esseen theorem
(Lemma 24) we get

Pr
[

1
σW
|Z| > x

]
≥ Pr[|N(0, 1)| ≥ x]−O

(
1√
d/k

)
=
(

1− erf
(
x√
2

))
−O

(
1√
d/k

)
.

Hence,

E [|Z|] ≥ sup
x>0

σWx

(
1− erf

(
x√
2

))
−O

(
1√
d/k

)
. (23)

Recall that σW ≈
√

2 (see (13)). By a numerical computation, the maximum of the RHS of
(23) attends at x ≈ 0.7475, which gives

E [|Z|] ≥ 0.4807−O
(

1√
d/k

)
≥ 0.48, (24)

as long as d/k is a sufficiently large constant.
By (22) and (24), we have µZ , E[|Z|] = Θ(1). Now, for any given constant ι > 0, we

set the η = min
{
ιµZ ,

1
8cη

}
. (21) gives∣∣∣∣∣

√
d

k

1
µZ

‖Mk(|φ〉)−Mk(|ψ〉)‖1
D(|φ〉 , |ψ〉) − 1

∣∣∣∣∣ ≤ ι.
B.1.1 Efficient Implementations of Random Measurements
Lastly, we address the space and time complexity of the sketching procedure in this proof.
Specifically, we consider efficient construction ofMk. Note that the runtime of the original
measurement construction based on pretty good measurements is polynomial in d, hence
exponential in the number of qubits. This is because it relies on generating d kets

∣∣∣γj`〉 based
on Haar measure and via complex Gaussian vectors in Cd and the inverse-square root of the
matrix Γ. Generally, the classical time and the circuit gate complexity for sampling from
Haar distribution is exponential. In what follows, we present a construction forMk with
poly log(d) time and space.
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Our approach is based on 2-design methods. A unitary t-design is a concept in quantum
information theory that generalizes the idea of random sampling over the unitary group U(d)
of d× d unitary matrices. It provides a way to approximate certain statistical properties of
quantum states or operations without needing to sample from the entire group, which can
be computationally expensive. Below we highlight basics of this concept.

Let Pt,t(U) denote a polynomial which is homogeneous with degree at most t in the
matrix elements of U , and at most degree t in the complex conjugates of these elements.

I Definition 26. A unitary t-design is a finite set of unitary matrices {U (i)}Ni=1 such that
for any homogeneous polynomial Pt,t

1
N

N∑
i=1

Pt,t(U (i)) =
∫
Pt,t dµHaar(U)

where µHaar is the Haar measure on the space of d× d unitary matrices.

Intuitively, this definition implies that a unitary t-design is indistinguishable from Haar
measure when only polynomials of degree at most t are used. We show that a 2-design is
sufficient to obtain Theorem 13.

Note that the analysis of sample complexity in our proof relies on the generic Chernoff
bound which, per (18), depends on the first two moments of

W j
` = d

(∣∣∣〈1
∣∣∣γj`〉∣∣∣2 − ∣∣∣〈2

∣∣∣γj`〉∣∣∣2) .
We show that W j

` can be written as a polynomial P1,1 of degree t = 1 in the elements of a
unitary matrix U . Let U be a matrix with columns being the vectors of

∣∣∣γj`〉. That is 〈r∣∣∣γj`〉
is the element of U , denoted by Ur,(`,j), located at the row r and the column indexed by (`, j).

With this definition, we can write
∣∣∣〈1
∣∣∣γj`〉∣∣∣2 = U1,(`,j)U

∗
1,(`,j), implying that W j

` = P1,1(U).
Therefore, the first moment of W j

` is a polynomial P1,1 of degree t = 1 in U . Moreover, the
second moment of W j

` is a polynomial P2,2 of degree t = 2 in U . This is because based

on (11), the second moment is a function of
∣∣∣〈1
∣∣∣γj`〉∣∣∣4, which is written as U2

1,(`,j)(U∗1,(`,j))2.
Hence, as long as the first and the second moments of W j

` resemble the Haar measure, the
proof remains valid, indicating that a 2-design is sufficient.

Based on the above argument, instead of using the pretty good measurement construction,
we sample from 2-design unitaries. This can be implemented efficiently using the Clifford
group, a specialized class of quantum operators (for more details see Section A.3). It is
well-known that the Clifford group is a 2-design [14]. Furthermore, there exists an algorithm
that samples uniformly from the Clifford group in classical time O(n8) and outputs a circuit
representing the measurement with a gate complexity of O(n2), where n = log d is the number
of qubits [16]. To construct the desired measurement Mk, we first randomly generate a
Clifford circuit, apply it to the input quantum state, and then measure in the computational
basis. The outcome of the measurement is a binary string in {0, 1}n. Lastly, we design a
binning function f that takes the n-bit string and outputs an index in [k]. This is achieved
by partitioning the set {0, 1}n into k equal-size bins, which can be efficiently implemented
using a decision tree that only reads the first log k bits of the binary measurement outcomes.
There are k possible outputs of the decision tree, meaning that it can be represented by a
function f : {0, 1}n → [k] that determines the bin index for any binary string of length n.
This construction is summarized as Algorithm 1.
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Algorithm 1 k-sketching measurement

Input: k, n, |φ〉
1 Sample from the Clifford group on n-qubits and construct the random circuit U .
2 Apply U on the input state |φ〉
3 Measure the first dlog ke qubits along the computational basis.
4 return mod-k of the decimal representation of the resulted binary string.

In conclusion, the above construction generates a random measurementMk with O(n2)
quantum gates and O(n8) classical time. Moreover, this measurement enjoys the same bound
on the sample complexity as for the original construction based on the Haar measure.

B.2 Proof of Theorem 15
The proof for Theorem 15 (the `2-norm case) is similar to that for Theorem 13 (the `1-
norm case), but the calculation will be different due to different distance functions. Let
Mk = {Π1, . . . ,Πk} be the same random POVM generated as that in the proof of Theorem 13.

The `2 distance between the output probability vectors can be written as

‖Mk(|φ〉)−Mk(|ψ〉)‖22 =
∑
j∈[k]

|tr{Πj |φ〉〈φ|} − tr{Πj |ψ〉〈ψ|}|2 =
∑
j∈[k]

|tr{ΠjA}|2, (25)

where A = |φ〉〈φ| − |ψ〉〈ψ|, which can be rewritten as A = |λ|(|1〉〈1| − |2〉〈2|), where |1〉 and
|2〉 are two eigenstates of A. Hence, we can rewrite (25) as

‖Mk(|φ〉)−Mk(|ψ〉)‖22 =
∑
j∈[k]

|tr{ΠjA}|2

= |λ|2
∑
j∈[k]

| 〈1|Πj |1〉 − 〈2|Πj |2〉|2

= |λ|2
∑
j∈[k]

 ∑
`∈[d/k]

∣∣∣〈1
∣∣∣γ(j)
`

〉∣∣∣2 − ∣∣∣〈2
∣∣∣γ(j)
`

〉∣∣∣2
2

. (26)

Multiplying both sides of (26) by a factor of d, and letting W j
` , d

(∣∣∣〈1
∣∣∣γj`〉∣∣∣2 − ∣∣∣〈2

∣∣∣γj`〉∣∣∣2),
we have

d‖Mk(|φ〉)−Mk(|ψ〉)‖22 = |λ|2 1
k

∑
j∈[k]

 1√
d/k

∑
`∈[d/k]

W j
`

2

. (27)

Let

Zj ,
1√
d/k

∑
`∈[d/k]

W j
` . (28)

By a similar analysis as that in the proof of Theorem 13 (particularly, recall (6) and (13)),
the expectation of the RHS of (27) is calculated to be

E

|λ|2 1
k

∑
j∈[k]

|Zj |2
 = |λ|2σ2

W = D2(|φ〉 , |ψ〉) · 2d
d+ 1 . (29)
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We next analyze the variance of the RHS of (27).
We write

V ,
1
|λ|2

(
d‖Mk(|φ〉)−Mk(|ψ〉)‖22 − |λ|

2σ2
W

)
= 1
k

∑
j∈[k]

(
|Zj |2 − σ2

W

)
. (30)

By the generic Chernoff bound (Lemma 23), we have

Pr(V ≥ η) ≤ inf
t>0

MV (t)e−tη, (31)

where MV (t) = E
[
etV
]
. Set t0 = ctηk for a constant ct to be determined later . We use

t = t0 to upper bound the RHS of (31). Since Zj ’s are i.i.d., we have

MV (t0) =
∏
j∈[k]

E
[
exp

(
t0
k

(
|Zj |2 − σ2

W

))]
=
(
MṼ

(
t0
k

))k
= (MṼ (ctη))k , (32)

where Ṽ = |Zj |2 − σ2
W .

Apply Taylor’s expansion on MṼ (ctη) around η = 0, we get

MṼ (ctη) = MṼ (0) +M ′
Ṽ

(0) · ctη +M
′′

Ṽ
(0) · 1

2 (ctη)2 + ζη, (33)

where ζη ≤ cηη
3 (for a universal constant cη > 0) is the remainder term. We again have

MṼ (0) = 1, M ′
Ṽ

(0) = E
[
Ṽ
]

= 0, and M
′′

Ṽ
(0) = Var

[
Ṽ
]
≤ cṼ for a universal constant

cṼ > 0.
In the rest of the analysis, we will focus on parameter η ≤ cṼ c

2
t

2cη ; the actual value of η will
be determined later.

We extend (33) as

MṼ (ctη) ≤ 1 + cṼ
2 (ctη)2 + cηη

3 ≤ 1 + cṼ c
2
tη

2. (34)

Plugging (34) to (32), we have

MV (t0) = (MṼ (ctη))k ≤
(
1 + cṼ c

2
tη

2)k ≤ exp
(
cṼ c

2
tkη

2) . (35)

Plugging (35) to (31), we have

Pr(V ≥ η) ≤MV (t0)e−t0η ≤ exp
(
c2t cṼ kη

2) exp
(
−ctη2k

)
= exp

(
−Ω(η2k)

)
,

where for the last equality to hold, we set constant ct = 1
2cṼ

.
For the other direction, we have

Pr [V ≤ −η] = Pr [−V ≥ η] ≤MV (−t0)e−t0η ≤ exp
(
−Ω(η2k)

)
.

Hence, for any δ ∈ (0, 1), setting k = ck

(
1
η2 log 1

δ

)
for a sufficiently large constant ck > 0,

we have that |V | ≤ η with probability at least (1− δ). This, together with (27), (28) (29),
and (30), we obtain∣∣∣∣∣d‖Mk(|φ〉)−Mk(|ψ〉)‖22

D2(|φ〉 , |ψ〉) − 2d
d+ 1

∣∣∣∣∣ ≤ η,
which implies√

2− η − o(1) ≤
√
d‖Mk(|φ〉)−Mk(|ψ〉)‖2

D(|φ〉 , |ψ〉) ≤
√

2 + η. (36)
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Now, for any constant ι > 0, we set η =
{
ι,
cṼ c

2
t

2cη

}
. (36) gives∣∣∣∣∣

√
d

2 ·
‖Mk(|φ〉)−Mk(|ψ〉)‖2

D(|φ〉 , |ψ〉) − 1

∣∣∣∣∣ ≤ ι.
B.3 Proof of Theorem 19
For the first part, we use the same procedure is CST to create the N × n seed matrix A(φ),
where each row i ∈ [N ] consists of the n pairs {bi,j , index(Ui,j))}nj=1.

Next, for the query algorithm, we propose an encoding to turn the classical shadows into
quantum states. This is a deviation from CST as we push the computations back to quantum
via a QCQC approach. Let Q be the index of the relevant qubits of a local observable M in
the query phase. For each j ∈ Q, we create a random binary pair (ci,j , wi,j) using the stored
bit bi,j as follows:

(ci,j , wi,j) =
{

(bi,j , 1) w.pr. 2/3 ,
(1− bi,j ,−1) w.pr. 1/3 .

(37)

We then prepare a qubit |ci,j〉 and apply the corresponding operator Ui,j to create qubit
|vi,j〉 = Ui,j |ci,j〉. Note that |vi,j〉 takes one of the following states:

|0〉 , |1〉 , |+〉 , |−〉 , |+i〉 , |−i〉 ,

that are easy to prepare (see Appendix A.2 for their vector representations). Then, we
prepare the |0〉 for the rest of qubits not indexed in Q. Let

∣∣v′i,j〉 =
{
|vi,j〉 , if j ∈ Q
|0〉 , otherwise.

(38)

We construct the i-th shadow sample as (written as the outer-product form)∣∣φ̃i〉 =
n⊗
j=1

∣∣v′i,j〉 . (39)

We next measure each
∣∣φ̃i〉 using the observable M , and obtain an outcome xi. Let

Si = 3kxi
∏
j∈Q

wi,j . (40)

Then, our estimator is the empirical average

T = 1
N

∑
i

Si.

We now show that when N ≥ 9k‖M‖2∞
log(1/δ)
ε2 , then T approximates 〈φ|M |φ〉 up to an

additive error ε with probability (1− δ), proving the correctness part of Theorem 19. We will
also give the query time analysis. Recall that the space needed for storing the seed matrix is
O(Nn) classical bits.

In the rest of the proof, we will focus on the random variable S , Si for particular i ∈ [N ].
Recall that the final approximation T is the average of N i.i.d. copies of S.

Let Xi, Wj , Vi,j , Bi,j be the corresponding random variables of xi, wi,j , vi,j , bi,j ,
respectively. Since we focus on a particular i ∈ [N ], we will omit all subscripts i in those
random variables and write them as X, Wj , Vj , Bj . We also write

∣∣φ̃i〉 as ∣∣φ̃〉.
The following result can be inferred from [32]. We include a proof for completeness.
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I Lemma 27. For any i ∈ [N ], let |ϕ̃i〉〈ϕ̃i| =
⊗n

j=1 |Vj〉〈Vj |. We have E [3nW |ϕ̃i〉〈ϕ̃i|] =
|φ〉〈φ|, where W =

∏n
j=1Wj.

Proof. Let Γ0 denote the shadow channel for Pauli measurements as defined in [37], which
is given by

Γ0[O] ,
∑

U∈{I,H,S†H}

∑
b∈{0,1}

1
3 〈b|U

†OU |b〉 U |b〉〈b|U†,

for any single qubit operator O. By direct calculation, we have for a generic state |ψ〉 =
a0 |0〉+ a1 |1〉,

Γ−1
0 [|ψ〉〈ψ|] =

[
2|a0|2 − |a1|2 3a0a

∗
1

3a∗0a1 2|a1|2 − |a0|2
]
.

It is known that Γ0 has an inverse as it is a linear mapping. Applying Γ−1
0 on |Bj〉, we have,

again by direct calculation, that

Γ−1
0 [|Bj〉〈Bj |] = 2 |Bj〉〈Bj | − |1−Bj〉〈1−Bj | .

By (37), taking the expectation of Wj |Cj〉〈Cj | gives

E
[
Wj |Cj〉〈Cj |

]
= 2

3 |Bj〉〈Bj | −
1
3 |1−Bj〉〈1−Bj | =

1
3Γ−1

0 [|Bj〉〈Bj |] .

Since |Vj〉 = Uj |Cj〉, we get

E [3Wj |Vj〉〈Vj |] = UjΓ−1
0 [|Bj〉〈Bj |]U†j = Γ−1

0

[
Uj |Bj〉〈Bj |U†j

]
. (41)

Since (Uj , Bj)’s are independent for different j ∈ [n],

E [3nW |ϕ̃i〉〈ϕ̃i|] = E

 n⊗
j=1

(3Wj |vj〉〈vj |)

 (42)

= E

 n⊗
j=1

Γ−1
0 [Uj |Bj〉〈Bj |U†j ]


=

n⊗
j=1

E
[
Γ−1

0

[
Uj |Bj〉〈Bj |U†j

]]
= |φ〉〈φ| . (43)

where the last equality follows form [32, Lemma 6]. J

The next lemma shows that S is an unbiased estimator of the quantity 〈φ|M |φ〉.

I Lemma 28. E[S] = 〈φ|M |φ〉 .
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Proof. Without loss of generality, assume that q` = ` for all ` ∈ [k]. We have

E[S] = 3kE

X ∏
j∈[k]

Wj


= 3kE

〈φ̃∣∣M ∣∣φ̃〉 ∏
j∈[k]

Wj


= 3kE

tr
(
M
∣∣φ̃〉〈φ̃∣∣) ∏

j∈[k]

Wj


= tr

ME

⊗
j∈[k]

(3Wj |Vj〉〈Vj |)
⊗∣∣0n−k〉〈0n−k∣∣

 . (44)

Since M only depends on the first k qubits, the expectation in (44) does not change if∣∣0n−k〉〈0n−k∣∣ is replaced by the following state

n⊗
j=k+1

E
[
Γ−1

0

[
Uj |bj〉〈bj |U†j

]]
.

Hence, we can write E[S] as

tr

ME

 k⊗
j=1

(3Wi,j |Vi,j〉〈Vi,j |)

 n⊗
j=k+1

E
[
Γ−1

0

[
Uj |Bj〉〈Bj |U†j

]]
= tr

M
n⊗
j=1

E
[
Γ−1

0

[
Uj |Bj〉〈Bj |U†j

]]
= tr{M |φ〉〈φ|} = 〈φ|M |φ〉 ,

where the second equality follows from (41), and the third equality follows from (43). J

The correctness part of Theorem 19 follows immediately from Lemma 28, Hoeffding’s
inequality (Lemma 22), and the fact that for all i ∈ [N ], we have |Si| ≤ 3k‖M‖∞.

Running time. We now analyze the running time of the query estimation procedure. First,
the preparation of each quantum state

∣∣v′i,j〉 (i ∈ [N ], j ∈ [n]) takes quantum time O(1).
The construction of each shadow sample

∣∣φ̃i〉 (Eq. (39)) takes O(k) quantum time; note that
we do not actually need to prepare those

∣∣v′i,j〉’s with j 6∈ Q, since the k-local observable
does not depend on those qubits. The quantum time for measuring each

∣∣φ̃i〉 with a k-local
observable M is O (poly(k)), as we have assumed that M has a poly(k) gate complexity.
The computation of each Si (Eq. (40)) can be done in O(n) classical time, and that of
T = 1

N

∑
i Si can be bounded by O(N) classical time. Summing up everything, the total

running time can be bounded by O (poly(k)N) quantum time plus O(kN) classical time;
the classical time can be ignored if we assume that a unit quantum time is at least a unit
classical time.

C Distortions Between The Trace Distance and `1/`2 Distances of
Quantum States

CVIT 2016
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φ & ψ |0〉 & |1〉 distortion w.r.t. D
D

√
3
4 1 –

L1
√

d
2 2

√
d
6

L2 1
√

2
√

3
2

L′
1 1 2

√
3

L′
2

√
2
d

√
2

√
3d
4

Table 1 Example of a simple table

Let α(|0〉) = (1, 0, 0, . . . , 0)T be the vector representation of a d-dimensional quantum state
|0〉, where the first coordinate is 1 and the others are 0. Let α(|1〉) = (0, 1, 0, . . . , 0)T be a
d-dimensional vector with the second coordinate being 1 and the others being 0.

Let α(φ) = 1√
d/2

(1, . . . , 1, 1, . . . , 1, 0, . . . , 0, 0, . . . , 0)T be the d-dimensional vector with
the first d/2 coordinators being 1 and second half being 0, and

ψ = 1√
d/2

(0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 0, . . . , 0)T

be the d-dimensional vector with the middle d/2 coordinates being 1 and the rest being 0.
Let D(φ, ψ) denote the trace distance between two quantum states φ and ψ. Let

L1(φ, ψ) and L2(φ, ψ) denote the `1 and `2 distances between α(φ) and α(ψ), respect-
ively. Let L′1(φ, ψ) and L′2(φ, ψ) denote the `1 and `2 distances between p(φ) and p(ψ),
where p(φ) is α(φ) after taking the coordinate-wise absolute square; that is, p(φ) =

1
d/2 (1, . . . , 1, 1, . . . , 1, 0, . . . , 0, 0, . . . , 0)T .

The distortion of a distance d(·, ·) with respect to D is lower bounded by√
max

{
D(φ, ψ)
d(φ, ψ)

/
D(|0〉 , |1〉)
d(|0〉 , |1〉) ,

d(φ, ψ)
D(φ, ψ)

/
d(|0〉 , |1〉)
D(|0〉 , |1〉)

}
.

In Table 1, we have calculated the distortions between the trace distance of the quantum
states and the `1 and `2 distances of their corresponding classical vector representations. It
is easy to see that all distortions are larger than 1.1 .

D Search As A Special Case of Selection

We note that the selection operation can also be used for search. Given two quantum states
φ and ψ, letting M = ψψ†, we have

D(φ, ψ) =
√

1− |ψ†φ|2 =
√

1− φ†Mφ.

Therefore, if we can estimate φ†Mφ up to an additive factor cεε2 (for a sufficiently small
constant cε) for any database state φ, we can also solve (ε, β)-search for any constant β > 1.
By Theorem 19 and the fact that ‖M‖2∞ = 1 when M = ψψ†, for a database consisting
of m states, the query (quantum) time using expectation value estimations is bounded by
9nmlogm ·poly(n)/ε4. This approach is certainly much more time-expensive than that using
state sketches presented in Section 4.1.
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