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Collaborative Learning

® One of the most important tasks in machine learning is
to make learning scalable.

AGENT ENVIRONMENT
-State s € S

- Take action a € A

-Getreward T 9
-New state s’ € S
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Collaborative Learning

® One of the most important tasks in machine learning is
to make learning scalable.

® A natural way to speed up the learning process is to
introduce multiple agents
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Collaborative Learning with Limited Collaboration

B |nteraction between agents can be expensive.
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Collaborative Learning with Limited Collaboration

B |nteraction between agents can be expensive.
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— Time: network bandwidth /latency, protocol handshaking
— Energy: e.g., robots exploring in the deep sea and on Mars
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Collaborative Learning with Limited Collaboration

B |nteraction between agents can be expensive.
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— Time: network bandwidth /latency, protocol handshaking
— Energy: e.g., robots exploring in the deep sea and on Mars

® [nterested in tradeoffs between
#rounds of interaction and the “speedup” of
collaborative learning (to be defined shortly)
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Best Arm ldentification in Multi-Armed Bandits

B p alternative arms (randomly permuted), where the i-th
arm is associated with an unknown reward distribution
w; with support on [0, 1]

® Want to identify the arm with the largest mean

® Tries to identify the best arm by a sequence of arm pulls;
each pull on the /-th arm gives an /.i.d. sample from pu;

B Goal (centralized setting): minimize total #arm-pulls
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Best Arm ldentification (cont.)

Assume each arm pull takes one time step

® Fixed-time best arm: Given a time budget T, identify
the best arm with the smallest error probability

® Fixed-confidence best arm: Given an error probability
0, identify the best arm with error probability at most 0
using the smallest amount of time

We consider both in this paper
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Collaborative Best Arm ldentification

B p alternative arms. K agents. P1 P P
Learning proceeds in rounds. H B _
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Collaborative Best Arm ldentification

® n alternative arms. K agents. Pi P Pk
Learning proceeds in rounds. I _
o o ()
. ([ L ([
® Each agent at any time, based on e o .
. L

outcomes _of all previous pulls, all oMy, —
msgs received, and randomness of ° :
the algo, takes one of the followings e o .
® makes the next pull o . .

m requests a comm. step and enters the wait mode °

B terminates and outputs the answer.

6-2



Collaborative Best Arm ldentification

® n alternative arms. K agents. Pi P Pk
Learning proceeds in rounds. I _
o o ()
. ([ L ([
® Each agent at any time, based on e o .
. L

outcomes _of all previous pulls, all oMy, —
msgs received, and randomness of ° :
the algo, takes one of the followings e o .
® makes the next pull o . .

m requests a comm. step and enters the wait mode °

B terminates and outputs the answer.

® A comm. step starts if all non-terminated agents are in the
wait mode. After that agents start a new round of arm pulls
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Collaborative Best Arm Identification (cont.)

® At the end, all agents need to output the same best arm
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Collaborative Best Arm Identification (cont.)

® At the end, all agents need to output the same best arm

B [ry to minimize
— number of rounds R;
— running time T =} crp tr,
where t, is the #time steps in the r-th round
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Collaborative Best Arm Identification (cont.)

® At the end, all agents need to output the same best arm

B [ry to minimize
— number of rounds R;
— running time T =} crp tr,
where t, is the #time steps in the r-th round

® Total cost of the algorithm: a weighted sum of R and T.
Call for the best round-time tradeoffs
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Ta(l,6): expected time needed for A to succeed on | with probability
at least (1 — ).

® Speedup (of collaborative learning algorithms)

T) = f f f
BA( ) centrL?ized O instlannce / 5€(I0r»]1/3]: TA(I’ 5)
TO(I75)ST
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Ta(l,6): expected time needed for A to succeed on | with probability
at least (1 — ).

® Speedup (of collaborative learning algorithms)

Ba(T) = inf inf inf To(l,0) T (best cen)

centralized O instance I §&(0,1/3]: TA(I, 5) T(A)
TO(I75)ST
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Speedup

Ta(l,6): expected time needed for A to succeed on | with probability
at least (1 — ).

® Speedup (of collaborative learning algorithms)

To(l,0) T(best cen)

T)= inf _ inf inf
6A( ) centrL?ized Oinstla?ncel 5€(I0r,]1/3]: TA(I75) T(A)
TO(Iaa)ST

— Our upper bound slowly degrades (in log) as T grows
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Speedup

Ta(l,6): expected time needed for A to succeed on | with probability
at least (1 — ).

® Speedup (of collaborative learning algorithms)

T) = f f f
5“4( ) centrL?ized O instlannce / 6€(I0r»]1/3]: TA(I’ 5)
TO(Iaa)ST

— Our upper bound slowly degrades (in log) as T grows

" Bk.r(T)=-supyBa(T)

where sup is taken over all R-round algorithms A for the
collaborative learning model with K agents
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Find the best round-speedup tradeoffs

Clearly there is a tradeoff between R and Sk r:

e When R =1 (i.e., no communication step),
each agent needs to solve the problem by itself,
and thus Sk 1 < 1.

e When R increases, Sk g may increase.

e On the other hand we always have Sk r < K.
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Previous and Our Results

problem number of rounds” Br.r(T) UB/LB | ref.
fixed-time 1 1 - trivial
2 QWVK) UB [21]
2 O(WK) LB [21]
R QK %) UB new
O (ﬁ) when 3 € [K/K"! K] 3 LB new
fixed-confidence R Q ( (Amm)% ) UB [21]
In —L ) '
3 AInin B
Q (mm {ln(1+1{(]n K)2 )+111 A VATV SE }) B LB new
J] A

;;;;;;

[21]: Hillel et al. NIPS 2013;
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Ain = mean of best arm - mean of 2nd best arm




Previous and Our Results

problem number of rounds” Br.r(T) UB/LB | ref.
fixed-time 1 1 — trivial

2 QWVK) UB [21]

2 OWK) LB [21]

In K Q(K) UB new

Q(InK/Inln K) K/In®D K LB | new

fixed-confidence In — 1 f)( K ) UB [21]
Q (In A= /(ntn K +Inln 52 )) K/In°D K LB | new

[21]: Hillel et al. NIPS 2013; Ain = mean of best arm - mean of 2nd best arm
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Previous and Our Results

problem number of rounds” Br.r(T) UB/LB | ref.
fixed-time 1 1 — trivial

2 QWVK) UB [21]

2 OWK) LB [21]

In K Q(K) UB new

Q(InK/Inln K) K/In®D K LB | new

fixed-confidence In — 1 f)( K ) UB [21]
Q (In A= /(ntn K +Inln 52 )) K/In°D K LB | new

[21]: Hillel et al. NIPS 2013; Ain = mean of best arm - mean of 2nd best arm

B Almost tight round-speedup tradeoffs for fixed-time. Today's focus (LB)

®  Almost tight round-speedup tradeoffs for fixed-confidence.

B A separation for two problems.
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Previous and Our Results

problem number of rounds” Br.r(T) UB/LB | ref.
fixed-time 1 1 — trivial

2 QWVK) UB [21]

2 OWK) LB | [21]

In K Q(K) UB new

Q(InK/Inln K) K/In°D K LB | new

fixed-confidence In — 1 fz( K ) UB [21]
Q (In A= /(ntn K +Inln 52 )) K/In°D K LB | new

[21]: Hillel et al. NIPS 2013; Ain = mean of best arm - mean of 2nd best arm

B Almost tight round-speedup tradeoffs for fixed-time. Today's focus (LB)

®  Almost tight round-speedup tradeoffs for fixed-confidence.

B A separation for two problems.
B A generalization of the round-elimination technique. Today

B A new technique for instance-dependent round complexity.
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Lower Bound: Fixed-Time
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Round Elimination: A Technique for Round LB

e d an r-round algorithm with error prob. §, and time
budget T on an input distribution o,

=

3 an (r — 1)-round algorithm with error prob. §,_1(> 9,)
and time budget T on an input distribution o,_1.

e There is no 0-round algorithm with error prob. 6g < 1
on a nontrivial input distribution oyg.
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Round Elimination: A Technique for Round LB

e d an r-round algorithm with error prob. §, and time
budget T on an input distribution o,

=

3 an (r — 1)-round algorithm with error prob. §,_1(> 9,)
and time budget T on an input distribution o,_1.

e There is no 0-round algorithm with error prob. 6g < 1
on a nontrivial input distribution oyg.

= Any algo with time budget T and error prob. 0.01
needs at least r rounds of comm.
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Previous Use of Round Elimination

® Agarwal et al. (COLT'17) used round elimination to
prove an Q(log™ n) for best arm identification under

time budget T = O (AQ /K) for non-adaptive algos

min

— Translated into our collaborative learning setting

— Non-adaptive algos: all arm pulls should be determined at the
beginning of each round
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Previous Use of Round Elimination

® Agarwal et al. (COLT'17) used round elimination to
prove an Q(log™ n) for best arm identification under

time budget T = O ( L /K) for non-adaptive algos

A2

— Translated into our collaborative learning setting

— Non-adaptive algos: all arm pulls should be determined at the
beginning of each round

B “One-spike” distribution: a random single arm with

mean % and (n — 1) arms with mean (% — Amin).

[RiNininininininin

1™ (random index)
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Previous Use of Round Elimination (Cont.)

® Basic argument (of COLT'17): If we do not make enough
pulls in the first round, then conditioned on the pull
outcomes, the index of the best arm is still quite uncertain

L0 11

X X X X 7?2 7?2 7?7 7?7 X X
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Previous Use of Round Elimination (Cont.)

® Basic argument (of COLT'17): If we do not make enough
pulls in the first round, then conditioned on the pull
outcomes, the index of the best arm is still quite uncertain

L0 11

X X X X 7?2 7?2 7?7 7?7 X X

m More precisely, the posterior distribution of the index of
the best arm can be written as a convex combination of
a set of distributions, each of which has a large support
size (> log n) and is close to the uniform distribution
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Previous Use of Round Elimination (Cont.)

B Basic argument (of CO
pulls in the first round, t
outcomes, the index of t

mill

| T'17): If we do not make enough
nen conditioned on the pull

ne best arm is still quite uncertain

Il

X X X X 7?2 7?2 7?7 7?7 X X

m More precisely, the posterior distribution of the index of
the best arm can be written as a convex combination of
a set of distributions, each of which has a large support
size (> log n) and is close to the uniform distribution

= an Q(log” n) LB
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The Challenge

m \We want to prove a logarithmic round lower bound.

m \We need to restrict the time budget within a better
bound O(H/K) = O (27:2 é/K)

(A; = mean of the best arm - mean of the /-th best arm in the input)
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The Challenge

m \We want to prove a logarithmic round lower bound.

m \We need to restrict the time budget within a better
bound O(H/K) = O (27:2 é/K)

(A; = mean of the best arm - mean of the /-th best arm in the input)

“Pyramid-like” distribution: Roughly speaking, we
take n/2 random arms and assign them with mean
(1/2—1/4), n/4 random arms with mean (1/2 — 1/8),
and n/8 random arms with mean (1/2 —1/16), ...

1



The Challenge (Cont.)

Technical challenge (if want to follow COLT'17):

Not clear how to decompose the posterior distribution
of the means of arms into a convex combination of a
set of distributions, each of which is close to the same
pyramid-like distribution.

gl 11-
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New ldea: Generalized Round Elimination

e 1 r-round algorithm with error prob. 9, and time
budget T on any distribution in distribution class D,

=N

3 (r — 1)-round algorithm with error prob. §,_1(> §,)
and time budget T on any distribution in distribution
class D,_1

e There is no 0-round algorithm with error prob. g < 1
on any input distribution in Dy
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New ldea: Generalized Round Elimination

e 1 r-round algorithm with error prob. 9, and time
budget T on any distribution in distribution class D,

=N

3 (r — 1)-round algorithm with error prob. 6,_1(> ¢,)
and time budget T on any distribution in distribution
class D,_1

e There is no 0-round algorithm with error prob. g < 1
on any input distribution in Dy

Advantage: we do not need to show that the posterior
distribution v/ of v € D, is close to a particular
distribution, but only that v/ € D,_;.
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Hard Input Distribution Classes

Let o € [1, n0’2] be a parameter, B =~ = « log™® n,
L = log n/(loglog n + log &), p = log’ n.

Define D; to be the class of distributions p with support
{(B71, ...,B Y=Y B~ ... B~} such that if X ~ p, then

1. Forany £ =j,...,L,PrIX =B =X -B* - (1+£p "1,
where )\; is a normalization factor

2. Pr [(X —BHV.. V(X = B—U—”)] <n® (j>2)
X A

(=1L |
(=L—-1 |

f=j+1 |
L= |
¢<j{ Prob (logg)
>

18-1



Hard Input Distribution Classes

Let o € [1, n0’2] be a parameter, B =~ = « log™® n,
L = log n/(loglog n + log &), p = log’ n.

Define D; to be the class of distributions p with support
{(B71, ...,B Y=Y B~ ... B~} such that if X ~ p, then

1. Forany £ =j,...,L,PrIX =B =X -B* - (1+£p "1,
where )\; is a normalization factor

2. Pr [(X —BHV.. V(X = B—U—”)] <n® (j>2)
X A

(=L
Arms i.i.d. with mean%—X =1L —1 |

Try to embed the pyramid
distribution into each arm

f=j+1 |
L= |
¢<j{ Prob (logg)
>
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Hard Input Distribution Classes (cont.)

a= (1 - B-UD)yBY — IOy InnB/, b= 287 4 pi+06

a b
| | | >

E[|©]] if X = B~* for £ > j

Key property of the distribution class:

1

Consider an arm with mean (5 — X) where X ~ € D; for

some j € [L — 1]. We pull the arm vB¥ times.

Let © = (©1,02,...,0_52) be the pull outcomes, and let
O] = ZIG[WB@'] ;.
If |©| & [a, b], then publish the arm.
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Hard Input Distribution Classes (cont.)

a= (1 - B-UD)yBY — IOy InnB/, b= 287 4 pi+06

a b
| | | >

E[|©]] if X = B~* for £ > j

Key property of the distribution class:

1

Consider an arm with mean (3 — X) where X ~ 11 € D; for

some j € [L — 1]. We pull the arm vB¥ times.

Let © = (©1,02,...,0_52) be the pull outcomes, and let
O] = Zie[fyB2j] ;.

If |©| & [a, b], then publish the arm.

Let v be the posterior distribution of X after observing ©.
If the arm is not published, then we must have v € Dj. ;.

19-2



Lower Bound for Non-Adaptive Algorithms

Theorem 1. Any (K /a)-speedup non-adaptive algorithm
for the fixed-time best arm identification problem in the

collaborative learning model with K agents needs
Q(L) =Q(Inn/(Inlnn+ Ina)) rounds.
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Lower Bound for Non-Adaptive Algorithms

20-2

Theorem 1. Any (K /a)-speedup non-adaptive algorithm
for the fixed-time best arm identification problem in the

collaborative learning model with K agents needs
Q(L) =Q(Inn/(Inlnn+ Ina)) rounds.

Round reduction. For any j < £ —1,
3 r-round (K /«)-speedup non-adaptive algorithm with error prob. §

input distribution in (D;)" f <N _o\j-1
on any input distribution in (D;)" for any n; € | (= ((1+ 1)B=2) ™)
=

3 (r — 1)-round (K /«a)-speedup non-adaptive algorithm with error
prob. & +o (1) on any input distribution in (Dj41)"%** for any
nit1 € liv1



Lower Bound for Non-Adaptive Algorithms

Theorem 1. Any (K /a)-speedup non-adaptive algorithm
for the fixed-time best arm identification problem in the
collaborative learning model with K agents needs

Q(L) =Q(Inn/(Inlnn+ Ina)) rounds.

. . L
Round reduction. For any j < 5 —1,

3 r-round (K /«)-speedup non-adaptive algorithm with error prob. §
input distribution in (D;)" f <N _o\j-1
on any input distribution in (D;)" for any n; € | (= ((1+ 1)B=2) ™)

=

3 (r — 1)-round (K /«a)-speedup non-adaptive algorithm with error
prob. & +o (1) on any input distribution in (Dj41)"%** for any
nit1 € liv1

Base Case: Any O-round algorithm must have error 0.99 on any
distribution in (D) 2 (V ni € lL).
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Proof Idea for Round Reduction

Let S be the set of arms which will be pulled more than vB¥ times
(note: we are considering non-adaptive algos)
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Proof Idea for Round Reduction

21-2

Let S be the set of arms which will be pulled more than vB¥ times
(note: we are considering non-adaptive algos)

Algorithm Augmentation (for j-th round)
1. Publish all arms in S.

2. For the rest arms z € [m;]\S, keep pulling them until #pulls reaches
vB¥. Let ©, = (0,1, ..., ©, . p2) be the ~vB% pull outcomes.

If |©,| & [a, b], we publish the arm.

3. If #unpublished arms is not in the range of /11, or there is a

1

published arm with mean (5 — B_L), then we return “error”.

= (by key property of D;) resulting posterior distribution on
unpublished arms in (Dj;1)"+! (njy1 € lj+1)



Proof Idea for Round Reduction

Let S be the set of arms which will be pulled more than vB¥ times
(note: we are considering non-adaptive algos)

Algorithm Augmentation (for j-th round)

1. Publish all arms in S.

2. For the rest arms z € [n;]\S, keep pulling them until #pulls reaches
vB¥. Let ©, = (0,1, ..., ©, . p2) be the ~vB?¥ pull outcomes.
If |©,| & [a, b], we publish the arm.

3. If #unpublished arms is not in the range of /11, or there is a

1

published arm with mean (5 — B_L), then we return “error”.

= (by key property of D;) resulting posterior distribution on
unpublished arms in (Dj;1)"+! (njy1 € lj+1)

e Steps 1&2 only help the algorithm = a stronger lower bound.
e Extra error by Step 3 is small; counted in o(7) in the induction.
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Lower Bound for Adaptive Algorithms

22-1

Theorem 2. Any (K /a)-speedup (adaptive) algorithm
for the fixed-time best arm identification problem in the
collaborative learning model with K agents needs

Q(In K/(Inln K + In «v)) rounds.

Intuition: When the number of arms n is smaller than
#agents K, adaptive pulls do not have much advantage
against non-adaptive pulls in each round.

B Prove by a coupling-like argument: Compare the behavior
of an adaptive algorithm with that of a non-adaptive one.



Other main results:

1. An almost matching upper bound for the
fixed-time case

2. An almost tight lower bound for the
fixed-confidence case
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Concluding Remarks and Future Work

B A systematic study of the best arm identification
problem in the setting of collaborative learning with
limited interaction

® Almost tight round-speedup tradeoffs for both
fixed-time and fixed-confidence settings.

® New techniques for proving round lower bounds for
multi-agent collaborative learning

24-1



Concluding Remarks and Future Work

® A systematic study of the best arm identification
problem in the setting of collaborative learning with
limited interaction

® Almost tight round-speedup tradeoffs for both
fixed-time and fixed-confidence settings.

® New techniques for proving round lower bounds for
multi-agent collaborative learning

B New direction: comm.-efficient collaborative learning.
Many open problems: regrets (bandits), general
reinforcement learning, etc.
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Thank youl

Questions?




Upper Bound: Fixed-Time
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Algorithm with Constant Error Probability

When T = (:)(HK_%), the algo succeeds w.pr. 0.99

Phase 1 : Eliminate most of the suboptimal arms and leave
at most K candidates.

— Randomly partition the n arms to K agents.
— Each agent runs a centralized algo for T /2 time,

outputs the best arm if terminates, ‘L' otherwise

Phase 2 : Run R rounds, the goal of the r-th round is to
reduce #candidates to K7 .

In each round:

— Each agent spends T /(2R) time uniformly on K
arms.

— Eliminate arms whose empirical means smaller than
(top empirical mean — ¢(K, R, T, #candidates))
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Algorithm for General Parameter Settings

B Goal: When T > HK™ ~the error diminishes
exponentially in T
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Algorithm for General Parameter Settings

B Goal: When T > HK™ ~the error diminishes
exponentially in T

® Challenge 1: We do not know the instance dependent
parameter H
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Algorithm for General Parameter Settings

B Goal: When T > HK™ ~the error diminishes
exponentially in T

® Challenge 1: We do not know the instance dependent
parameter H

® |dea 1: Guess H using the doubling method
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Algorithm for General Parameter Settings

B Goal: When T > HK™ ~the error diminishes
exponentially in T

® Challenge 1: We do not know the instance dependent
parameter H

® |dea 1: Guess H using the doubling method
® Challenge 2: When T < HK™ “7, centralized algo

may consistently return the same subOptlmaI arm (there
is no guarantee).
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Algorithm for General Parameter Settings

28-5

Goal: When T > HK~ ~the error diminishes
exponentially in T

Challenge 1: We do not know the instance dependent
parameter H

Idea 1: Guess H using the doubling method

R— .
Challenge 2: When T < HK~ "%, centralized algo
may consistently return the same suboptimal arm (there
is no guarantee).

Idea 2: Instead of fixing time budget of the first phase

T T
to -, choose a random time budget in {5, 555



| ower Bound: Fixed-Confidence




The SignlD Problem

SignlD: There is one Bernoulli arm with mean (1 + A)
Goal: Make min #pulls on the arm and decide whether

A >0or A <Q0. Let /(A) denote the input instance.

Say A is §-fast for the instance /(A), if

I&r) | A succeeds within A™%/3 time| > 2/3.

30-1



The SignlD Problem

SignlD: There is one Bernoulli arm with mean (1 + A)

Goal: Make min #pulls on the arm and decide whether
A >0or A <Q0. Let /(A) denote the input instance.

Say A is §-fast for the instance /(A), if

I&r) | A succeeds within A™%/3 time| > 2/3.

" A [3-speedup best arm identification algorithm =-
an €()-fast algorithm for Sign/D

30-2



Main Theorem for SignlD

Theorem. Let A* € (0,1/8). If Aisa (1/K>)-error 3-fast
algorithm for every Sign/D problem instance /(A) where
IA| € [A*,1/8), then there exists A” > A* such that

(o [’4 ses ¥ (lnu s /+Al?|n<1/A*)> d] -

N | —

31-1



Main Theorem for SignlD

31-2

Theorem. Let A* € (0,1/8). If Aisa (1/K>)-error 3-fast
algorithm for every Sign/D problem instance /(A) where
IA| € [A*,1/8), then there exists A” > A* such that

(o [’4 ses ¥ (lnu s /+Al?|n<1/A*)> d] -

N | —

Prove using two lemmas alternatively (next slide)

e Progress lemma
e Distribution exchange lemma



The Progress Lemma

E(a, T): A uses at least o rounds and at most T time
before the end of the a-th round.

E*(a, T): A uses at least (v + 1) rounds and at most T
time before the end of the a-th round.

Progress Lemma. For any A <1/8, «a >0, g >1, if
Pr,(A)[E(oz,A_2/(Kq))] > 1/2, then

Pr 1€ (e, A7/ (Ka))] > Pr (€ 572/ (Ka))] - 0(K, q)
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The Progress Lemma

E(a, T): A uses at least o rounds and at most T time
before the end of the a-th round.

E*(a, T): A uses at least (o + 1) rounds and at most T
time before the end of the a-th round.

Progress Lemma. For any A <1/8, «a >0, g >1, if
Pr,(A)[E(a,A_2/(Kq))] > 1/2, then

Pr (€7, A72/(Kq)) = Pr[(a, A7/(Kg))] = 5(K, 9

Intuition. If A can only use A=2/(Kq) x K = A~?/q pulls

for a large enough g in one round , then we cannot tell
[(A) from [(—A).
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The Distribution Exchange Lemma

E(a, T): A uses at least o rounds and at most T time before the end of the «-th round.

E*(a, T): A uses at least (« + 1) rounds and at most T time before the end of the c-th round.

Distribution Exchange Lemma. For any A < 1/8,
a>0,q=>100, ¢ >1,

Pr_[£(0+1.47%/(Kg) + A72/8)

> Pries (e A™%/(Kq))] - &'(K, g, )
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The Distribution Exchange Lemma

E(a, T): A uses at least o rounds and at most T time before the end of the «-th round.

E*(a, T): A uses at least (o 4 1) rounds and at most T time before the end of the c-th round.

Distribution Exchange Lemma. For any A < 1/8,
a>0,q2>100, ¢ >1,

Pr [E(a+1,A?/(Kq) + A™?/p)]

I(A/C)
> Prie(c. A7 /(Ka))] - 9'(K.q. 9

Intuition. For instance /(A), since A is a -fast algorithm,
each agent uses at most A2/ pulls during the (a + 1)-st
round, and only sees at most (A™2/(Kq) + A~2/3) pull
outcomes before the next communication, which is

insufficient to tell between /(A) and I(A/().
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A Technical Lemma
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Cannot simply bound the statistical distance of induced
by A and A/({. Need the following technical lemma.

Technical Lemma. Suppose 0 < A’ < A < 1/8.
For any positive integer m = A~2/¢ where £ > 100.
D =B(1/24+ A)®™, D' =B(1/2+ A")®m

Let A be any probability distribution with sample space
X. For any event A C {0,1}™ x X such that
Prpgx[A] < 7, we have that

Pr [A] <v-exp (5\/(3 In Q)/f) +1/Q°,

D'®RX

holds for all Q@ > &.



Put Together
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Progress Lemma. For any A <1/8, «a>0,qg>1, if
Pr,(A)[E(a,A_2/(Kq))] > 1/2, then

Pr (€7 (e, A72/(Kq)) = Pr[E(a, A72/(Kg))] = 3(K, )

Distribution Exchange Lemma. For any A < 1/8,
a >0, g =100, ¢ > 1,
Pr [E(a+1,A7%/(Kq) + A2
P e /(Ka) + A2/5)]

> Prie” (0, A7%/(Ke))] - 5'(K.q.5)



Put Together

Progress Lemma. For any A <1/8, «a>0,qg>1, if
Pr,(A)[E(a,A_2/(Kq))] > 1/2, then

Pr (€7 (e, A72/(Kq)) = Pr[E(a, A72/(Kg))] = 3(K, )

Distribution Exchange Lemma. For any A < 1/8,
a >0, g =100, ¢ > 1,

Pr [€(a+1,
I(A/C)

] o 5,(K7 qaﬁ)

Set ¢ = +/1+ (Kq)/f to connect the two lemmas:
A~?/(Kq) +A7%/8 = (A/¢)~*/(Kq)
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