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Collaborative Learning

One of the most important tasks in machine learning is
to make learning scalable.

Reinforcement learning
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Collaborative Learning

One of the most important tasks in machine learning is
to make learning scalable.

A natural way to speed up the learning process is to
introduce multiple agents
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Collaborative Learning with Limited Collaboration

Interaction between agents can be expensive.
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Collaborative Learning with Limited Collaboration

Interaction between agents can be expensive.

– Time: network bandwidth/latency, protocol handshaking
– Energy: e.g., robots exploring in the deep sea and on Mars
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Collaborative Learning with Limited Collaboration

Interaction between agents can be expensive.

Interested in tradeoffs between
#rounds of interaction and the “speedup” of
collaborative learning (to be defined shortly)

– Time: network bandwidth/latency, protocol handshaking
– Energy: e.g., robots exploring in the deep sea and on Mars
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Best Arm Identification in Multi-Armed Bandits

n alternative arms (randomly permuted), where the i-th
arm is associated with an unknown reward distribution
µi with support on [0, 1]

Want to identify the arm with the largest mean

Tries to identify the best arm by a sequence of arm pulls;
each pull on the i-th arm gives an i.i.d. sample from µi

Goal (centralized setting): minimize total #arm-pulls
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Best Arm Identification (cont.)

Fixed-time best arm: Given a time budget T , identify
the best arm with the smallest error probability

Fixed-confidence best arm: Given an error probability
δ, identify the best arm with error probability at most δ
using the smallest amount of time

Assume each arm pull takes one time step

We consider both in this paper
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Collaborative Best Arm Identification

n alternative arms. K agents.
Learning proceeds in rounds.

P1 P2 Pk
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Collaborative Best Arm Identification

n alternative arms. K agents.
Learning proceeds in rounds.

Each agent at any time, based on
outcomes of all previous pulls, all
msgs received, and randomness of
the algo, takes one of the followings

makes the next pull

requests a comm. step and enters the wait mode

terminates and outputs the answer.

comm.

comm.

P1 P2 Pk
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Collaborative Best Arm Identification

n alternative arms. K agents.
Learning proceeds in rounds.

Each agent at any time, based on
outcomes of all previous pulls, all
msgs received, and randomness of
the algo, takes one of the followings

makes the next pull

requests a comm. step and enters the wait mode

terminates and outputs the answer.

A comm. step starts if all non-terminated agents are in the
wait mode. After that agents start a new round of arm pulls

comm.

comm.

P1 P2 Pk
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Collaborative Best Arm Identification (cont.)

At the end, all agents need to output the same best arm
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Collaborative Best Arm Identification (cont.)

Try to minimize
– number of rounds R;
– running time T =

∑
r∈[R] tr ,

where tr is the #time steps in the r -th round

At the end, all agents need to output the same best arm
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Collaborative Best Arm Identification (cont.)

Try to minimize
– number of rounds R;
– running time T =

∑
r∈[R] tr ,

where tr is the #time steps in the r -th round

Total cost of the algorithm: a weighted sum of R and T .
Call for the best round-time tradeoffs

At the end, all agents need to output the same best arm
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Speedup

TA(I , δ): expected time needed for A to succeed on I with probability
at least (1− δ).

Speedup (of collaborative learning algorithms)

βA(T ) = inf
centralized O

inf
instance I

inf
δ∈(0,1/3]:
TO(I ,δ)≤T

TO(I , δ)

TA(I , δ)
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Speedup

TA(I , δ): expected time needed for A to succeed on I with probability
at least (1− δ).

Speedup (of collaborative learning algorithms)

βA(T ) = inf
centralized O

inf
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TO(I , δ)
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T (best cen)
T (A)
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Speedup

TA(I , δ): expected time needed for A to succeed on I with probability
at least (1− δ).

Speedup (of collaborative learning algorithms)

βA(T ) = inf
centralized O

inf
instance I

inf
δ∈(0,1/3]:
TO(I ,δ)≤T

TO(I , δ)

TA(I , δ)

T (best cen)
T (A)

– Our upper bound slowly degrades (in log) as T grows
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Speedup

TA(I , δ): expected time needed for A to succeed on I with probability
at least (1− δ).

Speedup (of collaborative learning algorithms)

βA(T ) = inf
centralized O

inf
instance I

inf
δ∈(0,1/3]:
TO(I ,δ)≤T

TO(I , δ)

TA(I , δ)

βK ,R(T ) = supA βA(T )

where sup is taken over all R-round algorithms A for the
collaborative learning model with K agents

– Our upper bound slowly degrades (in log) as T grows
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Our Goal

Find the best round-speedup tradeoffs

Clearly there is a tradeoff between R and βK ,R :

• When R = 1 (i.e., no communication step),
each agent needs to solve the problem by itself,
and thus βK ,1 ≤ 1.

• When R increases, βK ,R may increase.

• On the other hand we always have βK ,R ≤ K .
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Previous and Our Results

[21]: Hillel et al. NIPS 2013; ∆min = mean of best arm - mean of 2nd best arm
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Previous and Our Results

K/ lnO(1) KΩ(lnK/ ln lnK)

Ω̃(K)lnK

Ω
(

ln 1
∆min

/(ln lnK + ln ln 1
∆min

)
)ln 1

∆min
Ω̃(K)

K/ lnO(1) K

[21]: Hillel et al. NIPS 2013; ∆min = mean of best arm - mean of 2nd best arm
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Previous and Our Results

K/ lnO(1) KΩ(lnK/ ln lnK)

Ω̃(K)lnK

Ω
(

ln 1
∆min

/(ln lnK + ln ln 1
∆min

)
)ln 1

∆min
Ω̃(K)

K/ lnO(1) K

Almost tight round-speedup tradeoffs for fixed-time.

Almost tight round-speedup tradeoffs for fixed-confidence.

A separation for two problems.

[21]: Hillel et al. NIPS 2013; ∆min = mean of best arm - mean of 2nd best arm

Today’s focus (LB)
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Previous and Our Results

K/ lnO(1) KΩ(lnK/ ln lnK)

Ω̃(K)lnK

Ω
(

ln 1
∆min

/(ln lnK + ln ln 1
∆min

)
)ln 1

∆min
Ω̃(K)

K/ lnO(1) K

A generalization of the round-elimination technique.

A new technique for instance-dependent round complexity.

Almost tight round-speedup tradeoffs for fixed-time.

Almost tight round-speedup tradeoffs for fixed-confidence.

A separation for two problems.

[21]: Hillel et al. NIPS 2013; ∆min = mean of best arm - mean of 2nd best arm

Today’s focus (LB)

Today



11-1

Lower Bound: Fixed-Time

Warning: I will cheat in multiple places
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Round Elimination: A Technique for Round LB

• ∃ an r -round algorithm with error prob. δr and time
budget T on an input distribution σr ,

⇒
∃ an (r − 1)-round algorithm with error prob. δr−1(> δr )
and time budget T on an input distribution σr−1.

• There is no 0-round algorithm with error prob. δ0 � 1
on a nontrivial input distribution σ0.
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Round Elimination: A Technique for Round LB

• ∃ an r -round algorithm with error prob. δr and time
budget T on an input distribution σr ,

⇒
∃ an (r − 1)-round algorithm with error prob. δr−1(> δr )
and time budget T on an input distribution σr−1.

• There is no 0-round algorithm with error prob. δ0 � 1
on a nontrivial input distribution σ0.

⇒ Any algo with time budget T and error prob. 0.01
needs at least r rounds of comm.
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Previous Use of Round Elimination

Agarwal et al. (COLT’17) used round elimination to
prove an Ω(log∗ n) for best arm identification under

time budget T = Õ
(

n
∆2

min
/K
)

for non-adaptive algos

– Non-adaptive algos: all arm pulls should be determined at the
beginning of each round

– Translated into our collaborative learning setting
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Previous Use of Round Elimination

Agarwal et al. (COLT’17) used round elimination to
prove an Ω(log∗ n) for best arm identification under

time budget T = Õ
(

n
∆2

min
/K
)

for non-adaptive algos

“One-spike” distribution: a random single arm with
mean 1

2 , and (n − 1) arms with mean
(

1
2 −∆min

)
.

i∗ (random index)

– Non-adaptive algos: all arm pulls should be determined at the
beginning of each round

– Translated into our collaborative learning setting
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Previous Use of Round Elimination (Cont.)

Basic argument (of COLT’17): If we do not make enough
pulls in the first round, then conditioned on the pull
outcomes, the index of the best arm is still quite uncertain
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Previous Use of Round Elimination (Cont.)

Basic argument (of COLT’17): If we do not make enough
pulls in the first round, then conditioned on the pull
outcomes, the index of the best arm is still quite uncertain

More precisely, the posterior distribution of the index of
the best arm can be written as a convex combination of
a set of distributions, each of which has a large support
size (≥ log n) and is close to the uniform distribution
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Previous Use of Round Elimination (Cont.)

Basic argument (of COLT’17): If we do not make enough
pulls in the first round, then conditioned on the pull
outcomes, the index of the best arm is still quite uncertain

More precisely, the posterior distribution of the index of
the best arm can be written as a convex combination of
a set of distributions, each of which has a large support
size (≥ log n) and is close to the uniform distribution

⇒ an Ω(log∗ n) LB
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The Challenge

We want to prove a logarithmic round lower bound.

We need to restrict the time budget within a better

bound Õ(H/K ) = Õ
(∑n

i=2
1

∆2
i
/K
)

(∆i = mean of the best arm - mean of the i-th best arm in the input)
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The Challenge

We want to prove a logarithmic round lower bound.

We need to restrict the time budget within a better

bound Õ(H/K ) = Õ
(∑n

i=2
1

∆2
i
/K
)

(∆i = mean of the best arm - mean of the i-th best arm in the input)

“Pyramid-like” distribution: Roughly speaking, we
take n/2 random arms and assign them with mean
(1/2− 1/4), n/4 random arms with mean (1/2− 1/8),
and n/8 random arms with mean (1/2− 1/16), ...
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Technical challenge (if want to follow COLT’17):

Not clear how to decompose the posterior distribution
of the means of arms into a convex combination of a
set of distributions, each of which is close to the same
pyramid-like distribution.

The Challenge (Cont.)
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New Idea: Generalized Round Elimination

• ∃ r -round algorithm with error prob. δr and time
budget T on any distribution in distribution class Dr

⇒
∃ (r − 1)-round algorithm with error prob. δr−1(> δr )
and time budget T on any distribution in distribution
class Dr−1

• There is no 0-round algorithm with error prob. δ0 � 1
on any input distribution in D0
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New Idea: Generalized Round Elimination

• ∃ r -round algorithm with error prob. δr and time
budget T on any distribution in distribution class Dr

⇒
∃ (r − 1)-round algorithm with error prob. δr−1(> δr )
and time budget T on any distribution in distribution
class Dr−1

• There is no 0-round algorithm with error prob. δ0 � 1
on any input distribution in D0

Advantage: we do not need to show that the posterior
distribution ν′ of ν ∈ Dr is close to a particular
distribution, but only that ν′ ∈ Dr−1.
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Hard Input Distribution Classes

Define Dj to be the class of distributions µ with support
{B−1, . . . ,B−(j−1),B−j , . . . ,B−L}, such that if X ∼ µ, then

1. For any ` = j , . . . , L, Pr[X = B−`] = λj · B−2` ·
(
1± ρ−`+j−1

)
,

where λj is a normalization factor

2. Pr
[
(X = B−1) ∨ · · · ∨ (X = B−(j−1))

]
≤ n−9, (j ≥ 2)

X

Prob (logB)` < j
` = j

` = j + 1

` = L− 1
` = L

Let α ∈ [1, n0,2] be a parameter, B = γ = α log10 n,
L = log n/(log log n + logα), ρ = log3 n.

D1 , D1(0), Dj , Dj(ρ
j−1)
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Hard Input Distribution Classes

Define Dj to be the class of distributions µ with support
{B−1, . . . ,B−(j−1),B−j , . . . ,B−L}, such that if X ∼ µ, then

1. For any ` = j , . . . , L, Pr[X = B−`] = λj · B−2` ·
(
1± ρ−`+j−1

)
,

where λj is a normalization factor

2. Pr
[
(X = B−1) ∨ · · · ∨ (X = B−(j−1))

]
≤ n−9, (j ≥ 2)

X

Prob (logB)` < j
` = j

` = j + 1

` = L− 1
` = L

Let α ∈ [1, n0,2] be a parameter, B = γ = α log10 n,
L = log n/(log log n + logα), ρ = log3 n.

Arms i.i.d. with mean 1
2
− X

Try to embed the pyramid
distribution into each arm

D1 , D1(0), Dj , Dj(ρ
j−1)
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Hard Input Distribution Classes (cont.)

a =
(

1
2
− B−(j+1)

)
γB2j −

√
10γ ln nB j , b = γB2j

2
+ B j+0.6

Key property of the distribution class:

Consider an arm with mean
(

1
2
− X

)
where X ∼ µ ∈ Dj for

some j ∈ [L− 1]. We pull the arm γB2j times.

Let Θ = (Θ1,Θ2, . . . ,ΘγB2j ) be the pull outcomes, and let
|Θ| =

∑
i∈[γB2j ] Θi .

If |Θ| 6∈ [a, b], then publish the arm.

E[|Θ|] if X = B−` for ` > j

ba
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Hard Input Distribution Classes (cont.)

a =
(

1
2
− B−(j+1)

)
γB2j −

√
10γ ln nB j , b = γB2j

2
+ B j+0.6

Key property of the distribution class:

Consider an arm with mean
(

1
2
− X

)
where X ∼ µ ∈ Dj for

some j ∈ [L− 1]. We pull the arm γB2j times.

Let Θ = (Θ1,Θ2, . . . ,ΘγB2j ) be the pull outcomes, and let
|Θ| =

∑
i∈[γB2j ] Θi .

If |Θ| 6∈ [a, b], then publish the arm.

Let ν be the posterior distribution of X after observing Θ.
If the arm is not published, then we must have ν ∈ Dj+1.

E[|Θ|] if X = B−` for ` > j

ba
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Lower Bound for Non-Adaptive Algorithms

Theorem 1. Any (K/α)-speedup non-adaptive algorithm
for the fixed-time best arm identification problem in the
collaborative learning model with K agents needs
Ω(L) = Ω(ln n/(ln ln n + lnα)) rounds.
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Lower Bound for Non-Adaptive Algorithms

Theorem 1. Any (K/α)-speedup non-adaptive algorithm
for the fixed-time best arm identification problem in the
collaborative learning model with K agents needs
Ω(L) = Ω(ln n/(ln ln n + lnα)) rounds.

Round reduction. For any j ≤ L
2
− 1,

∃ r -round (K/α)-speedup non-adaptive algorithm with error prob. δ
on any input distribution in (Dj)

nj for any nj ∈ Ij .

⇒
∃ (r − 1)-round (K/α)-speedup non-adaptive algorithm with error
prob. δ +o

(
1
L

)
on any input distribution in (Dj+1)nj+1 for any

nj+1 ∈ Ij+1

(Ij =
(
(1± 1

L
)B−2

)j−1
)
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Lower Bound for Non-Adaptive Algorithms

Theorem 1. Any (K/α)-speedup non-adaptive algorithm
for the fixed-time best arm identification problem in the
collaborative learning model with K agents needs
Ω(L) = Ω(ln n/(ln ln n + lnα)) rounds.

Round reduction. For any j ≤ L
2
− 1,

∃ r -round (K/α)-speedup non-adaptive algorithm with error prob. δ
on any input distribution in (Dj)

nj for any nj ∈ Ij .

⇒
∃ (r − 1)-round (K/α)-speedup non-adaptive algorithm with error
prob. δ +o

(
1
L

)
on any input distribution in (Dj+1)nj+1 for any

nj+1 ∈ Ij+1

(Ij =
(
(1± 1

L
)B−2

)j−1
)

Base Case: Any 0-round algorithm must have error 0.99 on any

distribution in (D L
2

)
n L

2 (∀ n L
2
∈ I L

2
).
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Proof Idea for Round Reduction

Let S be the set of arms which will be pulled more than γB2j times
(note: we are considering non-adaptive algos)
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Proof Idea for Round Reduction

Let S be the set of arms which will be pulled more than γB2j times
(note: we are considering non-adaptive algos)

Algorithm Augmentation (for j-th round)

1. Publish all arms in S .

2. For the rest arms z ∈ [nj ]\S , keep pulling them until #pulls reaches
γB2j . Let Θz = (Θz,1, . . . ,Θz,γB2j ) be the γB2j pull outcomes.

If |Θz | 6∈ [a, b], we publish the arm.

3. If #unpublished arms is not in the range of Ij+1, or there is a
published arm with mean

(
1
2
− B−L

)
, then we return “error”.

⇒ (by key property of Dj) resulting posterior distribution on
unpublished arms in (Dj+1)nj+1 (nj+1 ∈ Ij+1)



21-3

Proof Idea for Round Reduction

• Steps 1&2 only help the algorithm ⇒ a stronger lower bound.

• Extra error by Step 3 is small; counted in o( 1
L

) in the induction.

Let S be the set of arms which will be pulled more than γB2j times
(note: we are considering non-adaptive algos)

Algorithm Augmentation (for j-th round)

1. Publish all arms in S .

2. For the rest arms z ∈ [nj ]\S , keep pulling them until #pulls reaches
γB2j . Let Θz = (Θz,1, . . . ,Θz,γB2j ) be the γB2j pull outcomes.

If |Θz | 6∈ [a, b], we publish the arm.

3. If #unpublished arms is not in the range of Ij+1, or there is a
published arm with mean

(
1
2
− B−L

)
, then we return “error”.

⇒ (by key property of Dj) resulting posterior distribution on
unpublished arms in (Dj+1)nj+1 (nj+1 ∈ Ij+1)
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Lower Bound for Adaptive Algorithms

Theorem 2. Any (K/α)-speedup (adaptive) algorithm
for the fixed-time best arm identification problem in the
collaborative learning model with K agents needs
Ω(lnK/(ln lnK + lnα)) rounds.

Intuition: When the number of arms n is smaller than
#agents K , adaptive pulls do not have much advantage
against non-adaptive pulls in each round.

Prove by a coupling-like argument: Compare the behavior
of an adaptive algorithm with that of a non-adaptive one.



23-1

Other main results:

1. An almost matching upper bound for the
fixed-time case

2. An almost tight lower bound for the
fixed-confidence case
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Concluding Remarks and Future Work

A systematic study of the best arm identification
problem in the setting of collaborative learning with
limited interaction

Almost tight round-speedup tradeoffs for both
fixed-time and fixed-confidence settings.

New techniques for proving round lower bounds for
multi-agent collaborative learning
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Concluding Remarks and Future Work

A systematic study of the best arm identification
problem in the setting of collaborative learning with
limited interaction

Almost tight round-speedup tradeoffs for both
fixed-time and fixed-confidence settings.

New techniques for proving round lower bounds for
multi-agent collaborative learning

New direction: comm.-efficient collaborative learning.
Many open problems: regrets (bandits), general
reinforcement learning, etc.
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Thank you!
Questions?
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Upper Bound: Fixed-Time

Warning: I will cheat in multiple places
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Algorithm with Constant Error Probability

Phase 1 : Eliminate most of the suboptimal arms and leave
at most K candidates.

– Randomly partition the n arms to K agents.
– Each agent runs a centralized algo for T/2 time,

outputs the best arm if terminates, ‘⊥’ otherwise

Phase 2 : Run R rounds, the goal of the r -th round is to

reduce #candidates to K
R−1
R .

In each round:

– Each agent spends T/(2R) time uniformly on K
arms.

– Eliminate arms whose empirical means smaller than
(top empirical mean − ε(K ,R,T ,#candidates))

When T = Θ̃(HK−
R−1
R ), the algo succeeds w.pr. 0.99
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Algorithm for General Parameter Settings

Goal: When T � HK−
R−1
R , the error diminishes

exponentially in T
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Algorithm for General Parameter Settings

Goal: When T � HK−
R−1
R , the error diminishes

exponentially in T

Challenge 1: We do not know the instance dependent
parameter H
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Algorithm for General Parameter Settings

Goal: When T � HK−
R−1
R , the error diminishes

exponentially in T

Challenge 1: We do not know the instance dependent
parameter H

Idea 1: Guess H using the doubling method
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Algorithm for General Parameter Settings

Goal: When T � HK−
R−1
R , the error diminishes

exponentially in T

Challenge 1: We do not know the instance dependent
parameter H

Idea 1: Guess H using the doubling method

Challenge 2: When T � HK−
R−1
R , centralized algo

may consistently return the same suboptimal arm (there
is no guarantee).
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Algorithm for General Parameter Settings

Goal: When T � HK−
R−1
R , the error diminishes

exponentially in T

Challenge 1: We do not know the instance dependent
parameter H

Idea 1: Guess H using the doubling method

Challenge 2: When T � HK−
R−1
R , centralized algo

may consistently return the same suboptimal arm (there
is no guarantee).

Idea 2: Instead of fixing time budget of the first phase
to T

2 , choose a random time budget in {T2 ,
T

200}
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Lower Bound: Fixed-Confidence
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The SignID Problem

SignID: There is one Bernoulli arm with mean ( 1
2 + ∆)

Goal: Make min #pulls on the arm and decide whether
∆ > 0 or ∆ < 0. Let I (∆) denote the input instance.

Say A is β-fast for the instance I (∆), if

Pr
I (∆)

[
A succeeds within ∆−2/β time

]
≥ 2/3.
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The SignID Problem

SignID: There is one Bernoulli arm with mean ( 1
2 + ∆)

Goal: Make min #pulls on the arm and decide whether
∆ > 0 or ∆ < 0. Let I (∆) denote the input instance.

Say A is β-fast for the instance I (∆), if

Pr
I (∆)

[
A succeeds within ∆−2/β time

]
≥ 2/3.

A β-speedup best arm identification algorithm ⇒
an Ω(β)-fast algorithm for SignID
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Main Theorem for SignID

Theorem. Let ∆∗ ∈ (0, 1/8). If A is a (1/K 5)-error β-fast
algorithm for every SignID problem instance I (∆) where
|∆| ∈ [∆∗, 1/8), then there exists ∆[ ≥ ∆∗ such that

Pr
I (∆[)

[
A uses Ω

(
ln(1/∆∗)

ln(1 + K/β) + ln ln(1/∆∗)

)
rounds

]
≥ 1

2
.
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Main Theorem for SignID

Theorem. Let ∆∗ ∈ (0, 1/8). If A is a (1/K 5)-error β-fast
algorithm for every SignID problem instance I (∆) where
|∆| ∈ [∆∗, 1/8), then there exists ∆[ ≥ ∆∗ such that

Pr
I (∆[)

[
A uses Ω

(
ln(1/∆∗)

ln(1 + K/β) + ln ln(1/∆∗)

)
rounds

]
≥ 1

2
.

• Progress lemma
• Distribution exchange lemma

Prove using two lemmas alternatively (next slide)
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The Progress Lemma

Progress Lemma. For any ∆ ≤ 1/8, α ≥ 0, q ≥ 1, if
PrI (∆)[E(α,∆−2/(Kq))] ≥ 1/2, then

Pr
I (∆)

[E∗(α,∆−2/(Kq))] ≥ Pr
I (∆)

[E(α,∆−2/(Kq))]− δ(K , q)

E(α,T ): A uses at least α rounds and at most T time
before the end of the α-th round.

E∗(α,T ): A uses at least (α + 1) rounds and at most T
time before the end of the α-th round.
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The Progress Lemma

Progress Lemma. For any ∆ ≤ 1/8, α ≥ 0, q ≥ 1, if
PrI (∆)[E(α,∆−2/(Kq))] ≥ 1/2, then

Pr
I (∆)

[E∗(α,∆−2/(Kq))] ≥ Pr
I (∆)

[E(α,∆−2/(Kq))]− δ(K , q)

E(α,T ): A uses at least α rounds and at most T time
before the end of the α-th round.

E∗(α,T ): A uses at least (α + 1) rounds and at most T
time before the end of the α-th round.

Intuition. If A can only use ∆−2/(Kq)×K = ∆−2/q pulls
for a large enough q in one round , then we cannot tell
I (∆) from I (−∆).
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The Distribution Exchange Lemma

Distribution Exchange Lemma. For any ∆ ≤ 1/8,
α ≥ 0, q ≥ 100, ζ ≥ 1,

Pr
I (∆/ζ)

[E(α + 1,∆−2/(Kq) + ∆−2/β)]

≥ Pr
I (∆)

[E∗(α,∆−2/(Kq))]− δ′(K , q, β)

E(α, T ): A uses at least α rounds and at most T time before the end of the α-th round.

E∗(α, T ): A uses at least (α + 1) rounds and at most T time before the end of the α-th round.
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The Distribution Exchange Lemma

Distribution Exchange Lemma. For any ∆ ≤ 1/8,
α ≥ 0, q ≥ 100, ζ ≥ 1,

Pr
I (∆/ζ)

[E(α + 1,∆−2/(Kq) + ∆−2/β)]

≥ Pr
I (∆)

[E∗(α,∆−2/(Kq))]− δ′(K , q, β)

E(α, T ): A uses at least α rounds and at most T time before the end of the α-th round.

E∗(α, T ): A uses at least (α + 1) rounds and at most T time before the end of the α-th round.

Intuition. For instance I (∆), since A is a β-fast algorithm,
each agent uses at most ∆−2/β pulls during the (α + 1)-st
round, and only sees at most (∆−2/(Kq) + ∆−2/β) pull
outcomes before the next communication, which is
insufficient to tell between I (∆) and I (∆/ζ).
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A Technical Lemma

Technical Lemma. Suppose 0 ≤ ∆′ ≤ ∆ ≤ 1/8.
For any positive integer m = ∆−2/ξ where ξ ≥ 100.
D = B(1/2 + ∆)⊗m, D′ = B(1/2 + ∆′)⊗m

Let X be any probability distribution with sample space
X . For any event A ⊆ {0, 1}m × X such that
PrD⊗X [A] ≤ γ, we have that

Pr
D′⊗X

[A] ≤ γ · exp
(

5
√

(3 lnQ)/ξ
)

+ 1/Q6,

holds for all Q ≥ ξ.

Cannot simply bound the statistical distance of induced
by ∆ and ∆/ζ. Need the following technical lemma.



35-1

Distribution Exchange Lemma. For any ∆ ≤ 1/8,
α ≥ 0, q ≥ 100, ζ ≥ 1,

Pr
I (∆/ζ)

[E(α + 1,∆−2/(Kq) + ∆−2/β)]

≥ Pr
I (∆)

[E∗(α,∆−2/(Kq))]− δ′(K , q, β)

Progress Lemma. For any ∆ ≤ 1/8, α ≥ 0, q ≥ 1, if
PrI (∆)[E(α,∆−2/(Kq))] ≥ 1/2, then

Pr
I (∆)

[E∗(α,∆−2/(Kq))] ≥ Pr
I (∆)

[E(α,∆−2/(Kq))]− δ(K , q)

Put Together
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Distribution Exchange Lemma. For any ∆ ≤ 1/8,
α ≥ 0, q ≥ 100, ζ ≥ 1,

Pr
I (∆/ζ)

[E(α + 1,∆−2/(Kq) + ∆−2/β)]

≥ Pr
I (∆)

[E∗(α,∆−2/(Kq))]− δ′(K , q, β)

Progress Lemma. For any ∆ ≤ 1/8, α ≥ 0, q ≥ 1, if
PrI (∆)[E(α,∆−2/(Kq))] ≥ 1/2, then

Pr
I (∆)

[E∗(α,∆−2/(Kq))] ≥ Pr
I (∆)

[E(α,∆−2/(Kq))]− δ(K , q)

Put Together

Set ζ =
√

1 + (Kq)/β to connect the two lemmas:
∆−2/(Kq) + ∆−2/β = (∆/ζ)−2/(Kq)


