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ABSTRACT
In this paper we study skyline queries in the distributed computa-

tional model, where we have s remote sites and a central coordina-

tor; each site holds a piece of data, and the coordinator wants to

compute the skyline of the union of the s datasets. �e computation

is in terms of rounds, and the goal is to minimize both the total

communication cost and the round cost.

We �rst give an algorithm with a small communication cost but

potentially a large round cost; we show information-theoretically

that the communication cost is optimal even if we allow an in�nite

number of communication rounds. We next give algorithms with

smooth communication-round tradeo�s. We also show a strong

lower bound for the communication cost if we can only use one

round of communication. Finally, we demonstrate the superiority of

our algorithms over existing ones by an extensive set of experiments

on both synthetic and real world datasets.

1 INTRODUCTION
Skyline computation, also known as the maximal vector problem,

is a useful database query for multi-criteria decision making. If

we view data objects as points in the d-dimensional Euclidean

space, then the skyline is de�ned to be the subset of points that

cannot be dominated by others. Formally, given two distinct points

x = (x1,x2, . . . ,xd ) and y = (y1,y2, . . . ,yd ), we say y dominates x ,

denoted by y � x , if yi ≥ xi for every i = 1, 2, . . . ,d and yi > xi
for at least one i ∈ {1, 2, . . . ,d}. For a set of distinct points S , the

skyline of S is de�ned to be

sk(S) = {u ∈ S | no other v ∈ S s.t. v � u}.
�e skyline problem was �rst studied in computational geometry

in the mid-1970’s [14], and was later introduced into databases as

a query operator [3]. Most work on skyline computation in the

literature was conducted in the RAM (single machine) model [9,

13, 14, 16]. In recent years, due to the large size of the datasets and

the popularity of the map-reduce type of computation, a number of

parallel skyline algorithms have been proposed [1, 17, 18, 20, 24, 26].

A common feature of those parallel algorithms is that they use the

divide-and-conquer approach: �ey �rst partition the whole point
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set into a number of subsets, and then assign each subset to a

machine for a local processing; �nally the local results are merged

to form the global skyline. �e art of the algorithm design in this

line of work lies in how to choose the partition mechanism.

In this paper we consider the skyline computation on distributed

data, which is di�erent from parallel computation in that the data

is inherently distributed in di�erent locations, and we cannot a�ord

to repartition the whole dataset since data repartition is communi-

cation prohibited over networks, and may also cause local storage

issues which the query node cannot control.

Consider a global hotel search engine, where each hotel is rep-

resented as a point in the 2-dimensional Euclidean space with the

x-coordinate standing for the price and the y-coordinate standing

for the rate of the location. A user naturally wants to �nd a hotel

with the best location and the best price, although in reality hotels

in good locations typically have higher prices. �us a good search

engine should recommend the user with a list of candidates such

that no other hotel has both cheaper price and be�er location. �is

list is exactly the skyline of the point set. Given a query, the search

engine needs to contact servers/providers in di�erent locations

worldwide. �e total bits of communication between the query

node and servers and the communication rounds typically domi-

nate the engine’s response time, since sending messages through

network is much slower than local computation, and the initial-

ization of a new communication round takes quite some system

overhead.

In this paper we study the skyline problem in the coordinator
model which captures the type of distributed computation men-

tioned above. In this model we have s remote sites each holding a

set of points Si in the Euclidean space, and a central coordinator

which acts as the query node. We assume there is a two-way com-

munication channel between each site and the coordinator. �e

computation is in terms of rounds: at the beginning of each round

the coordinator sends a message to some of the sites, and then each

of the contacted site sends a response back to the coordinator. �e

goal is to compute sk(S)while minimizing the total communication

cost and the number of rounds of the computation. See Figure 1 for

a visualization of the model.

Optimizing the communication cost in the skyline computation

on distributed data has been studied previously [5, 18, 19, 27]. A

notable di�erence between our work and the previous ones is that

in our algorithms we allow to take a round budget as an input (to al-

low a tradeo� between round cost and communication cost), while

all the existing algorithms use �xed numbers of rounds. Moreover,

di�erent from previous heuristics we also provide rigorous theoret-

ical analysis on the communication cost given a round budget for

the 2-dimensional Euclidean space.
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Figure 1: �e Coordinator Model

We have made the following contributions. Let n be the total

number of points, k be the number of skyline points (i.e., the out-

put size), s be the number of sites, and d be the dimension of the

Euclidean space.

(1) We have proposed an algorithm that achieves O(ks) words

of communication and at most k rounds. We complement

this upper bound by proving a lower bound stating that the

communication cost is in fact optimal for d = O(1), even if

we allow an in�nite number of communication rounds.

(2) We have shown that if we want to �nish the computation

in one round then the communication cost has to be Ω(n).
(3) We have proposed an algorithm that gives smooth tradeo�s

between the communication cost and the round cost.

(4) We have implemented our algorithms and relevant ones

in the literature, and run them on both synthetic and real-

world datasets. Our experiments have demonstrated the

superiority of our algorithms over the existing ones in

various aspects.

1.1 Related Work
Skyline computation has been studied extensively in various set-

tings, including web information systems [2], peer-to-peer system[6,

8, 10, 21, 22, 24–26], mobile ad-hoc network [12, 23] and distributed

systems [5, 18, 19, 27]. �ere is a vast literature on skyline com-

putation and its variants, and we refer readers to [7] and [11] for

excellent surveys. Most of the existing works consider speci�c

network communication topology and are thus di�erent from us,

except FDS [27], AGiDS [18], PaDSkyline [5], SkyPlan [19] which

we will describe below.

PaDSkyline and SkyPlan were proposed for the clique commu-

nication topology where each site can directly communicate with

every other site. Both of them use the minimum bounding rectangu-
lar (MBR) to summarize data at each site. In PaDSkyline, the query

node collects MBRs from all sites and partitions them into incom-

parable groups, such that points at a site can only be dominated by

points at other sites in the same group. For each group, a speci�c

query plan is determined and represented as a tree structure. �e

query is then forwarded from the root to the leaves of the tree, and

each site sends points to be used for �ltering to the next site in the

plan. Finally the remaining points in each site are collected by the

root, and the skyline points among them are sent back to the query

node. SkyPlan is similar to PaDSkyline, where each site also sends

its MBR to the query node as a summarization of data. SkyPlan
improves the selection of query plan in PaDSkyline by building the

SD-graph, where each node corresponds to a site and each directed

edge is assigned with a weight to represent the dominance rela-

tionship between sites. A query plan is computed based on the

graph to maximize a quality function, which is the sum of weights

of all edges in a plan. We note that the tree-based computation is

inherent sequential and will incur a lot of communication rounds

if implemented in our coordinator model.

FDS [27] and AGiDS [18] are designed for the coordinator model,

and will be used as competitors in our experiments. We will describe

them in details in Section 4. Both FDS and AGiDS cannot take a

round budget as input; FDS may use many rounds, while AGiDS is

a �xed round (2-round) algorithm. We will see in our experiments

that our algorithms outperform both FDS and AGiDS.

2 ALGORITHMS
In this section we give a set of algorithms for skyline computation

on distributed data. �e �rst algorithm has a small communication

cost, but needs a number of communication rounds that is propor-

tional to the size of the skyline. In Section 3.1 we will show that

the communication cost of this algorithm is in fact optimal1 even if

we allow an in�nite number of communication rounds.

We note that there is a simple algorithm for computing the

skyline points in the coordinator model in one round: Each site

computes the skyline of its local data points and sends it to the

coordinator, and then the coordinator computes the global skyline

by merging these local skylines. Unfortunately this algorithm has

communication cost Ω(n); in other words, in the worse case almost

all points in all sites need to be sent to the coordinator. We enclose

a proof for this statement in Section 3.2.

We next try to explore if more rounds can help to reduce the

communication cost, and propose algorithms with tradeo�s on

communication cost and rounds.

For convenience, let [n] denote {1, 2, . . . ,n}.

2.1 Optimal Communication Cost
We described our algorithm in Algorithm 1. Let us explain it in

words. At the beginning, each site computes its local skyline points

since only these points can possibly be the global skyline points.

�e rest of the algorithm works as follows. At each round, the

coordinator tries to �nd the point with the largest �rst coordinate

in the remaining points held by all sites. �is is done by asking all

sites to report the local maximums of their remaining points (Line 3-

5). Next, the coordinator computes a new global skyline point from

the received local maximums, and then sends the new global skyline

point to all sites for another local pruning step (Line 7-9).

We now show the correctness of Algorithm 1 and analyze its

costs. First, it is clear that the point with the largest �rst coordinate

must be on the skyline. A�er the pruning, the points with the largest

�rst coordinate in the remaining points must also be on the skyline

since they cannot be dominated by the other remaining points as

well as the previous skyline points. �e correctness follows by

induction.

�e algorithm will terminate a�er k rounds since there are k
skyline points. �e running time at each site consists of two parts:

the computation of the local skylines and the prunings. �e compu-

tation of local skyline at the Site i needs O(ni log
d−2 ni + ni logni )

1
Up to a logarithmic factor which counts the number of bits used to represent a point.



Algorithm 1 Optimal(S1, . . . , Ss )
Input: Si (i ∈ [s]): the point set held by Site i
Output: the global skyline

1: Site i computes its local skyline points and discards the other

points in Si
2: while ∃i ∈ [s] s .t . Si , ∅ do
3: for each i s .t . Si , ∅ do
4: Site i sends the point with the largest �rst coordinate

to the coordinator

5: end for
6: �e coordinator picks the point with the maximum �rst

coordinate among the points received from all sites, and sends

the new global skyline point to each site

7: for each i s .t . Si , ∅ do
8: Site i prunes Si by the new global skyline point received

from the coordinator

9: end for
10: end while

time [14], where ni = |Si | is the number of points at the Site i and

d ≥ 2 is the dimension of dataset. �e time used for pruning is

O(dkki ) at the Site i where ki is the number of points in the local

skyline of Site i . At the coordinator, for each round we only need

to compute the maximums over at most s points. �us the total

running time is bounded by O(ks).

Theorem 2.1. �ere exists an algorithm for computing the skyline
on n points in the d-dimensional Euclidean space in the coordinator
model with s sites that usesO(ks) communication andk rounds, where
k is the output size, that is, the number of points in the skyline. �e
total running time at the Site i is O(ni log

d−2 ni + ni logni + dkki )
where ni and ki are the number of points and the size of the local
skyline at the Site i respectively, and that at the coordinator is O(ks).

2.2 Communication-Round Tradeo� for d = 2

In the previous section we have shown an algorithm with the op-

timal communication cost but using up to k rounds. On the other

hand, there is a naive one-round algorithm but in the worst case it

needs Ω(n) words of communication. �e natural questions is:

Can we obtain a communication-round tradeo� to
bridge the two extremes?

We try to address this question by proposing an algorithm that

allows the users to choose the number of the communication rounds

in the computation. In this section we �rst show such a tradeo�

result for 2-dimensional Euclidean space.

Theorem 2.2. �ere exists an algorithm for computing the skyline
on n points in the 2-dimensional Euclidean space in the coordinator
model with s sites that uses r (≥ 3) rounds and C = sk(n/s)1/dr/2e
communication, where k is the output size, that is, the number of
points in the skyline. �e total running time at the Site i is O(C/s +
ni logni ) where ni is the number of points at the Site i , and the total
running time at the coordinator is O(C).

We de�ne the ϕ-quantile of a set S to be an element a such that

at most ϕ |S | elements of S are smaller than a and at most (1−ϕ) |S |

Algorithm 2 Tradeo�-2D(S1, . . . , Ss , r )
Input: Si (i ∈ [s]): the point set held by Site i; r : user-chosen

round budget

Output: the global skyline

1: Site i computes its local skyline points and discards the other

points in Si
2: ` ← 1; t ← dr/2e
3: while (` ≤ t − 1) ∧ (∃i ∈ [s] s .t . Si , ∅) do
4: Let λ` be a parameter whose value is given in the analy-

sis (Equation (5)). All sites and the coordinator jointly com-

pute (1/λ` , 1/(2λ`))-quantiles according to the x-coordinates

of points in

⋃
i ∈[s] Si . the quantile points naturally partition

the Euclidean plane to λ` vertical strips

5: for each i s .t . Si , ∅ do
6: Site i , for each non-empty strip, sends the point with

the largest y-coordinate to the coordinator

7: end for
8: �e coordinator, for each strip, �nds the point with the

largest y-coordinate among points received from sites; let Y`
denote the set of these points among all strips

9: �e coordinator computes new skyline points from Y` and

sends them to each site

10: for each i s .t . Si , ∅ do
11: Site i prunes Si by new global skyline points received

from the coordinator

12: end for
13: ` ← ` + 1

14: end while
15: ∀i ∈ [s], Site i sends Si to the coordinator

16: �e coordinator updates the global skyline using the new points

received from sites

elements of S are greater than a. If an ϵ-approximation is allowed

(denoted by (ϕ, ϵ)-quantile), then we can return any ϕ ′-quantile of

S such that ϕ − ϵ ≤ ϕ ′ ≤ ϕ.

We call the �rst coordinate of a point in the 2-dimensional Eu-

clidean space the x-coordinate, and the second the y-coordinate.

Let t = dr/2e. We describe our tradeo� algorithm in Algorithm 2.

�e algorithm again starts with a local skyline computation at

each site. Similar to Algorithm 1, the rest of the tradeo� algo-

rithm still proceeds in rounds. �e main di�erence is that at each

round, the parties (sites and the coordinator) �rst jointly compute

(1/λ, 1/(2λ))-quantiles to partition the Euclidean plane to a set of

at most λ vertical strips, and then instead of computing the point

with the global maximum x-coordinate, the coordinator computes

for each non-empty strip the point with the maximum y-coordinate

by collecting information from the sites (Line 5-8); a�er that the

parties use these points to compute new skyline points and prune

each strip. We call the combination of computing the quantiles and

maximum y-coordinates, and �nding new skyline points and per-

forming local pruning, one step of the computation. �e algorithm

runs for (t − 1) steps, and a�er that the sites simply send all the

remaining points to the coordinator.

We now show the correctness of Algorithm 2, and analyze its

costs. �e high level intuition on the round e�ciency of Algorithm 2

is that at each round, the point with the maximum y-coordinate



in each strip will either contribute to the global skyline or help

to prune all the points in that strip. Compared with Algorithm 1,

one can think that we are trying to prune the whole data set in
parallel, that is, in each strip of the plane. �is will reduce the round

complexity at the cost of mildly increasing the total communication

cost.

Correctness. �e correctness of Algorithm 2 is straightforward:

our skyline computation does not prune any point that is not dom-

inated by others. Indeed, up to the (t − 1)-th step (or, (2t − 2)-th
round), what Algorithm 2 does can be summarized as “sites send

candidate global skyline points→ the coordinator computes new

global skyline points from these candidates→ sites use new skyline

points to prune their local datasets”. At the (2t − 1)-th round, sites

just send all the remaining unpruned points to the coordinator so

that we will not miss any skyline points.

Communication cost. We count the communication cost in two

parts. �e �rst part is the communication needed at the �rst (t − 1)
steps, and the second part is the total number of remaining points at

all sites a�er the (t−1)-th step, which will be sent to the coordinator

all at once at the �nal round.

We �rst analyze the cost of computing quantiles at each step.

We can compute (ϵ, ϵ/2)-quantiles using the following folklore

algorithm: Site i (for all i ∈ [s]) sends the coordinator the exact

ϵ/2-quantiles Qi of its local point set Si . Using {Q1, . . . ,Qs }, the

coordinator can answer quantile queries as follows: Given a query

rank β , it returns the largest v satisfying

β −∑
i ∈[s] ranki (v) ≥ 0,

where ranki (v) = ni (v) · (ϵ/2 · |Si |), and ni (v) is the number of

ϵ/2-quantiles in Qi that is smaller than v . It is easy to see that

0 ≤ β −v ≤ ϵ/2 ·∑i ∈[s] |Si |. �e following lemma summarizes the

communication cost of this algorithm.

Lemma 2.3. �ere is an algorithm that computes (ϵ, ϵ/2)-quantiles
in the coordinator model with s sites using one round and O(s/ϵ)
communication.

�us the communication used for quantile computation can be

bounded by O(sλ`) at step `. �e rest communication at each

step includes sending local maximums at all strips and new skyline

points, which can be bounded byO(sλ`) as well. To sum up the total

communication in the �rst part is bounded by O(s ∑`∈[t−1] λ`).
�e rest of the analysis is devoted to the second part, that is, to

bound the number of the remaining points a�er the (t − 1)-th step.

We �rst assume that the output size k is known, and λ` = λ for

all ` ∈ [t − 1] will be chosen as a function of k (see Equation (4)).

We will then show how to remove this assumption.

Let Y` ∈ [1, λ] denote the number of new skyline points we

�nd at the `-th step. Observe that in each strip, if the point with

the largest y-coordinate is not a skyline point, then the rest of the

points in that strip cannot be skyline points and thus are pruned.

A�er the �rst step, there are at most Y1 strips having point and

each strip has at most 2n/λ points, so there are at most

Y1 · 2n/λ = 2nY1/λ

points le�. A�er the second step, there are at most Y2 strips having

point and each strip has at most 2(2nY1/λ)/λ points, so there are at

most

Y2 · 2 (2nY1/λ) /λ = 4nY1Y2/λ2 (Y1 + Y2 ≤ k)
points le�. A�er the (t − 1)-th step, there are at most

2
t−1n

∏
`∈[t−1]

Y`

/
λt−1 ©­«

∑
`∈[t−1]

Y` ≤ k
ª®¬ (1)

≤ n

(
2k

(t − 1)λ

)t−1

(2)

points le�, where from (1) to (2) we have used the AM-GM inequal-

ity and the equality holds when all Y` = k/(t − 1) (` = 1, . . . , t − 1).
We thus have at most n(2k/((t − 1)λ))t−1

points le� at sites a�er

(t − 1)-th step, and the sites will send all of them in the �nal (i.e.,

(2t − 1)-th) round. Adding two parts together, the total communi-

cation cost is bounded by

O(sλ(t − 1)) + n
(

2k

(t − 1)λ

)t−1

. (3)

When

λ =
2k

t − 1

·
(
n(t − 1)

2sk

)
1/t
, (4)

Expression (3) simpli�es to be O(sk(t−1)/t (n/s)1/t ).
Dealing with unknown k . We now show how to deal with the

case that we do not know k at the beginning. A simple idea is to

guess k as powers of 2 (i.e., 1, 2, 4, 8, . . .), and for each guess, we

run our algorithm, and report error if

∑
Y` > k at some point,

in which case we double the value of k and rerun the algorithm.

�e correctness of the algorithm still holds. �e round complexity,

however, may blow up by a factor of logk in the worst case. We

will show that there is a way to preserve the round complexity even

when we do not know k at the beginning.

�e new idea is to guess k progressively, based on the number

of new skyline points found in the previous step. More precisely,

we set the guess of k at the `-th step (` ≥ 2) to be

k` = Y`−1
· (t − 1),

and we set k1 = t − 1 to begin with. Now at the `-th step we use

λ` =
2k`
t − 1

·
(
n(t − 1)

2s

)
1/t

(5)

strips for the pruning. Note that (5) is very similar to (4), where we

have replaced the �rst k in (4) by k` and removed the second k in

(4).

Similar to (2), a�er (t − 1)-th step, there are at most

2
t−1n

∏
`∈[t−1]

(Y`/λ`)

points le�, and consequently the total communication cost is bounded

by

s
∑

`∈[t−1]
λ` + 2

t−1n
∏

`∈[t−1]
(Y`/λ`). (6)

We now bound the two terms in (6) separately. We �rst have

s
∑

`∈[t−1]
λ` =

2s
∑

`∈[t−1] k`
(t − 1) ·

(
n(t − 1)

2s

)
1/t



≤ 2sk ·
(
n(t − 1)

2s

)
1/t
, (7)

where we have used the inequality∑
`∈[t−1]

k` = (t − 1) ©­«1 +
∑

`∈[t−2]
Y`

ª®¬ ≤ (t − 1)k .

For the second term, we have

2
t−1n

∏
`∈[t−1]

(Y`/λ`) = n
Y1Y2 · · ·Yt−1

Y1Y2 · · ·Yt−2

(
n(t − 1)

2s

)t/(t−1)

= nYt−1 ·
2s

n(t − 1)

(
n(t − 1)

2s

)
1/t

≤ 2sk

(t − 1)

(
n(t − 1)

2s

)
1/t
. (8)

By (7) and (8), the total cost is bounded by

O(sk(n/s)1/t ) = O
(
sk(n/s)1/dr/2e

)
,

as claimed.

Running time. �e time cost at each site involves three parts: the

computation of the local skyline, the computation of local quan-

tiles, and the point prunings. Computing local skyline again cost

O(ni logni ) where ni is the number of points at Site i . �e cost

of point prunings can again be made linear in ni for the same

reason as that in Algorithm 1. Now we analyze the time cost of

computing the local quantiles. Since points are sorted a�er the

local skyline computation, computing (exact) local quantiles needs

O(λ`) time at the `-th step. �us the total time is bounded by∑
`∈[t−1] λ` = O(k(n/s)1/t ) = O(k(n/s)1/dr/2e ).
�e running time at the coordinator also consists of three parts:

the computation of approximate global quantiles at each step, the

computation of new skyline points from the �rst step to the (t − 1)-
th step, and the computation of skyline points (output) at the end.

�e observation is that at each step, for each of the three tasks, the

running at the coordinator can be asymptotically bounded by the

number of points it receives from all sites in that step, and thus

the total running time at the coordinator is asymptotically upper

bounded by the total communication cost.

2.3 Communication-Round Tradeo� for All
Dimensions

In this section we consider general dimension d . We �rst note that

the approach in Section 2.2 does not work any more. For d = 2 we

can partition the space into strips according to the x-coordinate

(1-dimensional subspace) such that each strip has same amount

of points. As a result, once a strip is pruned, a certain number of

points are guaranteed to be pruned. However, for general d , we

can not �nd such a geometric partition for the (d − 1)-dimensional

subspace such that each part has the same amount of points.

We thus propose a simple algorithm which can be thought as

a modi�ed version of Algorithm 1. �e algorithm is described in

Algorithm 3. At each of the �rst r − 1 rounds, each site sends the

(at most) d points with the maximum coordinates at each of the

d dimensions. �e coordinator then computes new skyline points

from the points received from all sites, and sends new skyline points

Algorithm 3 Tradeo�-general(S1, S2, . . . , Ss , r )
Input: Si (i ∈ [s]): the point set held by Site i; r : user-chosen

round budget

Output: the global skyline

1: Site i computes its local skyline points and discards the other

points in Si
2: ` ← 1

3: while (` ≤ r − 1) ∧ (∃i ∈ [s] s .t . Si , ∅) do
4: for each i s .t . Si , ∅ do
5: Site i sends the points with the maximum coordinate

in each dimension to the coordinator

6: end for
7: Among the points received from sites, the coordinator �nds

the points with global maximum coordinates in each dimension,

adds them to the global skyline, and sends them to each site

8: for each i s .t . Si , ∅ do
9: Site i prunes Si by new global skyline points received

from the coordinator

10: end for
11: ` ← ` + 1

12: end while
13: ∀i ∈ [s], Site i sends Si to the coordinator

14: �e coordinator updates the global skyline using the new points

received from sites

to each site for a local pruning. Finally at the r -th round, each site

simply sends all the remaining unpruned points to the coordinator

for �nalizing the global skyline.

Note that the main di�erence between Algorithm 3 and Algo-

rithm 1 is that in the �rst r − 1 rounds, in the former each site may

send up to d distinct points, while in the later each site only sends

at most one point. On the other hand, in the worst case in both

algorithms the coordinator only obtains one new skyline point.

�erefore in the worst case Algorithm 3 may waste a factor of d
in the communication cost. However, in practice, the worse case

rarely happens and computing skyline from all dimensions makes

the pruning faster.

Algorithm 3 also gives a communication-round tradeo�, and it

works for any dimension d ≥ 2. �e correctness of Algorithm 3 is

obvious: at the �rst r − 1 rounds, it does the same thing as Algo-

rithm 1 for each coordinate, and every pruned point is guaranteed

to be dominated by the global skyline. In the last round sites just

send all the remaining unpruned points to the coordinator. Regard-

ing the communication cost, in the worst case the sites need to

sent Ω(n) points to the coordinator for small round budget r ; more

precisely, the number of remaining points at sites could be Ω(n)
a�er round r − 1. But we will show in Section 4 that in practice

Algorithm 3 is always communication e�cient.

2.4 Discussions
In this section we propose some strategies to further improve the

communication costs of our algorithms.

Avoid sending duplicated points. We observe that in Algorithm 1

the same point may be sent to the coordinator multiple times: If a

point is not pruned at the current round, then it will still be a local



Algorithm 4 Sorted-2D(S1, . . . , Ss )
Input: Si : the point set held by Site i
Output: the global skyline

1: Site i computes its local skyline points and discards the other

points in Si
2: Site i sends the point with the largest y-coordinate, denoted by

yi , to the coordinator

3: �e coordinator computes for ∀i ∈ [s], zi = max{yi+1, . . . ,ys },
and sends zi to Site i

4: Site i prunes Si using zi , and sends the rest points to the coor-

dinator

5: �e coordinator updates the global skyline using the new points

received from sites

maximum of the site in the next round. To avoid communicating

duplicated points, the coordinator requests a new local maximum

point from a site only when the previous point is pruned by the

global skyline.

More e�cient pruning. We notice that in many cases the coordina-

tor does not need to send all the global skyline points to sites. Con-

sider the following example in the 3-dimensional Euclidean space.

Let a = (0.6, 0.2, 0.5) be the local maximum point in the �rst dimen-

sion at Site 1. Suppose that a�er the �rst few rounds, the global sky-

line becomes b = (0.9, 0.1, 0.1), c = (0.8, 0.4, 0.4),d = (0.7, 0.6, 0.6).
Since a is dominated by d , we should send the global skyline to Site

1 for the pruning. �e observation is that we only need to send d
to Site 1 but not b and c , since d dominates b, c in the second and

third dimensions.

Reducing the cost of quantile computation. In our experiments

we found that the quantile computation is relatively expensive

when the size of the skyline is small. In this case we just compute

quantiles once, and then use the same quantiles at each round.

2.5 A 2-round algorithm for sorted datasets
Finally we would like to mention that in the 2-dimensional Eu-

clidean space, if data points are partitioned to the s sites in a sorted
order with respect to one of the two coordinates, then we can do

much be�er.

Theorem 2.4. For n points in the 2-dimensional Euclidean space
partitioned among the s sites in the coordinator model in the sorted
manner according to their x-coordinates or y-coordinates, there exists
an algorithm for computing the skyline that uses O(k + s) communi-
cation and 2 rounds, where k is the output size, that is, the number of
points in the skyline. �e total running time at Site i is O(ni logni )
where ni is the number of points at Site i , and that at the coordinator
is O(k + s).

Let us assume that points are sorted according to thex-coordinates.

�e algorithm is described in Algorithm 4. Each site �rst does a

local pruning and computes its local skyline. In the �rst round,

Site i sends the coordinator the point which has the largest y-

coordinate, denoted by yi . In the second round, the coordinator for

each i ∈ [s] computes the value zi which is the maximum value

among {yi+1, . . . ,ys }, and sends zi to Site i . Site i then prunes all

its local points with y-coordinate smaller than zi , and sends the

rest of its points to the coordinator.

To show the correctness of this algorithm, the claim is that the

points in Si withy-coordinate larger than zi , denoted by Pi , must on

the global skyline. Indeed, points in Pi cannot be dominated by any

point in S1, . . . , Si−1 since all points in Si have x-coordinates larger

than those points in S1, . . . , Si−1. On the other hand, points in Pi
cannot be dominated by any point in Si+1, . . . , Ss since all points in

Pi have y-coordinates larger than the those points in Si+1, . . . , Ss .

�e communication of the algorithm includes sending yi and zi
(costs 2s) plus sending skyline points (costs k). �e running time at

each site is dominated by the local skyline computation, and the

time cost at the coordinator is clearly O(k + s) (O(s) for the �rst

round and O(k) for the second round).

3 LOWER BOUNDS
In this section we provide two lower bound results to complement

our proposed algorithms.

3.1 In�nite Rounds
We prove a lower bound for the in�nite-round case by a reduction

from a communication problem called s-DISJ. �e lower bound

matches the upper bound by Algorithm 1 up to a logarithmic factor

which counts the number of bits used to represent a point in the

Euclidean plane.

In s-DISJ, each of the s sites gets an m-bit vector. Let Xi =
(X 1

i , . . . ,X
m
i ) be the vector the the i-th site gets. We can view the

whole input as an s ×m matrix X with Xi (i ∈ [s]) as rows. �e

s-DISJ problem is de�ned as follows:

s-DISJ(X1, . . . ,Xs ) =


1, if there exists a j ∈ [m] s.t.

∀i ∈ [s],X j
i = 1,

0, otherwise.

Lemma 3.1 ([4]). Any randomized algorithm for s-DISJ that suc-
ceeds with probability 0.51 has communication cost Ω(sm). �e lower
bound holds even when we allow an in�nite number of communication
rounds.

�e Reduction. Given the m-bit vector Xi for s-DISJ, the i-th site

�rst converts it to a 2m-bit vector X ′i as follows: each 0 bit will

be converted to 01, and each 1 bit will be converted to 10. For

example, when m = 5 and Xi = 10101, X ′i should be 1001100110.

�e next step is to convert X ′i to a staircase. �is step is illustrated

in Figure 2 (a). We can “embed” the staircase into an m ×m grid.

�e staircase starts from the top-le� point of the grid, and grows

in 2m steps. In the `-th step, if the `-th coordinate of X ′i is 0, then

the staircase grows one step horizontally rightwards; otherwise if

the `-th coordinate is 1, then the staircase grows one step vertically

downwards.

�e observation is that if we create s staircases using X ′
1
, . . . ,X ′s ,

then the skyline of the union of these s staircases is closely related

to the value of s-DISJ(X1, . . . ,Xs ): If s-DISJ(X1, . . . ,Xs ) = 0, then

the skyline will be in the form of the red curve in Figure 2 (b);

otherwise, the skyline will be di�erent from the red curve (e.g., be

the blue curve in Figure 2 (b) if the 3rd coordinates of X1, . . . ,Xs
are all 1). �is is because for each column j ∈ [m] in the grid, as

long as there is one i ∈ [s] such that the j-th coordinate of Xi is 0,

or the (2j − 1)-th and (2j)-th coordinates of X ′i is 01, the skyline

within the j-th column of the grid will be like “q”; otherwise if for



(a) (b)

Figure 2: (a)Translating vector X ′
1
= 1001100110 (m = 5) to a

staircase. (b) �e solid red skyline corresponds to the case
that s-DISJ(X1, . . . ,Xs ) = 0, and the dash blue skyline corre-
sponds to the case that s-DISJ(X1, . . . ,Xs ) = 1.

all i ∈ [s] the j-th coordinate of Xi is 0, then the skyline within the

j-th column of the grid will be like “x”. �e other direction also

holds, that is, if the skyline is in the form of the red curve, then

s-DISJ(X1, . . . ,Xs ) = 0; otherwise, s-DISJ(X1, . . . ,Xs ) = 1.

When the size of the skyline is k , we set m = k according to our

reduction, and obtain the following theorem.

Theorem 3.2. Any randomized protocol for computing skyline
in the coordinator model that succeeds with probability 0.51 has
communication cost Ω(sk) bits, where k is number of points in the
skyline. �e lower bound holds even when we allow an in�nite number
of communication rounds.

3.2 One Round
We now prove an Ω(n) communication lower bound for the case

that the algorithm needs to �nish in one round. �is proof is simpler

than the in�nite-round case – we only need two sites to participate

in the game. We assign Site 1 an m-bit vector u, which can be

converted to a staircase in the m ×m grid just like the in�nite-

round case, and assign Site 2 one bit v , which is translated to the

upper-right corner point of the grid if v = 1 and the lower-le�

corner point of the grid if v = 0. We have the following simple

observation, which holds because if we change one bit of the vector

m from 0 to 1, we will change a “q” to “x” in the staircase, and thus

change the skyline; same for replacing a bit 1 to 0.

Observation 1. If the coordinator needs to compute the global
skyline, and v = 0, then it needs to learn the vector u exactly.

We immediately have the following lemma.

Lemma 3.3. Any one round randomized algorithm for the coor-
dinator to learn u exactly with probability 0.51 has communication
cost Ω(m).

Note that when v = 1, the skyline only consists of a single point

in the upper right corner. �erefore the output size k is not directly

related to the valuem; we thus can setm = Ω(n).

Theorem 3.4. Any one round randomized algorithm for comput-
ing skyline in the coordinator model that succeeds with probability
0.51 has communication cost Ω(n) bits, where n is the total number
of points held by all sites.

4 EXPERIMENTS
4.1 �e setup
In this section we present the experimental studies of our proposed

algorithms. We have implemented all algorithms in C++. All exper-

iments were conducted on a Dell PowerEdge T630 server with 2

Intel Xeon E5-2667 v4 3.2GHz CPU with 8 cores each, and 256GB

memory.

�eDatasets andPartition. We generated three synthetic datasets

following the standard literature [3]: Anti-correlated (ANTI), Inde-

pendent (INDE), Correlated (CORR). As recommended in [27], in

order to simulate the distribution di�erences among sites, in each

site we distribute points within a bounding rectangle whose projec-

tion on the i-th dimension (i ∈ [1,d]) is an interval [αi , βi ], where

αi , βi are randomly chosen from [0, 1], adhering to the constraint

βi −αi ≥ 0.95. �e parameters number of points in each site, number
of sites, and dimension used in our experiments are described in

the following table. We will use the parameters with bold font by

default.

Parameter Values

#Points in each site {20k, 40k, 60k, 80k, 100k}
#Sites {20, 40, 60, 80, 100}

Dimension {2, 3, 4, 5}
Table 1: Parameters of synthetic datasets

We make use of the following real-world datasets in experiments

for d = 2, 3.

• Household [15]: this dataset contains 2 million household

electric power consumption records gathered between De-

cember 2006 and November 2010. We choose voltage and

intensity as the two a�ributes for d = 2, and add global
active power as the third a�ribute for d = 3. �e skyline

points represent those households that are recommended

to pay a�ention to the energy e�ciency. We partition the

data collected in every two consecutive months to the same

site; we thus have 24 sites.

• Airline: this dataset contains 1.2 million airline on-time

performance records between 30 U.S. major cities in the

2016 fourth quarter.
2

We choose (minus) departure delay
time and (minus) arrival delay time as the two a�ributes

for d = 2, and add (minus) taxi out time (time between

a �ight leaving the departure gate and taking o�) as the

third a�ribute for d = 3. �e skyline points are considered

to be on-time �ights. We partition the �ights departing

from the same city to the same site; we thus have 30 sites.

• Covertype [15]: this dataset contains 500 thousand natural

statistics from four wilderness areas located in the Roo-

sevelt National Forest of northern Colorado. We choose

elevation and slope as the two a�ributes for d = 2, and add

horizontal distance to hydrology as the third a�ribute for

d = 3. �e skyline points represent areas that may have

interesting geological behaviors. We randomly partition

the data to 20 sites.

2
Available at h�p://www.transtats.bts.gov.

http://www.transtats.bts.gov
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Figure 3: Communication cost vs round in 2-dimension

Algorithms. We compare the following algorithms in our experi-

ments.

• Naive: �e single round algorithm: Each site computes

and sends its local skyline to the coordinator for a merge.

• Optimal: Algorithm 1 in Section 2.1. �is algorithm achieves

the optimal communication cost.

• Tradeoff: Algorithm 2 in Section 2.2 for d = 2, and Al-

gorithm 3 in Section 2.3 for d > 2. �is algorithm gives a

smooth communication-round tradeo�. We note that if the

round budget r is too large, then Tradeoff may terminate

before using up the round budget.

• AGiDS: We use the AGiDS algorithm proposed in [18] as

a comparison. To make AGiDS �t in our model, we use

the following version of the original algorithm: At the

beginning, the coordinator and sites share the information

of a grid in which each cell represents a range in all axes

(equal width partition). In the �rst round (the planing
phase), sites send the information of non-empty cells to the

coordinator. In the second round (the execution phase), the

coordinator �nds the cells that may contribute to global

skyline and sends the information to sites, and then sites

send points in these cells to the coordinator. Finally the

coordinator computes the skyline of received points as the

output. We choose the parameter number of cells to be 1024

in our experiments as recommended in [18].

• FDS: We use the FDS algorithm proposed in [27] as a com-

parison. �e original algorithm proceeds in iterations. To

make it �t in our model, we use three rounds for each it-

eration: In the �rst round (the voluntary phase), each site

sends the top κ points with the largest scores (the sum of

all coordinate values) to the coordinator. In the second

round (the compulsory and computation phase), the coor-

dinator calculates the minimum score (denoted by Fmin)

from received points and sends it to each site. Each site

then sends all its local points that have larger scores than

Fmin to the coordinator. �e coordinator updates the global

skyline with points received in the �rst two rounds. In the

third round (the feedback phase), the coordinator calculates

and sends each site a feedback, which consists of points

that are guaranteed to dominate at least ` points in that

site. And then each site does a local pruning. κ and ` are

two parameters in FDS; we choose the optimal values κ = 1

and ` = 1 as reported in [27].

Measurements. We make the following two measurements in the

experiments: communication cost and time. We use the number of

data points transmi�ed between coordinator and sites to represent

communication cost. If an algorithm requires to send additional

information other than data points (such as the quantiles in Algo-

rithm 2; minimum score and `-NN distance of points in FDS), for

each number sent, we add 1/d to the communication cost. �e

time is the total time usage from the moment that the coordinator

initializes a query to the end of the query, which is also referred as

response time or network delay in other literatures. We assume that

all sites have already computed the local skyline before the query

start, since the local skyline computing needs same amount of time

for all algorithms.

4.2 Results and Discussions
Figure 3 and Figure 4 show the communication and round costs of

the algorithms on the three synthetic datasets and three real-world

datasets for d = 2, 3.

Compared with Optimal, Tradeoff achieves the almost same

communication cost with a much smaller round cost. For d = 2,

we observed that by using �ve rounds, the communication cost of

Tradeoff is 10%-48% of that of Naive on synthetic datasets and

16%-37% on real-world datasets. For d = 3, we observed that by

using ten to twenty rounds, the communication cost of Tradeoff
is 15%-44% of that of Naive on synthetic datasets and 12%-46% on

real-world datasets. We observed that the advantage of Tradeoff
against Naive is larger on ANTI and INDE datasets.
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Figure 4: Communication cost vs round in 3-dimension

ANTI INDE CORR

Figure 5: Communication cost vs number of points in each site

ANTI INDE CORR

Figure 6: Communication cost vs number of sites

ANTI INDE CORR

Figure 7: Communication cost vs data dimension

�e communication cost of AGiDS is much larger than Naive
in the most cases. One reason may be that the exchange of the

information of cells is communication expensive.

FDS falls short on both communication and round costs com-

pared with Tradeoff; sometimes its communication cost is even
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Figure 8: Running time

worse than Naive. It is clear that using 3 rounds for an iteration

is not round e�cient. Moreover, FDS exchanges a lot of additional

information such as minimum score and `-NN distance of points

which makes it communication ine�cient. We note that these addi-

tional information were not counted as communication cost in the

experiments of [27], and this is why our results are a bit di�erent

from the results in [27].

Figure 5, Figure 6 and Figure 7 show how the communication cost

changes with respect to the number of points at each site, number
of sites and dimension. For Tradeoff, we set the round budget to

be r = 5 when d = 2, and r = 20 when d > 2. We observed that

the communication costs of all algorithms increase when these

parameters increase. Tradeoff scales well with all the parameters

and outperforms FDS and AGiDS in all circumstances. We also

observed that the communication cost increases rapidly when the

dimension of the data increases; this is because the number of

skyline points increases signi�cantly when the dimension increases.

Figure 8 shows the running time of the tested algorithms (exclud-

ing the cost of local skyline computation) for d = 2, 3. Generally

speaking the running time of all algorithms are similar.

In summary, Tradeoff achieves noticeable communication cost

reductions than AGiDS, FDS and Naive by using a small number of

rounds; its performance is very close to the theoretically optimal

algorithm Optimal in the communication cost but is much more

e�cient in rounds. On the other hand, the performance of AGiDS
and FDS are clearly dominated by other algorithms. All algorithms

have similar time costs.

5 CONCLUSION
In this paper we propose a set of algorithms for computing skylines

on distributed data. We �rst give an algorithm that achieves the

optimal communication cost. We also propose two algorithms with

communication-round tradeo�s. We show experimentally that

our algorithms signi�cantly outperform existing heuristics in the

communication cost and/or round cost.
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plans for distributed skyline query processing. In EDBT 2011, 14th International
Conference on Extending Database Technology, Uppsala, Sweden, March 21-24,
2011, Proceedings, pages 271–282, 2011.

[20] A. Vlachou, C. Doulkeridis, and Y. Kotidis. Angle-based space partitioning for

e�cient parallel skyline computation. In SIGMOD, pages 227–238, 2008.

[21] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis. SKYPEER: e�cient

subspace skyline computation over distributed data. In Proceedings of the 23rd
International Conference on Data Engineering, ICDE 2007, �e Marmara Hotel,
Istanbul, Turkey, April 15-20, 2007, pages 416–425, 2007.

[22] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis. E�cient routing of

subspace skyline queries over highly distributed data. IEEE Trans. Knowl. Data
Eng., 22(12):1694–1708, 2010.
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