
Bias-Aware Sketches

Jiecao Chen
Indiana University

Bloomington, IN 47405

jiecchen@umail.iu.edu

Qin Zhang
Indiana University

Bloomington, IN 47405

qzhangcs@indiana.edu

ABSTRACT
Linear sketching algorithms have been widely used for
processing large-scale distributed and streaming datasets.
Their popularity is largely due to the fact that linear
sketches can be naturally composed in the distributed
model and be efficiently updated in the streaming model.
The errors of linear sketches are typically expressed in
terms of the sum of coordinates of the input vector ex-
cluding those largest ones, or, the mass on the tail of the
vector. Thus, the precondition for these algorithms to
perform well is that the mass on the tail is small, which
is, however, not always the case – in many real-world
datasets the coordinates of the input vector have a bias,
which will generate a large mass on the tail.

In this paper we propose linear sketches that are bias-
aware. We rigorously prove that they achieve strictly
better error guarantees than the corresponding existing
sketches, and demonstrate their practicality and superi-
ority via an extensive experimental evaluation on both
real and synthetic datasets.

1. INTRODUCTION
Linear sketches, such as Count-Sketch [6] and Count-

Median [11], are powerful tools for processing massive,
distributed, and real-time datasets. Let x = (x1, . . . , xn)T

be the input data vector where xi stands for the fre-
quency of element i. Linear sketching algorithms typ-
ically consist of two phases: (1) Sketching phase. We
apply a linear sketching matrix Φ ∈ Rr×n (r � n) on
x, getting a sketching vector Φx whose dimension is
much smaller than x. (2) Recovery phase. We use Φx
to recover useful information about the input vector x,
such as the median coordinate, the number of non-zero
coordinates (distinct elements), etc.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 9
Copyright 2017 VLDB Endowment 2150-8097/17/05.

We start by explaining why linear sketches are use-
ful in handling distributed and streaming data. In the
distributed computation model, we have t data vectors
x1, . . . ,xt distributed at t sites, which connect to a cen-
tral coordinator. The goal is for the coordinator to
learn the global data vector x =

∑
i∈[t] x

i communica-

tion efficiently. Note that the naive solution that each
site sending xi to the coordinator is communication ex-
pensive if the dimension of x is large. By linearity we
have Φx = Φx1 + . . .+ Φxt. Thus each site can simply
send the local sketching vector Φxi to the coordinator,
and then the coordinator sums up these local sketching
vectors to obtain the global sketching vector Φx, from
which it reconstructs x using the recovery procedure.
The total communication will be the product of t and
the dimension of Φx, which is much smaller than the
dimension of input vector x.

In the streaming model [1], where items arrive one by
one in the online fashion, a new incoming item i ∈ [n]
corresponds to updating the input vector x ← x + ei
where ei is an all-0 vector except the i-th coordinate
being 1. Again due to linearity, we can easily update
the linear sketch as Φx ← Φx + Φei. The space usage
of the streaming algorithm is simply the dimension of
the sketch Φx, which is again much smaller than the
dimension of x.

We consider in this paper the basic problem that in
the recovery phase, we want to best reconstruct the in-
put vector x using the sketching vector Φx. More pre-
cisely, our goal is to design a sketching matrix Φ and a
recovery procedure R(·) with the following properties.

• Accuracy. x̂ = R(Φx) is close to the original vec-
tor x under certain distance measurement.

• Compactness. The size of the sketch (equivalently,
r, the number of rows of Φ) is small;

• Efficiency. We can compute Φx and x̂ = R(Φx)
time-efficiently.

This basic problem has many applications in massive
data processing. Once a good approximation to x is ob-
tained, we can answer a number of statistical queries on
the input frequency vector such as point query, frequent

1



elements, range query, etc. These queries have numer-
ous real-world applications, including Internet data an-
alytics [10], search engines [24], data stream mining [9],
streaming and distributed query processing [7, 8, 28],
etc.

In this paper we focus on point query, which we be-
lieve is the most basic operation: given an index i ∈ [n],
return xi (the i-th coordinate of the input vector x).
Naturally, we would like to minimize the maximum (av-
erage) coordinate-wise difference between the recovered
vector x̂ = R(Φx) and the original vector x, that is, to
minimize ‖x− x̂‖∞ ( 1

n
‖x− x̂‖1).

Linear Sketches. Before stating our results, we would
like to add some background on linear sketches. For a
general vector x ∈ Rn, it is impossible to recover x ex-
actly from the sketching vector Φx of a much smaller
dimension. However, in many cases we are able to re-
cover x up to some small errors. One such error guaran-
tee, called the `∞/`p-guarantee, is that for any x ∈ Rn,
letting x̂ = R(Φx), the coordinate-wise error of the re-
covery is bounded by

‖x̂− x‖∞ = O(k−1/p) · Errkp(x), (1)

where k is a tradeoff parameter between the sketch size
and the accuracy guarantee, and

Errkp(x) = min
k-sparse x′

∥∥x− x′
∥∥
p
,

where we say a vector is k-sparse if it contains at most
k non-zero coordinates. In other words, Errkp(x) is the
`p-norm of the vector containing all coordinates of x
except zero-ing out the k coordinates with the largest
absolute values. We often call the k largest coordinates
the head of x and the rest (n − k) ones the tail of x.
Note that if x is k-sparse, then we are able to recover it
exactly since Errkp(x) = 0.

We typically consider p = 1 or p = 2, since for p > 2
there exists strong lower bound: the sketch size has to
be at least Ω(n1−2/p). 1 The error guarantee in Equality
(1) for p = 1 and p = 2 can be achieved with high proba-
bility by the classical Count-Median algorithm [11] and
Count-Sketch algorithm [6] respectively; we will illus-
trate these two algorithms in details in Section 3.

It is folklore that `∞/`1 and `∞/`2 guarantees can be
converted into `1/`1 and `2/`2 guarantees respectively
(see, for example, Section II of [18]). More precisely, for
p ∈ {1, 2} we can derive from Inequality (1) that

‖x̂− x‖p = O(1) · Errkp(x), (2)

which gives a more intuitive approximation guarantee
on the whole vector instead of individual coordinates.

Bias-Aware Sketches. The question we try to address
in this paper is:

1The proof can be done using the n1/p-party set-
disjointness hard instance similar to that for p-th fre-
quency moments [4].

What if the coordinates in the input vector x
have a non-trivial bias?

Let us consider an example. Let k = 2, n = 10, and

x = (3, 100, 101,500, 102, 98, 97, 100, 99, 103). (3)

We have Errk1(x) = 700, Errk2(x) =
√

69428 ≈ 263.49,
which are fairly large. It is easy to see that these large
errors are due to the fact that most coordinates of x
are close to 100 (intuitively, the bias), which results in
a heavy tail. It would be desirable if we can remove this
bias first and then perform the sketching and recovery.

In this paper we propose bias-aware sketches that
achieve the following performance guarantee. Let β(n)

be the n-dimensional vector with β at each coordinate.
For p ∈ {1, 2}, our sketches can recover an x̂ such that

‖x̂− x‖∞ = O(k−1/p) ·minβ Errkp(x− β(n)). (4)

And we define the bias of the input data vector x to be

β∗ = arg min
β

Errkp(x− β(n)). (5)

Clearly, the right hand side (RHS) of Inequality (4)
is no more than the RHS of Inequality (1) (equal when
the best bias β is 0). In the case when all except at
most k coordinates of x are close to a non-zero β, our
error bound will be much better than that in (1). For
the example mentioned earlier, we have minβ Errk1(x −
β(10)) = 12 and minβ Errk2(x − β(10)) =

√
28 ≈ 5.29

(arg minβ = 100; in this example the bias happens to
be the same for both p = 1 and p = 2), which are
significantly smaller than those given by Count-Median
and Count-Sketch.

Same as Inequality (2), for p ∈ {1, 2} we can derive
from (4) that

‖x̂− x‖p = O(1) ·minβ Errkp(x− β(n)). (6)

Remark 1 Compared with the single bias β, one may
want to allow multiple bias values. For example, for the
data vector y = (200, 100, 50, 50, 50, 50, 100, 100, 100, 10),
one may want to use two bias values β1 = 50 and β2 =
100, with 200 and 10 being the outliers. Unfortunately,
this cannot be done if we want to obtain an o(n) (sub-
linear) size sketch where n is the dimension of the input
vector, simply because when we have at least two bias
values, in the recovery procedure for each of the n coor-
dinates of input vector we need the information of which
bias value has been deducted from that coordinate, which
costs at least 1 bit.

Our Contributions. In this paper we have made the
following contributions.

1. We have given a rigorously formalization of the
bias-aware sketches, which strictly generalizes stan-
dard linear sketches in the error guarantees.

2. We have proposed bias-aware sketches with rigor-
ous `∞/`1 and `∞/`2 error guarantees. We have

2



also shown how to implement our sketches in the
streaming model for fast real-time query.

3. We have implemented our algorithms and veri-
fied their effectiveness on both synthetic and real-
world datasets. We note that our algorithms sig-
nificantly outperform the existing algorithms in
terms of accuracy for point query.

2. RELATED WORK
The history of data sketch/summary can be traced

back to Morris’ approximate counter [25] and Flajo-
let and Martin’s probabilistic counting algorithm [17].
Subsequently, streaming algorithms were extensively in-
vestigated since the seminal paper [1] by Alon et al.
Among them Count-Sketch [6] and Count-Min/Count-
Median [11] were found particularly useful in many ap-
plications from data analytics and mining to query pro-
cessing and optimizations. A number of variants of the
Count-Min algorithm have also been proposed, such
as Count-Min with conservative update [16, 20] and
Count-Min-Log with conservative update [27], but these
sketches are not linear and thus cannot be directly used
in the distributed setting. Another closely related algo-
rithm is the Counter-braids [23]. The intent of Counter-
braids is to be more bit-efficient than methods which
simply use counters. It requires a larger amount of
space to execute; and its encoding/decoding procedures
are recursive, layer by layer, and thus it cannot answer
point query without decoding the whole input vector
x. Finally, we would like to emphasize that all of the
algorithms mentioned above cannot handle data bias.

Deng et al. [13] attempted to remove the bias in the
Count-Min algorithm. In the high level, at the time of
recovering a coordinate mapped to a hash bucket (see
CM-matrix in Definition 1), their algorithm averages
the coordinates mapped into all other hash buckets to
obtain an estimate of the bias presented in the consid-
ered bucket. It turns out that such an estimation is too
rough to be useful – their analysis shows that their al-
gorithm can only achieve comparable recovery quality
as Count-Sketch.

Yan et al. [29] formulated the bias recovery problem in
the context of distributed outlier detection. We briefly
describe how BOMP works. To sketch a vector x ∈ Rn,
BOMP first computes y = Φx where Φ = [φ1, . . . , φn] ∈
Rt×n, where each entry of Φ is independently sampled
from the Gaussian distribution N (0, 1/t). In the recov-
ery phase BOMP prepends a new column 1√

n

∑n
i=1 φi

to Φ to get Φ′ = [ 1√
n

∑n
i=1 φi,Φ], and then runs OMP

(Orthogonal Matching Pursuit) on y and Φ′ in k + 1
iterations to recover x̃ as an approximation of x. How-
ever, their discussion only focused on the biased k-sparse
vectors where all coordinates of x are equal to some un-
known value β except at most k “outliers”, and did not
give a solid theoretical analysis. Moreover, OMP is very
time expensive, and cannot answer point query without
decoding the whole vector x.

Our work is closely related to the area of compressive
sensing. In fact, our linear sketching and recovery algo-
rithms can be seen as natural extensions of the standard
compressive sensing sparse recovery algorithms [5, 14,
12]. In the standard sparse recovery setting the bias of
the vector is assumed to be 0, which does work well for
a number of problems in signal processing but its power
is somewhat limited for massive data processing where
coordinates in vectors may have non-zero biases. We
note that the idea of debiasing can be viewed as a spe-
cial case of the incoherent dictionary learning [15, 19] –
one can add an all-1 vector (normalized by 1/

√
n) upon

the n standard basis vectors. However, as far as we are
concerned, the existing recovery algorithms in incoher-
ent dictionary learning use either linear programming
or OMP, which, again, are very time-inefficient on large
datasets and do not work for point query.

3. PRELIMINARIES
We summarize the main notations in this paper in

Table 1. A quick scan of the table may be useful since
some of the notations are not standard (e.g., a vector
minus a scalar value: x− β).

Table 1: List of notations

[n] [n] = {1, 2, . . . , n}
Pr the probability of
(x)i or xi for x ∈ Rn, both (x)i and xi represent

the i-th coordinate of x

‖x‖p ‖x‖p = (
∑
i |xi|

p)
1
p for x = (x1, . . . , xn);

when p =∞, ‖x‖∞ = maxi |xi|
k-sparse x ∈ Rn is k-sparse if x has at most k

non-zero coordinates
Sm(x) set of vectors in Rm obtained by choosing

m (≤ n) coordinates from x ∈ Rn

Errkp(x) Errkp(x) = mink-sparse x′ ‖x− x′‖p
x− β for x ∈ Rn, β ∈ R,

x− β = (x1 − β, . . . , xn − β)
mean(x) for x ∈ Rn, mean(x) = 1

n

∑n
i=1 xi

median(x) for x ∈ Rn, median(x) = xn+1
2

for odd n,

median(x) = (xn
2

+ xn
2
+1)/2 for even n

argminβ f(β) argminβ f(β) = {α | f(α) = minβ f(β)}
σ2(x) variance of x ∈ Rn;

σ2(x) = 1
n

∑n
i=1(xi −mean(x))2

σ2(Y ) variance of a random variable Y ;
σ2(Y ) = E

[
(Y −E[Y ])2

]
Π CM-Matrix. See Definition 1
Ψ CS-Matrix. See Definition 2
Υ Sampling matrix. See Definition 3

We would like to introduce two classical linear sketches
Count-Median and Count-Sketch, which will be used as
components in our algorithms.

Count-Median. The Count-Median algorithm [11] is
a linear sketch for achieving `∞/`1-guarantee. We first
introduce the Count-Median matrix.

3



Definition 1 (CM-matrix) Let h : [n] → [s] be a
hash function. A CM-matrix Π(h) ∈ {0, 1}s×n is de-
fined as

Π(h)i,j =

{
1 h(j) = i
0 h(j) 6= i.

For a vector x ∈ Rn, the following theorem shows
that we can recover each coordinate of x with a bounded
error from Θ(logn) random sketching vectors Π(h)x.

Theorem 1 ([11]) Set s = Θ(k/α) for an α ∈ (0, 1)
and d = Θ(logn). Let h1, . . . , hd : [n] → [s] be d inde-
pendent random hash functions, and let Π(h1), . . . ,Π(hd)
be the corresponding CM-matrices. Let x̂ = (x̂1, . . . , x̂n)
be a vector such that

x̂j = median
i∈[d]

{(
Π(hi)x

)
hi(j)

}
.

We have Pr
[
‖x̂− x‖∞ ≤ α/k · Errk1(x)

]
≥ 1− 1/n.

Count-Sketch. The Count-Sketch algorithm [6] is a
linear sketch for achieving `∞/`2-guarantee. It is simi-
lar to Count-Median; the main difference is that it in-
troduces random signs in the sketching matrix.

Definition 2 (CS-Matrix) Let h : [n]→ [s] be a hash
function, and r : [n] → {−1, 1} be a random sign func-
tion. A CS-matrix Ψ(h, r) ∈ {0, 1}s×n is defined as

Ψ(h, r)i,j =

{
r(j) h(j) = i
0 h(j) 6= i.

Similarly, for a vector x ∈ Rn, we can recover each coor-
dinate of x with a bounded error from Θ(logn) sketch-
ing vectors Ψ(h, r)x.

Theorem 2 ([6]) Set s = Θ(k/α) for an α ∈ (0, 1)
and d = Θ(logn). Let h1, . . . , hd : [n] → [s] be d in-
dependent random hash functions, let r1, . . . , rd : [n]→
{−1, 1} be d independent random sign functions, and let
Ψ(h1, r1), . . . ,Ψ(hd, rd) be the corresponding CS-matrices.
Let x̂ = (x̂1, . . . , x̂n) be a vector such that

x̂j = median
i∈[d]

{
ri(j) ·

(
Ψ(hi, ri)x

)
hi(j)

}
.

We have Pr
[
‖x̂− x‖∞ ≤ α/

√
k · Errk2(x)

]
≥ 1− 1/n.

We will use the following sampling matrix.

Definition 3 (Sampling Matrix) Let Υ ∈ {0, 1}t×n
be a 0/1 matrix by independently setting for each of the
t rows exactly one random coordinate to be 1.

4. BIAS-AWARE SKETCHES
In this section we propose two efficient bias-aware

sketches achieving `∞/`1-guarantee and `∞/`2-guarantee
respectively.

4.1 Warm Up
The core of our algorithms is to estimate the bias of

the input data. Before presenting our algorithms, we
first discuss a few natural approaches that do not work,
and then illustrate high level ideas of our algorithms.

Using mean as the bias. The first idea is to use the
mean of the input vector x. However, this cannot lead
to any theoretical error guarantee. Consider the vector
x = (∞,∞, 50, 50, 50, 50, 50, 50, 50) where ∞ denotes a
very large number, and k is set to be 2. The mean of the
coordinates of x is ∞, but the best bias value is β = 50
which leads to a tail error 0 (RHS of (4)). Nevertheless,
using the mean as the bias may work well in datasets
where there are not many extreme values. We will show
in our experiments (Section 5) that this is indeed the
case for some real-world datasets.

Searching the bias in a post-processing step. An-
other idea is to search the best bias value β in a post-
processing step after performing the existing sketching
algorithms such as Count-Sketch and Count-Median,
and then subtract it from the original sketch for the
recovery. More precisely, we can binary search the best
β by computing the RHS of (4) a logarithmic number
of times and then picking the best β value that mini-
mize the error Errkp(x − β(n)). This idea looks attrac-
tive since we can just reuse the existing sketching al-
gorithms. However, such a post-processing does not fit
the streaming setting where we want to answer queries
in real-time. Indeed, in the streaming model we have
to redo the binary search of β for queries coming in dif-
ferent time steps in the streaming process, which makes
the individual point query very slow.

Our approaches. In this paper we propose two simple,
yet efficient, algorithms to achieve the error guarantee
in (4), for p = 1 and p = 2 respectively. Our algo-
rithms do not need a post-processing step and can thus
answer real-time queries in the streaming model. For
p = 1, we compute by sampling an approximate me-
dian (denoted by med) of coordinates in x, and use it
as the bias. Using the stability of median we can show
that med is also an approximate median of the vector
x∗ obtained from x by dropping the k “outliers”. For
p = 2, the idea is still to use the mean. However, as
we have discussed previously, directly using the mean
of all items will not give the desired theoretical guar-
antee, since the mean can be “contaminated” by the
outliers (extreme values). We thus choose to employ a
Count-Median sketch and use the mean of the “middle”
buckets in the Count-Median sketch as the bias. Both
algorithms are conceptually very simple, but the com-
plete analysis turns out to be quite non-trivial. The
next two subsections detail our algorithms.

4.2 Recovery with `∞/`1-Guarantee
In this section we give a bias-aware sketch with `∞/`1-

guarantee. That is, we try to design a sketching matrix
Φ ∈ Rt×n (t� n) such that from Φx we can recover an
x̂ satisfying ‖x̂− x‖∞ = O(1/k) ·minβ Errk1(x− β).

4



Algorithm 1: `1-Sketch(x)

Input: x = (x1, . . . , xn) ∈ Rn
Output: sketch of x and a set S ⊆ {x1, . . . , xn}
/* assume s = csk for a constant cs ≥ 4;

d = Θ(logn); h1, . . . , hd : [n]→ [s] are common

knowledge */

1 generate a sampling matrix Υ ∈ {0, 1}20 logn×n

2 ∀i ∈ [d], yi ← Π(hi)x
3 S ← Υx

4 return S, {y1, . . . ,yd}

4.2.1 Algorithms
We use `1-S/R (`1-Sketch/Recover) to denote our al-

gorithm. Its sketching and recovery procedures are de-
scribed in Algorithm 1 and Algorithm 2 respectively.
For simplicity we assume that the two algorithms can
jointly sample hash functions h1, . . . , hd for free (i.e.,
without any costs). Indeed, we can simply choose 2-
wise independent hash functions g, hi, ri(i ∈ [d]), each
of which can be stored in O(1) space. This will not affect
any of our mathematical analysis since we will only need
to use the second moment of random variables. Thus
the total extra space to store random hash functions
can be bounded by O(d) = O(logn), and is negligible
compared with the sketch size O(k logn). In the dis-
tributed model we can ask the coordinator to generate
these hash functions and then send to all sites, and in
the streaming model we can precompute them at the
beginning and store them in the memory.

In the sketching phase of `1-S/R, we simply use sam-
pling to estimate the best β that minimizes Errk1(x−β).
More precisely, we sample Θ(logn) coordinates from x

and take the median (denoted by β̂), which we will
show is good for the `∞/`1-guarantee. The final (im-
plicit) sketching matrix Φ is a vertical concatenation of
d = Θ(logn) independent CM-matrix Π(hi)’s and the
sampling matrix Υ.

In the recovery phase, we use Count-Median to re-
cover ẑ as an approximation to the de-biased vector
x − β̂; consequently ẑ + β̂ will be a good approxima-
tion to x.

The following theorem summarizes the performance
of `1-S/R. One can compare it with Theorem 1 for
Count-Median.

Theorem 3 There exists a bias-aware sketching scheme
such that for any x ∈ Rn, it computes the sketch Φx,
and then recovers an x̂ as an approximation to x from
Φx satisfying the following.

Pr[‖x̂−x‖∞ ≤ C1/k ·min
β

Errk1(x−β)] ≥ 1−C2/n, (7)

where C1, C2 > 0 are two universal constants. The
sketch can be constructed in time O(n logn); the sketch
size is bounded by O(k logn); the recovery can be done
in time O(n logn).

Algorithm 2: `1-Recover(S, {y1, . . . ,yd}})
Input: S: a set of randomly sampled coordinates

of x; {yi = Π(hi)x | i ∈ [d]}
Output: x̂ as an approximation of x
/* assume s = csk for a constant cs ≥ 4;

d = Θ(logn); h1, . . . , hd : [n]→ [s] are common

knowledge */

1 β̂ ← median of coordinates in S

2 ∀i ∈ [d], πi ← coordinate-wise sum of columns of

Π(hi)

3 ∀i ∈ [d], ỹi ← yi − β̂πi
/* Run Count-Median recovery */

4 ∀j ∈ [n], ẑj ← mediani∈[d]

{(
ỹi
)
hi(j)

}
5 x̂← ẑ + β̂
6 return x̂

As mentioned in the introduction, we can convert
`∞/`1 guarantee to `1/`1 guarantee.

Corollary 1 The x̂ recovered in Theorem 3 also guar-
antees that with probability 1−O(1/n), we have

‖x̂− x‖1 = O(1) ·min
β

Errk1(x− β).

4.2.2 Analysis

Correctness.
Let β̄ be any β that minimizes the `1-norm error

Errk1(x − β). Let x∗ be the vector obtained by drop-
ping the k coordinates from x that deviate the most
from β̄. We first show:

Lemma 1 Given x ∈ Rn, pick any β̄ ∈ argminβ Errk1(x−
β). Let x∗ ∈ Sn−k(x) be the vector obtained by dropping
the k coordinates that deviate the most from β̄, we must
have

‖x∗ − β̄‖1 = ‖x∗ −median(x∗)‖1. (8)

Proof. For convenience we assume that (n − k) is
odd, and then ‖x∗−β‖1 reaches the minimum only when
β = median(x∗). It is easy to verify that our lemma also
holds when (n− k) is even. Under this assumption, we
only need to show β̄ = median(x∗).

We prove by contradiction. Suppose β̄ 6= median(x∗),
then

Errk1(x−median(x∗)) ≤ ‖x∗−median(x∗)‖1 < Errk1(x−β̄),

contradicting the definition of β̄.

Lemma 1 gives a more intuitive understanding of the
best β that minimizes Errk1(x−β), and it connects to the
idea that the median of coordinates works. But we are
not quite there yet since in (8) we need the exact median
of a vector x∗ that we do not know before figuring out
β̄. To handle this we need the followings two lemmas.

5



The first lemma says that a value that is close (but
not necessary equal) to the median of coordinates of x∗

can be used to approximate the best β̄.

Lemma 2 Given a vector x ∈ Rm with its coordinates
sorted non-decreasingly: x1 ≤ x2 ≤ . . . ≤ xm, for any j
such that m

4
< j < 3m

4
, we have∑

i∈[m]

|xi − xj | ≤ 2 ·min
β

∑
i∈[m]

|xi − β|.

Proof. For simplicity we assume m is odd; the even
case can be handled similarly. Let t = (m+ 1)/2 be the
index of the median coordinate. If j = t then we are
done. Otherwise, w.l.o.g., we assume j < t. We have(

m∑
i=1

|xi − xj |

)
−

(
m∑
i=1

|xi − xt|

)

=

t−j∑
i=1

i · (xt−i+1 − xt−i)

= −(t− j) · xj +

t∑
i=j+1

xi

=

t∑
i=j+1

(xi − xj)

≤
m/4∑
i=1

(xt − xi)
(

since
m

4
< j < t =

m+ 1

2

)

≤
m∑
i=1

|xi − xt|.

The lemma follows.

The second lemma says that the median of O(logn)
randomly sampled coordinates of x is close to the me-
dian of coordinates of the unknown vector x∗.

Lemma 3 Given a vector x ∈ Rn with its coordinates
sorted non-decreasingly: x1 ≤ x2 ≤ . . . ≤ xn, if we ran-
domly sample with replacement t = 20 logn coordinates
from x, then with probability at least 1−1/n the median
of the t samples falls into the range [xn/2−n/6, xn/2+n/6].

Proof. Let X1, . . . , Xt be the samples we pick. The
median of them does not fall into the range

[xn/2−n/6, xn/2+n/6]

if and only if one of the following events happens,

• E1: at least half of the samples larger than xn/2+n/6.

• E2: at least half of the samples smaller than xn/2−n/6.

We first bound the probability that E1 happens. Let
Yi be the random variables such that Yi = 1 if Xi >

xn/2+n/6, and Yi = 0 otherwise. We have E
[∑t

i=1 Yi
]

=
t/3. By a Chernoff bound, we have

Pr

[
t∑
i=1

Yi −
t

3
>
t

6

]

≤ exp

(
− t

12

)
< 1/(2n). (t = 20 logn)

Similarly we can show that the probability that E2 hap-
pens is at most 1/(2n). The lemma follows.

Now we are ready to prove the theorem.

Proof. (of Theorem 3) W.l.o.g. we assume the co-
ordinates of x are sorted as x1 ≤ x2 ≤ . . . ≤ xn. To
simplify the discussion, we assume t at Line 3 of Algo-
rithm 1 is odd. The even case can be verified similarly.

Let β̂ be the median of the t samples in S (Line 1 in
Algorithm 2). Let α ∈ argminβ Errk1(x− β). Let x∗ be
the vector obtained by dropping the k coordinates from
x that deviate the most from α.

By Lemma 3, β̂ ∈ [xn/2−n/6, xn/2+n/6] holds with
probability 1− 1/n. Note that we can assume that k =
O(n/ logn) (otherwise the sketch can just be x itself
which has size O(k logn)). We thus have

Pr
[
(x∗) (n−k)

4

≤ β̂ ≤ (x∗) 3(n−k)
4

]
> 1− 1

n
. (9)

Applying Lemma 2 to x∗ (with m = n− k), with prob-
ability at least (1− 1/n) it holds that

Errk1(x− β̂) ≤ ‖x∗ − β̂‖1
≤ 2 ·min

β
‖x∗ − β‖1 (by (9) and Lemma 2)

= 2 · ‖x∗ −median(x∗)‖1
= 2 · ‖x∗ − α‖1 (by Lemma 1)

= 2 ·min
β

Errk1(x− β), (10)

where the last equality holds due to the definitions of
α and x∗. By Theorem 1 (property of Count-Median)
and Line 4 of Algorithm 2 we have

Pr

[
‖ẑ− (x− β̂)‖∞ = O

(
1

k

)
· Errk1(x− β̂)

]
≥ 1− 1

n
.

Since at Line 5 we set x̂ = ẑ + β̂, we have

Pr

[
‖x̂− x)‖∞ = O

(
1

k

)
· Errk1(x− β̂)

]
≥ 1− 1

n
.

(11)
Inequality (7) of Theorem 3 follows from (10) and (11).

Complexities. Since CM-matrix only has one non-
zero entry in each column, using sparse matrix repre-
sentation we can compute Π(hi)x (i ∈ [d]) in O(n)
time. Thus the sketching phase can be done in time
O(nd) = O(n logn).

The sketch size is O(k logn) since each Ψ(hi)x (i ∈
[d]) has size O(k).

6



Algorithm 3: `2-Sketch(x)

Input: x ∈ Rn
Output: the sketch of x
/* assume s = csk for a constant cs ≥ 4;

d = Θ(logn); g, h1, . . . , hd : [n]→ [s];
r1, . . . , rd : [n]→ {−1, 1} are common

knowledge */

1 w← Π(g)x

2 ∀i ∈ [d], yi ← Ψ(hi, ri)x

3 return w, {y1, . . . ,yd}

Algorithm 4: `2-Recover(w, {y1, . . . ,yd})
Input: w = Π(g)x; {yi = Ψ(hi, ri)x | i ∈ [d]}
Output: x̂ as an approximation of x
/* assume s = csk for a constant cs ≥ 4;

d = Θ(logn); g, h1, . . . , hd : [n]→ [s];
r1, . . . , rd : [n]→ {−1, 1} are common

knowledge */

1 π ← coordinate-wise sum of columns of Π(g)
2 w.l.o.g. assume w1/π1 ≤ . . . ≤ ws/πs; set

β̂ =
∑s/2+k−1

i=s/2−k wi
/∑s/2+k−1

i=s/2−k πi

3 ∀i ∈ [d], ψi ← coordinate-wise sum of columns of

Ψ(hi, ri)

4 ∀i ∈ [d], ỹi ← yi − β̂ψi
/* Run the Count-Sketch recovery */

5 ∀j ∈ [n], ẑj ← mediani∈[d]

{
ri(j) ·

(
ỹi
)
hi(j)

}
6 x̂← ẑ + β̂
7 return x̂

In the recovery phase, the dominating cost is the com-
putation of coordinates in ẑ, for each of which we need
O(d) = O(logn) time. Thus the total cost is O(n logn).

4.3 Recovery with `∞/`2-Guarantee
In this section we give a bias-aware sketch with `∞/`2-

guarantee. That is, we try to design a sketching matrix
Φ ∈ Rt×n (t� n) such that from Φx we can recover an

x̂ satisfying ‖x̂− x‖∞ = O(1/
√
k) ·minβ Errk2(x− β).

4.3.1 Algorithms
We use `2-S/R (`2-Sketch/Recover) to denote our al-

gorithm. Its sketching and recovery procedures are de-
scribed in Algorithm 3 and Algorithm 4 respectively.

We again assume that the sketching algorithm and the
recovery algorithm can jointly sample (1) independent
random hash functions g, h1, . . . , hd : [n] → [s] and (2)
independent random signed functions r1, . . . , rd : [n]→
{−1, 1} without any costs.

In our algorithms we first use the CM-matrix to ob-
tain a good approximation β̂ of the β that minimizes
Errk2(x − β), and then use the Count-Sketch algorithm
to recover ẑ as an approximation to the de-biased vec-

tor x − β̂; and consequently ẑ + β̂ will be a good ap-
proximation to x. The final (implicit) sketching matrix

Φ ∈ Rs(d+1)×n in Algorithm 3 is a vertical concatena-
tion of a CM-matrix Π(g) and d = Θ(logn) independent
CS-matrices Ψ(hi, ri)’s.

In Algorithm 4, to approximate the best β we first
sum up all the columns of Π(g), giving a vector π =
(π1, . . . , πs) (Line 1). Let w = Π(g)x ∈ Rs. W.l.o.g.
assume that w1/π1 ≤ . . . ≤ ws/πs. We estimate β by

β̂ =
∑s/2+k−1

i=s/2−k wi
/∑s/2+k−1

i=s/2−k πi .

The intuition of this estimation is the following. First
note that wi/πi (i ∈ [s]) is the average of coordinates
of x that are hashed into the i-th coordinate(bucket)
of sketching vector Π(g)x. In the case that there is no
“outlier” coordinate of x that is hashed into the i-th
bucket of Π(g)x, then wi/πi (i ∈ [s]) should be close to
the best bias β. Since there are at most k outliers, if we
choose s ≥ 4k then most of these s buckets in Π(g) will
not be “contaminated” by outliers.

The next idea is to sort the buckets according to the
average of coordinates of x hashed into it (i.e., wi/πi),
and then choose the 2k buckets around the median and
take the average of coordinates hashed into those buck-
ets (Line 2). We can show that the average of coor-
dinates of x that are hashed into these 2k “median”
buckets is a good estimation of the best β. Note that
there could still be outliers hashed into the median 2k
buckets, but we are able to prove that such outliers will
not affect the estimation of β by much. After getting an
estimate of β we de-bias the sketching vector y (Line 3
and 4) for the next step recovery (Line 5 and 6).

The following theorem summarizes the performance
of `2-S/R. One can compare it with Theorem 2 for
Count-Sketch.

Theorem 4 There exists a bias-aware sketching scheme
such that for any x ∈ Rn, it computes Φx, and then re-
covers an x̂ as an approximation to x from Φx satisfying
the following:

Pr[‖x̂− x‖∞ ≤ C1/
√
k ·min

β
Errk2(x− β)] ≥ 1− C2/n,

(12)
where C1, C2 > 0 are two universal constants. The
sketch can be constructed in time O(n logn); the sketch
size is bounded by O(k logn); the recovery can be done
in time O(n logn).

As mentioned in the introduction, we can convert
`∞/`2 guarantee to `2/`2 guarantee.

Corollary 2 The x̂ recovered in Theorem 4 also guar-
antees that with probability 1−O(1/n), we have

‖x̂− x‖2 = O(1) ·min
β

Errk2(x− β).

7



4.3.2 Analysis

Correctness.
Similar to the `1 case, we first replace the somewhat

obscure expression minβ Errk2(x−β) in Theorem 4 with
another one which is more convenient to use.

Lemma 4 For any x ∈ Rn and k < n, let x∗ be a
vector in Sn−k(x) that has the minimum variance. It
holds that(

min
β

Errk2(x− β)

)2

= (n− k)σ2(x∗)

= ‖x∗ −mean(x∗)‖22. (13)

Furthermore, x∗ is equivalent to the vector obtained by
dropping the k coordinates from x that deviate the most
from mean(x∗).

Proof. First, by the definition of x∗ we have

(n− k)σ2(x∗) = min
x′∈Sn−k(x)

‖x′ −mean(x′)‖22.

By the definition of Errk2(·), we have

min
β

Errk2(x− β) ≥ min
x′∈Sn−k(x)

min
β
‖x′ − β‖

= min
x′∈Sn−k(x)

‖x′ −mean(x′)‖2.

Thus to prove (13), it suffices to show that

min
β

Errk2(x− β) ≤ min
x′∈Sn−k(x)

‖x′ −mean(x′)‖2.

Since the order of the coordinates in x do not matter,
w.l.o.g. we assume x∗ = (x1, x2, . . . , xn−k). Let γ =
mean(x∗), and write xi = γ+ ∆i, or equivalently, ∆i =
xi − γ. Note that if

min
i∈[n]\[n−k]

|∆i| ≥ max
i∈[n−k]

|∆i|, (14)

then we are done because

min
β

Errk2(x− β)2 ≤ Errk2(x− γ)2

=
∑

i∈[n−k]

∆2
i = ‖x∗ − γ‖22. (15)

Now we assume (14) is false. Again w.l.o.g., we assume
|∆1| = max

i∈[n−k]
|∆i| and |∆n| = min

i∈[n]\[n−k]
|∆i|, then

|∆1| > |∆n|. Let x′ = (x2, x3, . . . , xn−k−1, xn−k, xn) ∈
Sn−k, that is, x′ is obtained by dropping xi from x∗ and
then appending xn, we have

‖x′ −mean(x′)‖22 ≤ ‖x′ −mean(x∗)‖22
= ‖x′ − γ‖22 (by definition of γ)

= ∆2
n +

n−k∑
i=2

∆2
i (by definition of ∆i)

< ∆2
1 +

n−k∑
i=2

∆2
i

= ‖x∗ −mean(x∗)‖2,

which contradicts the definition of x∗. Hence (14) holds,
and consequently (13) holds.

On the other hand, (14) also implies that xn−k+1, . . . , xn
are the k coordinates of x that deviate the most from
γ = mean(x∗).

We then show (using Lemma 4) that a good approxi-
mation of mean(x∗) is also a good approximation of the
best β.

Lemma 5 For any x ∈ Rn and k < n, let x∗ be a
vector in Sn−k(x) that has the minimum variance. For
any α such that |mean(x∗)− α|2 ≤ C · σ2(x∗) for any
constant C > 0, we have

Errk2(x− α)2 = O

(
min
β

Errk2(x− β)2
)
.

Proof. W.l.o.g. we again assume x∗ = (x1, . . . , xn−k).

Define f(b) , ‖x∗−b‖22. Let γ = mean(x∗). By Lemma
4 we have

f(γ) = (n− k)σ2(x∗) = ‖x∗ − γ‖22 = min
β

Errk2(x− β)2.

(16)
Write α = γ + ∆ and thus ∆2 ≤ Cσ2(x∗),

Errk2(x− α)2 ≤ ‖x∗ − α‖22
= f(α) = f(γ + ∆)

=
∑

i∈[n−k]

((xi − γ)−∆)2

= (n− k)∆2 +

n−k∑
i=1

(xi − γ)2 − 2∆

n−k∑
i=1

(xi − γ)

≤ (n− k) · Cσ2(x∗) + ‖x∗ − γ‖22 + 0

= O

(
min
β

Errk2(x− β)2
)
. (by (16))

We are done.

The next lemma is crucial. It shows that the ap-
proximation β̂ obtained in the recovery algorithm (Al-
gorithm 4) is a good approximation of mean(x∗).

Lemma 6 Let β̂ be given at Line 2 of Algorithm 4. If
s = csk for a sufficiently large constant cs ≥ 4, it holds
that

Pr

[(
β̂ −mean(x∗)

)2
= O

(
σ2(x∗)

)]
= 1−O

(
1

n

)
for any x∗ in Sn−k(x) that has the minimum variance.

Before proving Lemma 6, we need a bound on the
difference between the average of all coordinates of a
vector and the average of a subset of coordinates.

Lemma 7 Let x = {x1, . . . , xm} ∈ Rm be a vector. Let
S be a subset of x’s coordinates of size |S| = Θ(m). Let
µ = 1

m

∑
i∈[m] xi, and µ′ = 1

|S|
∑
i∈S xi. Then we have∣∣µ′ − µ∣∣2 = O

(
σ2(x)

)
.

8



Proof. W.l.o.g., let x1 ≤ . . . ≤ xm. Let α ∈ (0, 1)
be an arbitrary constant. Let

µ1 =
1

αm

∑
i∈[αm]

xi and µ2 =
1

(1− α)m

∑
i∈[m]\[αm]

xi.

We only need to prove two extreme cases where S =
[αm] or S = [m]\[αm] (in both cases |S| = Θ(n) since
α = (0, 1) is an arbitrary constant):

|µ1 − µ|2 ≤
1

α
·σ2(x) and |µ2 − µ|2 ≤

1

1− α ·σ
2(x).

(17)
For simplicity (and w.o.l.g.), we assume µ = 0, since we
can always define yi = xi−µ and prove on yi’s. We can
write the variance of x as

σ2(x) =
1

m

 ∑
i∈[αm]

x2i +
∑

i∈[m]\[αm]

x2i


≥

(
αmµ2

1 + (1− α)mµ2
2

)
/m (Cauchy-Schwarz)

= αµ2
1 + (1− α)µ2

2.

(17) follows straightforwardly.

Proof. (of Lemma 6) Fix any x∗ = (xi1 , . . . , xin−k )
in Sn−k(x) that has the minimum variance. Let O
be the set of the top-k indices i in x that maximize
|xi −mean(x∗)|. By Lemma 4 we have that x∗ can be
obtained from x by dropping coordinates indexed by O.

We call an index i ∈ [s] in the sketching vector w =
Π(g)x contaminated if there is at least one o ∈ O such
that g(o) = i. W.l.o.g., we assume w1/π1 ≤ . . . ≤ ws/πs
where π is defined at Line 1 of Algorithm 4. Let

I = {i | s/2− k ≤ i < s/2 + k}

be the 2k “median” indices of w, and

Ī = {i | i < s/2− k ∨ i ≥ s/2 + k}

be the rest of indices in w. Since |O| = k and s ≥ 4k,
there are at most k coordinates in I that are contami-
nated, and at least k coordinates in Ī that are not con-
taminated.

The approximation to the bias β at Line 2 of Algo-
rithm 4 can be written as

β̂ =

∑
i∈I wi∑
i∈I πi

. (18)

Let O′ = I ∩ g(O) be the indices in I that are contam-
inated, and let J be an arbitrary subset of Ī with size
|O′|. Define

γ1 = min
J

∑
i∈I∪J\O′ wi∑
i∈I∪J\O′ πi

and γ2 = max
J

∑
i∈I∪J\O′ wi∑
i∈I∪J\O′ πi

.

(19)

It is easy to see that γ1 ≤ β̂ ≤ γ2: since s ≥ 4k, one can
always find a subset J ⊆ Ī of size |O′| such that for any
j ∈ J, o ∈ O′ we have wj/πj ≥ wo/πo, and replacing
O′ with J only increases the RHS of (18); On the other

hand one can also find a subset J ⊆ Ī of size |O′| such
that for any j ∈ J, o ∈ O′ we have wj/πj ≤ wo/πo, and
replacing O′ with J only decreases the RHS of (18).

We now show that both γ1 and γ2 deviate at most
O(σ(x∗)) from mean(x∗), and consequently β̂, which
is sandwiched by γ1 and γ2, deviates from mean(x∗)
by at most O(σ(x∗)). Consider the set G = g−1(I ∪
J\O′). First, by definitions of I, J and O′ we have G ⊆
{i1, . . . , in−k}; and thus {xj | j ∈ G} are coordinates in
x∗. Second, since |I ∪ J\O′| = Θ(k) and g is a random
mapping from [n] to [s], by a Chebyshev inequality we
have |G| = Θ(n) with probability at least 1−O(1/n).2

For any J ⊆ Ī of size |O′|, let

γJ =
1

|G|
∑
j∈G

xj =

∑
i∈I∪J\O′ wi∑
i∈I∪J\O′ πi

.

By Lemma 7, we have

|γJ −mean(x∗)| = O(σ(x∗)). (20)

Since Inequality (20) applies to any J ⊆ Ī of size |O′|, we
have |γ −mean(x∗)| = O(σ(x∗)) for any γ ∈ {γ1, γ2}.

Finally we prove Theorem 4 using Lemma 5 and 6;
we show that the obtained β̂ is a good approximation
of the best β that minimizes Errk2(x− β).

Proof. (of Theorem 4) Let x∗ be a vector in Sn−k(x)
that has the minimum variance. At Line 4-5 in Algo-
rithm 4 the Count-Sketch recovery algorithm is used to
compute ẑ as an approximation to x− β̂. By Theorem 2
we have

Pr

[
‖ẑ− (x− β̂)‖∞ = O

(
1√
k

)
· Errk2(x− β̂)

]
≥ 1− 1

n
.

Since at Line 6 we set x̂ = ẑ + β̂, it holds that

Pr

[
‖x̂− x‖∞ = O

(
1√
k

)
· Errk2(x− β̂)

]
≥ 1− 1

n
.

(21)
By Lemma 6,

Pr
[
|β̂ −mean x∗| = O (σ(x∗))

]
= 1−O

(
1

n

)
.

Plugging it to Lemma 5 we have with probability at
least (1−O(1/n)) that

Errk2(x− β̂) = O

(
min
β

Errk2(x− β)

)
. (22)

Inequality (12) in Theorem 4 follows from (21) and
(22).

2More precisely, define for each i ∈ [n] a random vari-
able Yi, which is 1 if g(i) ∈ I ∪ J\O′ and 0 other-
wise. Since |I ∪ J\O′| = Θ(k) and s = Θ(k), we have
E[Yi] = Θ(1), and Var[Yi] ≤ E[Y 2

i ] = O(1). Next note
that |G| =

∑
i∈[n] Yi. We thus can apply a Chebyshev

inequality on Yi’s and conclude that |G| = Θ(n) with
probability 1−O(1/n).

9



Complexities. Since each CS-Matrix or CM-matrix
only has one non-zero entry in each column, using sparse
matrix representation we can compute Ψ(hi, ri)x (i ∈
[d]) or Π(g)x in O(n) time. Thus the sketching phase
can be done in time O(nd) = O(n logn).

The sketch size is O(k logn), simply because Π(g)x
and each Ψ(hi, ri)x (i ∈ [d]) has size O(k).

In the recovery phase, the dominating cost is the com-
putation of coordinates in ẑ, for each of which we need
O(d) = O(logn) time. Thus the total cost is O(n logn).

4.4 Streaming Implementations
We now discuss how to maintain the bias (estimation)

β at any time step in the streaming setting. This is
useful since we would like to answer individual point
queries efficiently without decoding the whole vector x;
to this end we need to first maintain β efficiently.

For the `∞/`1 guarantee we can easily maintain a
good approximation of β with O(log logn) time per up-
date: we can simply keep the Θ(logn) sampled coordi-
nates sorted (e.g., using a balanced binary search tree)
during the streaming process, and use their median as
an approximation of β at any time step. For the `∞/`2
guarantee, the recovery procedure in Algorithm 4 takes
the average of items in the middle 2k of the s sorted
buckets w1/π1 ≤ . . . ≤ ws/πs. This can again be done
in O(log s) = O(log k+ log log n) time per update using
a balanced binary search tree. An alternative imple-
mentation using biased heaps is described Algorithm 5.
The idea of the algorithm is very simple: we use heaps
to keep track of

∑
i∈A wi,

∑
i∈C wi,

∑
i∈A πi,

∑
i∈C πi,

where A is the set of the top (s/2− k) coordinates and
C is the set of the bottom (s/2 − k) coordinates (the
order is defined by wi/πi). Using these sums together
with

∑
i∈[s] wi and ‖π‖1 we can well estimate the bias.

The full streaming algorithm for `∞/`2 guarantee is
described in Algorithm 6, which is similar to Algorithm 4
but has been augmented to fit the streaming model. The
one for `∞/`1 guarantee can be done similarly, and we
omit here.

Finally we comment on how to generate and store
random hash functions in the streaming setting. In fact,
we can simply choose hash functions g, hi, ri(i ∈ [d]) to
be 2-wise independent (and each will use O(1) space to
store). This will not affect any of our analysis since we
only need to use the second moment of random vari-
ables (same in the proofs for Theorem 1 and Theorem 2
for the CM-sketch and CS-sketch, see [6, 11]). Thus
the total extra space to store random hash functions
can be bounded by O(d) = O(logn), and is negligible
compared with the sketch size O(k logn).

5. EXPERIMENTS
In this section we give our experimental studies.

5.1 The Setup
Reference Algorithms. We compare `1-S/R and `2-
S/R with Count-Sketch (CS) algorithm and Count-Median

Algorithm 5: Bias-Heap

Input: s (# of rows of CM-matrix Π), and vector
π (coordinate-wise sum of columns of
matrix Π)

1 create s nodes, each of which is associated with a
(key, value, id) triple (wi/πi, wi, i) where wi = 0
and πi is the i-th coordinate of π
/* key is the priority of nodes in the heap

*/

2 set k ← s/4
3 initialize a min-heap A for nodes 1 to s/2− k − 1
4 initialize a max-heap B for nodes s/2− k to s
5 initialize a max-heap C for nodes s/2 + k to s
6 initialize a min-heap D for nodes 1 to s/2 + k − 1

7 πA ,
∑
i∈{all id in A} πi; πC ,

∑
i∈{all id in C} πi

8 wA ,
∑
i∈{all id in A} wi; wC ,

∑
i∈{all id in C} wi

9 w ← 0
/* process updates or queries */

10 case upon receiving an update (j,∆) do
11 w ← w + ∆
12 find node with id j in two of heaps A,B,C,D

and update its wj by adding ∆; update the
corresponding key and maintain the heap
properties

13 if the key of the top node in A is smaller than
that of the top of B then

14 swap their tops and maintain heap
properties

15 if the key of the top node of C is larger than
that of the top of D then

16 swap their tops and maintain heap
properties

17 update πA, πC , wA, wC if necessary

18 case upon receiving a query of the bias β do
19 return w−wA−wC

‖π‖1−πA−πC

Sketch (CM) algorithm, as well as non-linear sketches
Count-Min with conservative update (CM-CU) [16, 20]
and Count-Min-Log with conservative update (CML-
CU) [27]. For CML-CU, we set the base to be 1.00025.

We would like to mention that the Count-Min algo-
rithm, which was proposed in the same paper [11] as
Count-Median, is very similar to Count-Median; they
share the same sketching matrix. In fact, Count-Median
can be thought as a generalization of Count-Min [11].
On the other hand, CM-CU is an improvement upon
Count-Min and has strictly better performance. We
thus do not compare our algorithms with Count-Min
in our experiments.

Finally, we also compare `1-S/R and `2-S/R with two
simple algorithms that just use the mean of all coordi-
nates in x as the bias (denoted by `1-mean and `2-mean
respectively). See sec. 5.4 for details. As mentioned
earlier, using the mean of all the coordinates as the bias

10



Algorithm 6: Streaming Algorithm with `∞/`2
Guarantee

/* s = csk for a constant cs ≥ 4; d = Θ(logn);

g, h1, . . . , hd : [n]→ [s];
r1, . . . , rd : [n]→ {−1, 1} are the same as in

Algorithm 4;

π ←
∑
j∈[n] j-th column of Π(g) */

1 ∀i ∈ [d],ψi ← coordinate-wise sum of columns of

the CS-matrix Ψ(hi, ri)

2 initialize y1, . . .yd to be all-zero vectors of length s
3 initialize Bias-Heap in Algorithm 5 with s and π

/* process updates or queries */

4 case upon an update (ei,∆) do
5 ∀t ∈ [d], ytht(i) ← ytht(i) + rt(i) ·∆
6 update the Bias-Heap with (g(ei),∆)

7 case upon receiving a query for computing xi do

8 query Bias-Heap to get β̂
9 z ←

median
{
rt(i) ·

(
ytht(i) − ψ

t
ht(i) · β̂

) ∣∣∣ t ∈ [d]
}

10 return z + β̂

cannot give us any theoretical guarantees – for exam-
ple, it will perform badly on datasets where the top-k
largest coordinates are significantly larger than all the
rest coordinates. However, this simple heuristic does
work well on some real-world datasets. Thus they may
be interesting to practitioners.

Datasets. We compare the algorithms using a set of
real and synthetic datasets.

• Gaussian. Each entry of x is independently sam-
pled from the Gaussian distributionN (b, σ2) where
b is the bias. In our experiments, we fix n =
500, 000, 000, σ = 15 and vary the value of b.

• Gaussian-2. This dataset is used to compare `1-
S/R, `2-S/R, `1-mean and `2-mean. Each entry
of x is independently sampled from the Gaussian
distribution N (100, 152). In our experiments, we
fix n = 5, 000, 000. To verify our theorems, we
shift several coordinates. See Figure 8 for details.

• WorldCup [2]. This dataset consists of all the re-
quests made to all resources of the 1998 World
Cup Web site between April 30, 1998 to July 26,
1998. We picked all the requests made to all re-
sources on May 14, 1998. We construct x from
those requests where each coordinate is the num-
ber of requests made in a particular second. The
dimension of x is therefore 24 × 3600 = 86, 400.
There are about 3, 200, 000 requests.

• Wiki [22]. This dataset contains pageviews to the
English-language Wikipedia from March 16, 2015
to April 25, 2015. The number of pageviews of

each second is recorded. We model the data as
a vector x of length about 3, 500, 000 (we added
up mobile views and desktop views if they have the
same timestamp). There are about 13, 000, 000, 000
pageviews.

• Higgs [3]. The dataset was produced by Monte
Carlo simulations. There are 28 kinematic prop-
erties measured by the particle detectors in the ac-
celerator. We model the fourth feature as a vector
x of size 11, 000, 000. The vector is non-negative.

• Meme [21]. This dataset includes memes from the
memetracker.org. We model the vector x as the
lengths of memes. Each coordinate of x can be
thought as the number of words of a specific meme.
The dimension of x is 210,999,824.

• Hudong [26]. There are “related to” links between
articles of the Chinese online encyclopaedia Hudong.3

This dataset contains about 2,452,715 articles, and
18,854,882 edges. Each edge (a, b) indicates that
in article a, there is a “related to” link pointing
to article b. Such links can be added or removed
by users. We consider edges as a data stream, ar-
riving in the order of editing time. Let x be the
out-degree of those articles, and xi is the number
of “related to” links in article i. This dataset will
be used to test our algorithms in the streaming
model where we dynamically maintain a sketch
for x.

Measurements. We measure the effectiveness of the
tested algorithms by the tradeoffs between sketch size
and the recovery quality. We also compare the running
time of these algorithms in the streaming setting.

For `1-S/R and `2-S/R, we use d = 9 copies of CS/CM-
matrices of dimensions s× n (see Algorithm 1 and Al-
gorithm 3). Theoretically we only need O(logn) extra
words for `1-S/R to estimate the bias, but in our imple-
mentation we use s (typically much larger than logn)
extra words for both `1-S/R and `2-S/R, which makes it
easier to compare the accuracies of `1-S/R and `2-S/R.
Moreover, it also allows us to get more accurate and sta-
ble bias estimation for `1-S/R. For CM, CS, CM-CU and
CML-CU, we set d = 10 so that all algorithms use 10s
words. We will then vary s to get multiple sketch-size
versus accuracy tradeoffs.

For point query we use the following two measure-
ments: (1) average error 1

n
‖x− x̂‖1, and (2) maximum

error ‖x− x̂‖∞. Recall that x̂ is the approximation of
x given by the recovery scheme.

Computation Environments. All algorithms were
implemented in C++. All experiments were run in a
server with 32GB RAM and an Intel Xeon E5-2650 v2
8-core processor; the operating system is Red Hat En-
terprise Linux 6.7.

11



(a) b = 100, ave. error (b) b = 100, max. error (c) b = 500, ave. error (d) b = 500, max. error (e) Legend

Figure 1: Gaussian dataset; n = 500, 000, 000 and σ = 15. Some curves for CM, CM-CU, CML-CU cannot be presented
since the errors are too large

(a) Average error (b) Maximum error

Figure 2: Wiki dataset; n = 3, 513, 600. The curve for
CM cannot be presented since the errors are too large

(a) Average error (b) Maximum error

Figure 3: WorldCup dataset; n = 86, 400

5.2 Accuracy for Point Query
Gaussian dataset with n = 500, 000, 000. Figure 1a

and Figure 1b show the average and maximum errors
of `1-S/R, `2-S/R, CM, CS, CM-CU and CML-CU re-
spectively on Gaussian dataset with n = 500 million,
σ = 15 and b = 100.

First note that `1-S/R and `2-S/R have similar av-
erage/maximum errors when we increase s. An ex-
planation for this phenomenon is that in `2-S/R we
use random signs +1,−1 to reduce/cancel the noise
(contributed by colliding coordinates) in each hashing

3http://www.hudong.com/

(a) Average error (b) Maximum error

Figure 4: Higgs dataset; n = 11, 000, 000.

(a) Average error (b) Maximum error

Figure 5: Meme dataset; n = 210, 999, 824. Some curves
for CM and CML-CU cannot be presented since the er-
rors are too large

bucket, while in `1-S/R we do not. But in Gaussian the
“perturbation” of each xi around the bias is symmetric,
and thus both algorithms achieve good cancellations.
When s is small, the error of `2-S/R is slightly smaller
than that of `1-S/R, this might because `1-S/R can not
estimate the bias accurately. On the other hand, both
`1-S/R and `2-S/R outperform other algorithms signif-
icantly. As a comparison, the errors of `1-S/R and `2-
S/R are less than 1/5 of CS, 1/20 of CML-CU, 1/50 of
CM-CU and 1/200 of CM.

In Figure 1c and Figure 1d, we increase the value of
b to 500. As we can observe from those figures that

12



(a) Average error (b) Maximum error (c) Update time (d) Query time (e) Legend

Figure 6: Hudong dataset; n = 2, 232, 285, there are 18, 854, 882 updates in total

(a) Average error (b) Maximum error

Figure 7: Higgs dataset for fixed s; n = 11, 000, 000.
We fix s = 50000 and vary d. The depth d here is for
`1-S/R and `2-S/R; for CS, CM, CM-CU and CML-CU,
the depth is d+ 1.

the average and maximum errors of `1-S/R and `2-S/R
are not affected by the value of b, which can be fully
predicted from our theoretical results. On the contrary,
the errors of CM, CS, CM-CU and CML-CU increase sig-
nificantly when we increase b.

Wiki dataset. Figure 2 shows the accuracies of differ-
ent algorithms on Wiki. We have observed that when
varying the sketch size, `2-S/R always achieves the best
recovery quality. For example, when sketch size is s =
20, 000, the average error of `2-S/R is smaller than 1/10
of the average errors of other algorithms. For average
error, `1-S/R and CS perform similarly but the maxi-
mum error of CS is typically 2+ times larger than that
of `1-S/R. The performance of CM, CM-CU and CML-
CU are much worse than `1-S/R and `2-S/R.

WorldCup dataset. Figure 3 shows the accuracies of
different algorithms on WorldCup. While `2-S/R still
achieves the smallest average error, CS and `1-S/R fol-
low closely. Again CM, CM-CU and CML-CU perform
significantly worse than others. For maximum error,
CS, CM-CU, CML-CU `1-S/R and `2-S/R have similar
errors; CM gives significantly (typically 4+ times) larger
errors than other algorithms.

Higgs dataset. Figure 4 shows the accuracies of dif-
ferent algorithms on Higgs. It can be observed that

for average error, `2-S/R again achieves the smallest er-
ror. The average error of CS is typically larger than
that of `2-S/R and is much smaller than that of other
algorithms. For maximum error, CML-CU has similar
accuracy as `2-S/R for large s. The maximum errors of
all other algorithms are larger than that of `2-S/R. CM
again has the worst performance.

Meme dataset. Figure 5 shows the accuracies of dif-
ferent algorithms on Meme. We can again observe that
`2-S/R achieves the best recovery quality. The errors of
CS are about 30% larger than that of `2-S/R. Both `2-
S/R and CS outperform other algorithms significantly.

5.3 Effects of Sketch Depth
To see how the sketch depth d affects the accuracy of

the sketch, we conduct experiments as follows: we fix
the sketch size s and vary the sketch depth d. We only
present the results for Higgs and similar results can be
observed in other datasets.

It can be observed from Figure 7 that for all algo-
rithms we tested, increasing d will improve the accuracy.
One can also observe that CML-CU is more sensitive to
the value of d than other algorithms. In terms of accu-
racy, `2-S/R still outperforms other algorithms and for
the maximum error, CML-CU follows closely when d is
large.

5.4 Comparisons with Mean Heuristics
We also compare our algorithms with `1-mean and `2-

mean. In Figure 8a-8b, we use the dataset whose entries
are sampled from N (100, 152). It can be observed that
all algorithms have similar performance and this is be-
cause all of `1-S/R, `2-S/R, `1-mean and `2-mean can
estimate the bias (b = 100) well. In the dataset used
in Figure 8c-8d, we shift 500 entries by 100, 000. A di-
rect consequence is that the mean of the vector is no
longer an accurate estimation of the bias. It can be ob-
served that errors of both `1-mean and `2-mean increase
significantly.

We also conduct experiments on Wiki dataset, one can
observe that `2-S/R, `1-mean and `2-mean have similar
performance and all of them outperform `1-S/R.

13



(a) Average error (b) Maximum error (c) Average error (d) Maximum error (e) Legend

Figure 8: Gaussian-2 dataset; Fig. 8a-8b, the dataset is not shifted. Fig. 8c-8d, 500 entries are shifted by 100, 000

(a) Average error (b) Maximum error

Figure 9: Wiki dataset

5.5 Distributed and Streaming Implemen-
tations

As mentioned in the introduction, it is straightfor-
ward to implement our bias-aware sketches in the dis-
tributed model by making use of the linearity. More-
over, their performance in the distributed model can be
fully predicted by the centralized counterparts – the to-
tal communication will just be the number of sites times
the size of the sketch, and the time costs at the sites and
the coordinator will be equal to the sketching time and
recovery time respectively.4 Therefore, our experiments
in the centralized model can also speak for that in the
distributed model.

We implemented our bias-aware sketches in the stream-
ing model. We have run our algorithms on the stream-
ing dataset Hudong where edges are added in the stream-
ing fashion. We update the sketch at each step, and
recover the entire x̂ after feeding in the whole dataset.
To measure the running time, we first process the whole
data stream and calculate the average update time. We
then recover the whole vector and calculate the average
query time.

4Regarding the random hash functions, the coordinator
can simply generate g, h1, . . . , hd : [n]→ [s]; r1, . . . , rd :
[n] → {−1, 1} at the beginning and send to each site,
which only incurs an extra of O(logn) communication
on each channel and is thus negligible.

Accuracy for Point Query. Figure 6a and Figure 6b
show that the recovery errors of CS are 2+ times larger
than that of `2-S/R. The others algorithms have even
larger errors. In both Figures the results of CML-CU
and CM-CU are very close and their curves overlap with
each other. The performance of `1-S/R is also quite
similar to CML-CU and CM-CU.

Update/Recover Running Time. It can be seen
from Figure 6c and Figure 6d that all of the six tested
algorithms have similar processing time per update and
per point query. The time cost per update of `1-S/R is
about 50% more than CM, and that of `2-S/R is within
a factor of 2 of CS. We thus conclude that the additional
components (such as the Bias-Heap) used in `1-S/R and
`2-S/R only generate small overheads.

5.6 Summary of Experimental Results
We now summarize our experimental results. We

have observed that in terms of recovery quality, `1-S/R
strictly outperforms CM, and `2-S/R strictly outper-
forms CS. In general `2-S/R is much better than `1-S/R,
especially when the noise around the bias is not sym-
metric. Note that this is similar to the phenomenon that
the error of CS is almost always smaller than that of CM
in practise, and is consistent to the theoretical fact that
if n� k, and the tail coordinates of y = x−β(n) follows
some long tail distribution, than the error 1

k
Errk1(y) is

much larger than 1√
k

Errk2(y).

14



In almost all datasets we have tested, `2-S/R outper-
forms CML-CU and CM-CU, the latter two are consid-
ered as improved versions of the Count-Min sketch.

The sketch depth d also affects the accuracy of a
sketch. Larger d leads to better performance. It is also
observed that some algorithms (e.g. CML-CU) are more
sensitive to d than others.

As for running time (update/query), the differences
between `1-S/R, `2-S/R, CS, CM, CM-CU and CML-CU
are not significant. The overhead introduced by the
components used to estimate the bias is fairly low in
both `1-S/R and `2-S/R.

6. CONCLUSION
In this paper we formulated the bias-aware sketch-

ing and recovery problem, and proposed two algorithms
that strictly generalize the widely used Count-Sketch
and Count-Median algorithms. Our bias-aware sketches,
due to their linearity, can be easily implemented in the
streaming and distributed computation models. We
have also verified their effectiveness experimentally, and
showed the advantages of our bias-aware sketches over
Count-Sketch, Count-Median and the improved versions
of Count-Min in both synthetic and real-world datasets.

7. ACKNOWLEDGMENT
Jiecao Chen and Qin Zhang are supported in part by

NSF CCF-1525024 and IIS-1633215.

8. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency
moments. In STOC, pages 20–29. ACM, 1996.

[2] M. Arlitt and T. Jin. World cup web site access
logs, august 1998. URL http://ita. ee. lbl.
gov/html/contrib/WorldCup. html, 1998.

[3] P. Baldi, P. Sadowski, and D. Whiteson. Searching
for exotic particles in high-energy physics with
deep learning. Nature communications, 5, 2014.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach
to data stream and communication complexity. In
FOCS, pages 209–218, 2002.

[5] E. J. Candès, J. K. Romberg, and T. Tao. Robust
uncertainty principles: exact signal reconstruction
from highly incomplete frequency information.
IEEE Transactions on Information Theory,
52(2):489–509, 2006.

[6] M. Charikar, K. C. Chen, and M. Farach-Colton.
Finding frequent items in data streams. In
ICALP, pages 693–703, 2002.

[7] G. Cormode. Sketch techniques for approximate
query processing. Foundations and Trends in
Databases. NOW publishers, 2011.

[8] G. Cormode and M. Garofalakis. Sketching
streams through the net: Distributed approximate

query tracking. In VLDB, pages 13–24. VLDB
Endowment, 2005.

[9] G. Cormode and M. Hadjieleftheriou. Methods for
finding frequent items in data streams. VLDB J.,
19(1):3–20, 2010.

[10] G. Cormode, T. Johnson, F. Korn,
S. Muthukrishnan, O. Spatscheck, and
D. Srivastava. Holistic udafs at streaming speeds.
In SIGMOD, pages 35–46. ACM, 2004.

[11] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and
its applications. J. Algorithms, 55(1):58–75, 2005.

[12] G. Cormode and S. Muthukrishnan.
Combinatorial algorithms for compressed sensing.
In SIROCCO, pages 280–294, 2006.

[13] F. Deng and D. Rafiei. New estimation algorithms
for streaming data: Count-min can do more.
Technical report, 2007.

[14] D. L. Donoho. Compressed sensing. IEEE
Transactions on Information Theory,
52(4):1289–1306, 2006.

[15] D. L. Donoho, M. Elad, and V. N. Temlyakov.
Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE
Trans. Information Theory, 52(1):6–18, 2006.

[16] C. Estan and G. Varghese. New directions in
traffic measurement and accounting. Computer
Communication Review, 32(1):75, 2002.

[17] P. Flajolet and G. N. Martin. Probabilistic
counting algorithms for data base applications. J.
Comput. Syst. Sci., 31(2):182–209, 1985.

[18] A. C. Gilbert and P. Indyk. Sparse recovery using
sparse matrices. Proceedings of the IEEE,
98(6):937–947, 2010.

[19] A. C. Gilbert, S. Muthukrishnan, and M. Strauss.
Approximation of functions over redundant
dictionaries using coherence. In SODA, pages
243–252, 2003.

[20] A. Goyal, H. D. III, and G. Cormode. Sketch
algorithms for estimating point queries in NLP. In
EMNLP-CoNLL, pages 1093–1103, 2012.

[21] J. F. E. IV, F. Fogelman-Soulié, P. A. Flach, and
M. J. Zaki, editors. Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, June
28 - July 1, 2009. ACM, 2009.

[22] O. Keyes. Wiki-Pageviews, english wikipedia
pageviews by second.
http://datahub.io/dataset/

english-wikipedia-pageviews-by-second,
April, 2015.

[23] Y. Lu, A. Montanari, B. Prabhakar,
S. Dharmapurikar, and A. Kabbani. Counter
braids: a novel counter architecture for per-flow
measurement. In SIGMETRICS, pages 121–132,
2008.

[24] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.

15



Dremel: interactive analysis of web-scale datasets.
Communications of the ACM, 54(6):114–123,
2011.

[25] R. Morris. Counting large numbers of events in
small registers. Communications of the ACM,
21(10):840–842, 1978.

[26] X. Niu, X. Sun, H. Wang, S. Rong, G. Qi, and
Y. Yu. Zhishi.me – weaving Chinese linking open
data. In Proc. Int. Semantic Web Conf., pages
205–220, 2011.

[27] G. Pitel and G. Fouquier. Count-Min-Log sketch:

Approximately counting with approximate
counters. ArXiv e-prints, Feb. 2015.

[28] D. Van Gucht, R. Williams, D. P. Woodruff, and
Q. Zhang. The communication complexity of
distributed set-joins with applications to matrix
multiplication. In PODS, pages 199–212. ACM,
2015.

[29] Y. Yan, J. Zhang, B. Huang, X. Sun, J. Mu,
Z. Zhang, and T. Moscibroda. Distributed outlier
detection using compressive sensing. In SIGMOD,
pages 3–16. ACM, 2015.

16


