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Abstract

Modern data management systems often need to deal with massive, dynamic and inherently dis-
tributed data sources. We collect the data using a distributed network, and at the same time try to
maintain a global view of the data at a central coordinator using a minimal amount of communication.
Such applications have been captured by the distributed monitoring model which has attracted a lot of
attention in recent years. In this paper we investigate the monitoring of the entropy functions, which are
very useful in network monitoring applications such as detecting distributed denial-of-service attacks.
Our results improve the previous best results by Arackaparambil et al. [2]. Our technical contribution
also includes implementing the celebrated AMS sampling method (by Alon et al. [1]) in the distributed
monitoring model, which could be of independent interest.

1 Introduction

Modern data management systems often need to deal with massive, dynamic, and inherently distributed data
sources, such as packets passing through the IP backbone network, loads of machines in content delivery
service systems, data collected by large-scale environmental sensor networks, etc. One of the primary goals
is to detect important and/or abnormal events that have happened in networks and systems in a timely man-
ner, while incurring a minimal amount of communication overhead. These applications led to the study
of (continuous) distributed monitoring, which has attracted a lot of attention in the database and network
communities in the past decade [3,7,8,12,13,15,16,22,23,27-30]. The model was then formalized by
Cormode, Muthukrishnan and Yi [10] in 2008, and since then considerable work has been done in theory,
including tracking heavy hitters and quantiles [21, 34], entropy [2], frequency moments [10, 32], and per-
forming random sampling [11,31]. Some of these problems have also been studied in the sliding window
settings [6, 11, 14]. We note that a closely related model, called the distributed streams model, has been
proposed and studied earlier by Gibbons and Tirthapura [17, 18]. The distributed streams model focuses
on one-shot computation, and is thus slightly different from the (continuous) distributed monitoring model
considered in this paper.

In this paper we focus on monitoring the entropy functions. Entropy is one of the most important
functions in distributed monitoring due to its effectiveness in detecting distributed denial-of-service attacks
(the empirical entropy of IP addresses passing through a router may exhibit a noticeable change under an
attack), clustering to reveal interesting patterns and performing traffic classifications [24, 25, 33] (different
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values of empirical entropy correspond to different traffic patterns), which are central tasks in network
monitoring. Previously the entropy problem has also been studied extensively in the data stream model [4, 5,
19,20, 25]. Arackaparambil, Brody and Chakrabarti [2] studied the Shannon and Tsallis entropy functions
in the distributed threshold monitoring setting, where one needs to tell whether the entropy of the joint
data stream > 7 or < 7(1 — ¢) for a fixed threshold 7 at any time step. They obtained algorithms using
O(k/(e31%))! bits of communication where k is the number of sites. Note that this bound can be arbitrarily
large when 7 is arbitrarily small. In this paper we design algorithms that can track these two entropy
functions continuously using O(k/e? + v/k/€) bits of communication. Our results work for all 7 > 0
simultaneously, and have improved upon the results in [2] by at least a factor of min{v/k, 1/¢} (ignoring
logarithmic factors), even for a constant 7. Another advantage of our algorithms is that they can be easily
extended to the sliding window cases (the approximation error needs to be an additive ¢ when 7 is small).

As a key component of our algorithms, we show how to implement the AMS sampling, a method initially
proposed by Alon, Matias and Szegedy [1] in the data stream model, in distributed monitoring. Similar as
that in the data stream model, this sampling procedure can be used to track general (single-valued) functions
in the distributed monitoring model, and should be of independent interest.

We note that the techniques used in our algorithms are very different from that in [2]. The algorithm in
[2] monitors the changes of the values of the entropy function over time, and argue that it has to “consume”
many items in the input streams for the function value to change by a factor of ©(e7) (e is the approximation
error and 7 is the threshold). We instead adapt the AMS sampling framework to the distributed monitoring
model, as we will explain shortly in the technique overview. We also note that using the AMS sampling
for monitoring the entropy function has already been conducted in the data stream model [5], but due to the
model differences it takes quite some non-trivial efforts to port this idea to the distributed monitoring model.

In the rest of this section, we will first define the distributed monitoring model, and then give an overview
of the techniques used in our algorithms.

The Distributed Monitoring Model. In the distributed monitoring model, we have k sites 51, ..., .S, and
one central coordinator. Each site observes a stream A; of items over time. Let A = (a1, ..., a,) € [n|™
be the joint global stream (that is, the concatenation of A;’s with items ordered by their arrival times). Each
ay is observed by exactly one of the k sites at time ¢y, where t; < to < ... < t,,. Let A(t) be the set of
items received by the system until time ¢, and let f be the function we would like to track. The coordinator
is required to report f(A(t)) at any time step ¢. There is a two-way communication channel between each
site and the coordinator. Our primary goal is to minimize the total bits of communication between sites and
the coordinator in the whole process, since the communication cost directly links to the network bandwidth
usage and energy consumption.” We also want to minimize the space usage and processing time per item at
each site. Generally speaking, we want the total communication, space usage and processing time per item
to be sublinear in terms of input size m and the item universe size n.

We also consider two standard sliding window settings, namely, the sequence-based sliding window and
the time-based sliding window. In the sequence-based case, at any time step t,,0,, the coordinator is required
to report

f(AY (thow)) = flaL—w+1,---,0aL),

where w is the length of the sliding window and L = max{¢ | t; < ¢,y }- In other words, the coordinator
needs to maintain the value of the function defined on the most recent w items continuously. In the time-
based case the coordinator needs to maintain the function on the items that are received in the last ¢ time

1O(~) ignores all polylog terms; see Table 2 for details.
1t is well-known that in sensor networks, communication is by far the biggest battery drain. [26]



function | type window | approx | (total) comm. space (site) | time (site) | ref.
Shannon | threshold | infinite | multi. | O(k/(e37?)) O(e7?) - (2]
Tsallis | threshold | infinite | multi. | O(k/(e37%)) O(e7?) — [2]
Shannon | continuous | infinite | multi. | O(k/€® + Vk/€e®) | O(e72) O(e?) new
Shannon | continuous | sequence | mixed | O(k/e® + Vk/e3) | O(e?) O(e72) new
Shannon | continuous | time mixed | O(k/e2 + Vk/e®) | O(e?) O(e72) new
Tsallis continuous | infinite | multi. | O(k/e® + Vk/e?) | O(e?) O(e72) new
Tsallis continuous | sequence | mixed | O(k/e2 + Vk/e?) | O(e?) O(e7?) new
Tsallis | continuous | time mixed | O(k/e2 + Vk/e?) | O(e?) O(e7?) new

Table 1: Summary of results. Sequence and time denote sequence-based sliding window and time-based
sliding window respectively. The correctness guarantees for the sliding window cases are different from
the infinite-window case: multi. stands for (1 + ¢, d)-approximation; and mixed stands for (1 + €,0)-
approximation when the entropy is larger than 1, and (e, d)-approximation when the entropy is at most
1. In the threshold monitoring model, 7 is the threshold value.

steps, that is, on A = A(tnow)\A(thow —t). To differentiate we call the full stream case the infinite
window.

Our results. In this paper we study the following two entropy functions.

e Shannon entropy (also known as empirical entropy ). For an input sequence A of length m, the Shan-
non entropy is defined as H(A) = Zze[n] Llog - where m; is the frequency of the ith element.
e Tsallis entropy. The ¢-th (¢ > 1) Tsallis entropy is defined as T;(A) = —= . Itis known

that when ¢ — 1, the ¢-th Tsallis entropy converges to the Shannon entropy.

We say Q is (1 + €, 0)-approximation of Q iff Pr[|Q — Q\ > eQ] < 9, and Qis (e, 0)-approximation of @
iff Pr[|Q — Q| > €] < 4. Our results are summarized in Table 1. Note that log(1/4) factors are absorbed in
the O(-) notation.

Technique Overview. We first recall the AMS sampling method in the data stream model. Let A =
{ai,...,am} € [n]™ be the stream. The AMS sampling consists of three steps: (1) pick J € [m] uniformly
at random; (2) let R = |{j : aj = ay,J < j < m}| be the frequency of the element a; in the rest of
the stream (call it a;’s tail frequency); and (3) set X = f(R) — f(R — 1). In the rest of the paper we
will use (ay, R) A to denote the first two steps. Given (my,mo,...,my,) as the frequency vector of
the data stream A, letting f(A) = L > _icfn) f (mi), it has been shown that E[X] = f(A) [11.3 By the
standard repeat-average technique (i.e. run multiple independent copies in parallel and take the average of
the outcomes), we can use sufficient (possibly polynomial in n, but for entropy this is O(l /€?))i.i.d. samples
of X to get a (1 + ¢)-approximation of f(A).

A key component of our algorithms is to implement (a s, R) % A in distributed monitoring. Sampling
ajy can be done using a random sampling algorithm by Cormode et al. [11]. Counting R seems to be easy;
however, in distributed monitoring £2(m) bits of communication are needed if we want to keep track of R

*To see this, note that E[X] = > jeim ElXas = jlPrlas = j] = 32, (BIf(R) — f(R—1)|as = j] - m;/m), and
E[f(R) ~ f(R~1)las = j] = Tyepm) 1 eol) L),




exactly at any time step. One of our key observations is that a (1 + €)-approximation of R should be enough
for a big class of functions, and we can use any existing counting algorithms (e.g., the one by Huang et
al. [21]) to maintain such an approximation of R. Another subtlety is that the sample a; will change over
time, and for every change we have to restart the counting process. Fortunately, we manage to bound the
number of updates of a; by O(logm).

To apply the AMS sampling approach to the Shannon entropy functions efficiently, we need to tweak
the framework a bit. The main reason is that the AMS sampling method works poorly on an input that
has a very frequent element, or equivalently, when the entropy of the input is close to 0. At a high level,
our algorithms adapt the techniques developed by Chakrabarti et al. [5] for computing entropy in the data
stream model where they track pmax as the empirical probability of the most frequent element 4,5, and
approximate f(A) by

_ . 1
(1 - pmax)f(A\ZmaX) + Pmax log )

max

where for a universe element a, A\a is the substream of A obtained by removing all occurrences of a in
A while keeping the orders of the rest of the items. But due to inherent differences between (single) data
stream and distributed monitoring, quite a few specific implementations need to be reinvestigated, and the
analysis is also different since in distributed monitoring we primarily care about communication instead
of space. For example, it is much more complicated to track (1 — ppax) up to a (1 + €) approximation in
distributed monitoring than in the data stream model , for which we need to assemble a set of tools developed
in previous work [9, 21, 34].

Notations and conventions. We summarize the main notations in this paper in Table 2. We differentiate
item and element; we use item to denote a token in the stream A, and element to denote an element from the
universe [n]. We refer to € as approximation error, and § as failure probability.

Roadmap. In Section 2 we show how to implement the AMS sampling in the distributed monitoring model,
which will be used in our entropy monitoring algorithms. We present our improved algorithms for monitor-
ing the Shannon entropy function and the Tsallis entropy function in Section 3 and Section 4, respectively.
We then conclude the paper in Section 5.

2 AMS Sampling in Distributed Monitoring

In this section we extend the AMS sampling algorithm to the distributed monitoring model. We choose to
present this implementation in a general form so that it can be used for tracking both the Shannon entropy
and the Tsallis entropy. We will discuss both the infinite window case and the sliding window cases.

Roadmap. We will start by introducing some tools from previous work, and then give the algorithms for
the infinite window case, followed by the analysis. We then discuss the sliding window cases.

2.1 Preliminaries

Recall the AMS sampling framework sketched in the introduction. Define Est(f, R, k) = %Zz’e[m} Xi,
where {X1,..., Xy} are i.i.d. sampled from the distribution of X = f(R) — f(R — 1). The following

lemma shows that for a sufficiently large x, Est(f, R, ) is a good estimator of E[X].



k number of sites

[n] [n] ={1,2,...,n}, the universe

—i —i=[n]\i={1,...,i—1,i+1,...,n}

sErS the process of sampling s from set .S uniformly at random
logz,Inx log x = logy z, Inx = log, x

A A= (ai,...,an) € [n]™ is a sequence of items

A\z subsequence obtained by deleting all the occurrences of z from A
m; m; = |{j : a; = i}| is the frequency of element 7 in A

Di pi; = -+, the empirical probability of i

P p=(p1,p2,---,Pn)

H(A)= H(p) H(A)=H(p) = Zie[n] i logpi_1 is the Shannon entropy of A
m—i Mi = e\ M

7(A) F(A) = & Y e £m)

H(A), fm Jm(x) = xlog ™ and H(A) = fm(A)

(1 + ¢, 6)-approx. | Q is (1 + ¢, §)-approximation of Q iff Pr[|Q — Q| > eQ] < §
(1 + €)-approx. simplified notation for (1 + €, 0)-approximation

(€, 0)-approx. Q is (e, §)-approximation of Q iff Pr[|Q — Q| > ¢] < 0
€-approx. simplified notation for (e, 0)-approximation

o() O suppresses poly(log %, log %, logn,logm)

Est(f, R, k) defined in Section 2.1

Ap A see Definition 1

A when f and A are clear from context, A is short for A; 4

Table 2: List of notations

Lemma 1 ([5]) Leta > 0,b > 0 such that —a < X < b, and

s 3(1+a/E[X])%e2In(2671)(a + b)
- (a + E[X])

: e))

IfE[X] > 0, then Est(f, R, k) gives a (1 + ¢, §)-approximation to E[X] = f(A).
We will also make use of the following tools from the previous work in distributed monitoring.

CountEachSimple. A simple (folklore) algorithm for counting the frequency of a given element in distri-
bution monitoring is the following: Each site S; maintains a local counter ct;, initiated to be 1. Every time
ct; increases by a factor of (1 + ¢), S; sends a message (say, a signal bit) to the coordinator. It is easy to
see that the coordinator can always maintain a (1 4 €)-approximation of ) _, ct;, which is the frequency of
the element. The total communication cost can be bounded by O(k - log; . m) = O(k/e - logm) bits. The
space used at each site is O(logm) bits and the processing time per item is O(1). We denote this algorithm
by CountEachSimple(e, €), where e is the element whose frequency we want to track.
The pseudocode of CountEachSimple is presented in Appendix C.

CountEach. Huang et al. [21] proposed a randomized algorithm CountEach with a better performance. We
summarize their main result in the following lemma.



Lemma 2 ([21]) Given an element e, CountEach(e, €, §) maintains a (1 + €, §)-approximation to €’s fre-
quency at the coordinator, using O ((k + ‘[) log 1 5 log? m> bits of communication, O(logmlog 5) bits

space per site and amortized O(log %) processing time per item.

For V' C [n], CountEach(V, €, §) maintains a (1 + ¢, §)-approximation of my = ., m;, the total fre-
quencies of elements in V. Similarly, CountEachSimple(V, €) maintains a (1 + €)-approximation of my .

2.2 The Algorithms

To describe the algorithms, we need to introduce a positive “constant” A which depends on the property of
the function to be tracked. As mentioned that different from the streaming model where we can maintain
R exactly, in distributed monitoring we can only maintain an approximation of S’s tail frequency R. For a
function £, recall that f(A) = E[X] = E[f(R)— f(R—1)]. The observation is that, if X = f(R)— f(R—1)
is very close to X = f(R) — f(R — 1) when R is close to R, then Est(f, R, <) will be a relatively accurate
estimation of Est(f, R, k) (hence E[X]). To be more precise, if R € Z* is a (1 + ¢)-approximation to R,
we hope | X — X| can be bounded by

X —X|<X-e-X. )

Unfortunately, for some functions there is no such . For example, let us consider f(x) = xlog =

(the function for the Shannon entropy) and A = {1,1,...,1}. If (2) holds for some positive A, we have
E[[X — X[] < A-e-E[X]=\-e- f(A) = 0, which is clearly not possible.

To fix above issue, we can get rid of “bad inputs” (we can handle them using other techniques) by putting
our discussion of A under a restricted input class. That is, the constant A depends on both the function f and
the set of possible inputs .A. Formally, we introduce A 4 (the subscript emphasizes that A depends on both
f and A) as following,

Definition 1 (A7 4) Given a function f : N — R U {0} with f(0) = 0 and a class of inputs .4, we define
At,4 be the smallest A that satisfies the following:

o \>1,

e forany A € A, let (S, R) 28 4, for any positive number ¢ < 1/4 and any R that is a (1 + €)-
approximation of R, we have
X —X[<A-e- X, 3)

where X and X equal f(R) — f(R — 1) and f(R) — f(R — 1) respectively.

When f and A are clear from the context, we often write Ay 4 as A\. A measures the approximation
error introduced by using the approximation R when estimating E[X] = f(A) under the worst-case input
A € A. We will see soon that the efficiency of our AMS sampling algorithm is directly related to the value
of \.

Remark 1 Directly calculating A based on f and .A may not be easy, but for the purpose of bounding the
complexity of the AMS sampling, it suffices to calculate a relatively tight upper bound of A 4; examples
can be found in Section 3.5 and Section 4 when we apply this algorithm framework to entropy functions.



We now show how to maintain a single pair (.5, R) A (we use R because we can only track R
approximately). The algorithms are presented in Algorithm 1 and 2.

Algorithm 1: Receive an item at a site
1 intialize S =1,7(S) = +o0;

2 foreach e received do

3 L sample r(e) € (0,1);

4 | ifr(e) <r(S)then send (e,r(e)) to the coordinator ;

Algorithm 2: Update a sample at the coordinator

1 foreach (e, r(e)) received do

2 update S < e, 7(S) < r(e);

3 restart R < CountEachSimple(S, 33 )

4 broadcast new (S, 7(.5)) to all sites and each site updates their local copy.

e Maintain S: Similar to that in [11], we randomly associate each incoming item @ with a real number
r(a) € (0,1) as its rank. We maintain S to be the item with the smallest rank in A(¢) at any time
step t. Each site also keeps a record of r(.5), and only sends items with ranks smaller than r(S) to the
coordinator. Each time S getting updated, the coordinator broadcasts the new S with its rank r(S) to
all the k sites.

€

® Maintain R: Once S is updated, we use CountEachSimple(.S, 55 ) to keep track of its tail frequency R
up to a factor of (14 55).

To present the final algorithm, we need to calculate «, the number of copies of (.S, 1?) & 4 we should
maintain at the coordinator. Consider a fixed function f and an input class .A. Recall that in Lemma 1, a, b
and E[X] all depend on the input stream A € A because the distribution of X is determined by the input
stream. To minimize the communication cost, we want to keep « as small as possible while Inequality (1)
holds for all input streams in .A. Formally, given an input stream A € A, we define 7w(A) as

3(1 +a/E[X])%(a +b)

mlnirgnze (o + E[X])

subjectto a > 0, 4)
b >0,
—a <X <b(VX).

Then « takes the upper bound of €2 In(25~1)7(A) over A € A, that is,

ke, 6, A) = e 2In(2671) - Zuaﬂ'(A). 5)
€

One way to compute sup 4 4 7(A), as we will do in the proof of Lemma 8, is to find specific values

for a and b such that under arbitrary stream A € A, —a < X < b holds for all X. We further set

E = inf 4c 4 E[X], then an upper bound of sup 4¢ 4 7(A) is given by O(%).

*In practice, one can generate a random binary string of, say, 10 log m bits as its rank, and w.h.p. all ranks will be different.



Our algorithm then maintains x = (5, d,.A) copies of (S, R) % A at the coordinator. At each time
step, the coordinator computes Est( f, R, ). We present the main procedure in Algorithm 3.

Algorithm 3: TrackF (e, §): Track f(A) at the coordinator

/+ (S,R) " A are maintained via Algorithm 1, 2 */

1 track s($,0,.A) (defined in Equation (5)) copies of (S, R) " Ain parallel;
2 return the average of all (f(R) — f(R— 1));

2.3 The Analysis

We prove the following result in this section.

Theorem 1 For any function f : N — Rt U {0} with f(0) = 0 and input class A, Algorithm 3 maintains
at the coordinator a (1 + €, 6)-approximation to f(A) forany A € A, using

O(k/é - \-sup w(A) -loglloggm (6)
AeA 0

bits of communication, O (FL(%, 9, A) - log m) bits space per site, and amortized O (H(%, d, A)) time per
item, where T(A), k(5,9, A) are defined in (4) and (5) respectively.

We first show the correctness of Algorithm 3, and then analyze the costs.

Correctness. The following lemma together with the property of R gives the correctness of Algorithm 3.

Lemma 3 For any f : N — R U {0} with f(0) = 0 and input class A, set k = £(5,9, A). IfRisa
(1 + 55)-approximation to R, then Est(f, R, k) isa (1+¢€,6)-approximation to f(A),VA € A.

Proof: By Definition 1, the fact “Ris a (1 + 33 )-approximation to R implies | X — X| < £X, hence
[Est(f, R, %) — Est(f, R.x)| < SEst(f, R, ) )

By Lemma 1, our choice for x ensures that Est(f, R, k) is a (1 + ¢/2, ¢)-approximation to E[X], that is,
with probability at least 1 — §, we have

[Est(f. R, x) ~ B[X]| < JE[X]. ®)

Combining (7) and (8), we obtain

Est(f, R, x) — E[X]| < ((1 + %) (1 + g) - 1) E[X] < €E[X].

We thus conclude that Est(f, R, ) is a (1 + €, §)-approximation to E[X] for any input stream A € A. [



Costs. By CountEachSimple, tracking R as a (1+¢)-approximation to R for each sample S costs O(% logm)
bits. We show in the following technical lemma (whose proof we deferred to Appendix A) that the total num-
ber of updates of S is bounded by O(log m) with hlgh probability. Thus the total bits of communication to
maintain one copy of R can be bounded by O( log® m).

Lemmad4 Let Uy, ...,U,, be random i.i.d samples from (0,1). Let J, = 1; for i
Ui < min{Uy,...,U;_1} and J; = 0 otherwise. Let J =) . ] Ji. Then Ji, Jo, ..

i€lm
and Pr[J > 2logm] < m~/3,

> 2 let J;, =1 lf
, Jm are independent,

We will ignore the failure probability m~1/3

we consider.

in the rest of the analysis since it is negligible in all cases

We now bound the total communication cost: we track (5, d,.A) (defined in Equation (5)) copies of

(S,R)  Ain parallel; and to maintain each such pair, we may restart CountEachSimple for O(logm)
times. Recall that the communication cost of each run of CountEachSimple is O(k:‘ logm). The total
communication cost (6) follows immediately. The space and processing time per item follows by noting
the fact that maintaining each copy of (S, R) A needs O(logm) bits, and each item requires O(1)

processing time. We are done with the proof of Theorem 1.

We can in fact use CountEach instead of CountEachSimple in Algorithm 2 to further reduce the com-
munication cost. The idea is straightforward: we simply replace CountEachSimple(S, 55 ) in Algorithm 2
with CountEach(S, 55, o).

Corollary 1 For any function f : N — Rt U {0} with f(0) = 0 and input class A, there is an algorithm
that maintains at the coordinator a (1 + €, 0)-approximation to f(A), and it uses

1
O <(k‘/62+\/%/63> -A-ZEEW(A)-10g510g§10g3m) )

bits of communication, O(klogmlog %) bits space per site, and amortized O(r log %§) time per item, where
m(A) and r = K(5, 5, A) are defined in (4) and (5) respectively.

Proof: We track /@(2, 5, A) copies of R at the coordinator. Each R is tracked by CountEach(S, < 5 2‘;) SO

that all % copies of R are still (1 + 35 )- approx1mat10n to R with probability at least (1 — 7) Following the
same arguments as that in Lemma 3, Est(f, R, x) will be a (1 + ¢, §)-approximation to E[X].

For the communication cost, recall that the communication cost of each CountEach(S, 55, 2)is O((k+
fA) log % log?m) = O <(k + {) Alog % log? m) bits (Lemma 2). Since we run & (defined in (5))
copies of CountEach and each may be restarted for O(log m) times, the total communication cost is bounded
by (9). Each CountEach(S, 55 ) uses O(log m log §) space per site and O(log %) processing time per item.
We get the space and time costs immediately. (|

2.4 Sequence-Based Sliding Window

In the sequence-based sliding window case, we are only interested in the last w items received by the system,
denoted by AV (t) = {a; | j >t — w}.

It is easy to extend the AMS sampling step to the sliding window case. Cormode et al. [11] gave an
algorithm that maintains s random samples at the coordinator in the sequence-based sliding window setting.



This algorithm can be directly used in our case by setting s = 1. Similar as before, when the sample S is
updated, we start to track its tailing frequency R using CountEach. The algorithm is depicted in Algorithm
4.

Algorithm 4: TrackF-SW(e, 6): Track f(A™) in sequence-based sliding window setting

1 K K(§, %,A);

2 use the sequence-based sliding window sampling algorithm from [11] to maintain x independent
samples;

3 each sample S initiates a CountEach(S, =5, %) to track a R. Whenever S is updated, restart
CountEach;

4 return the average of all (f(f%) — f(R— 1)) ;

Theorem 2 For any function f : N — R U {0} with f(0) = 0 and input class A, let 7w be defined as in
(4) but with A being replaced with A". Let k = k(5, g, ). There is an algorithm for the sequence-based
sliding window (with window size w) that maintains at the coordinator a (1+ ¢, §)-approximation to f(A"),
using

0 ((k‘/62 + \/E/é?’) A - sup w(AY) - log1 5

log £ log? m)
AcA 0

bits of communication, O(r log mlog %) bits space per site, and amortized O(x log §) time per item.

Proof: In [11] it is shown that O(klogwlogm) = O(klog®m) bits of communication is sufficient to
maintain a random sample in A", and each site uses O(logm) bits space and O(1) processing time per
item. The rest of the proof is exactly the same as Corollary 1. ([l

2.5 Time-Based Sliding Window

In the time-based sliding window case, we are only interested in the items received in the last ¢ time steps,
denoted by A’

The algorithm of tracking f(A?) is essentially the same as that in the sequence-based sliding window
case (Algorithm 4), except that in Line 2 of Algorithm 4, we use the time-based sampling algorithm from
[11] instead of the sequence-based sampling algorithm. We summarize the result in the following theorem.
Note that compared with Theorem 2, the only difference is the extra logm in the space per site, which is
due to the extra log m factor in the sampling algorithm for the time-based sliding window in [11].

Theorem 3 For any function f : N — R U {0} with f(0) = 0 and input class A, let 7w be defined as in
(4) but with A being replaced with A®. Let k = k(5. g, A). There is an algorithm for the time-based sliding
window (with window size t) that maintains at the coordinator a (1 + €, §)-approximation to f(A"), using

1
O ((k:/e2 + \/E/eg) A 2161377(1475) ~log5 logglog?’ m>

bits of communication, O(klog?® mlog ) bits space per site, and amortized O(r log %) time per item.
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3 Shannon Entropy

In the Shannon entropy function we have f(z) = xlogZ (z > 0) and f(0) = 0, where m = |A(t)|.
Let f,,, denote this function. In this section, we will show that for arbitrary input A € [n]™, we can track
fm(A) = Yiepn T log it efficiently, using only O (k/e2 + \/E/e?’) bits of communication. We also
obtain similar results for sliding window cases.

To do this, we first show that when only considering a restricted input class A’, f,,(A) (A € A’) can be
tracked efficiently by directly applying the AMS framework presented in previous section. We then discuss
how to track f,,(A) under arbitrary input A € [n]™.

For technical reasons, we assume 1/m < §,¢ < 1/20 throughout this section. As mentioned, in
distributed monitoring we can only maintain a (1 4 €)-approximation of m at the coordinator using o(m)
bits of communication, but for the sake of simplifying the presentation, we assume that m can be maintained
at the coordinator exactly without any cost. Appendix B explains why we can make such an assumption.
The same assumption is also applied to the analysis of the Tsallis Entropy in Section 4.

Roadmap. We will again start by introducing some tools from previous work. We then define the restricted
input class A’, and give some intuition on how to track general inputs. We next give the algorithm for the
infinite window case, followed by the analysis. Finally we discuss the sliding window cases.

3.1 Preliminaries

To present our algorithm for the Shannon entropy we need a few more tools from previous work.

CountAll. Yi and Zhang [34] gave a deterministic algorithm, denoted by CountAll(¢), that can be used to
track the empirical probabilities of all universe elements up to an additive approximation error e in distributed
monitoring. We summarize their main result below.

Lemma 5 ([34]) For any 0 < e < 1, CountAll(e) uses O(% log? m) bits of communication, such that for
any element i € [n], it maintains at the coordinator an estimation p; such that |p; — p;| < €. Each site uses
O(Llogm) bits space and amortized O(1) time per item.

CountMin. We will also need the CountMin sketch introduced by Cormode and Muthukrishnan [9] in the
streaming model. We summarize its property below.

Lemma 6 ([9]) The CountMin(e, §) sketch uses O(% log m log %) bits of space in the streaming model, such
that for any given element i € [n], it gives an estimation 1; of i’s frequency m; such that Pr[m; < m; <
m; + em_;] > 1 — §. The processing time for each item is O(log %)

3.2 Tracking f,, Under A Restricted Class A’

We have briefly mentioned (before Definition 1) that if we consider all possible inputs, f,, = x log 7+ cannot
be tracked efficiently by directly using our AMS sampling framework because the corresponding A does not
exist. However, if we consider another input class

A ={Aech™:0<m <m,Vie [n],m; <0.7m},

(in other words, we consider streams with length no more than m and the frequency of each element is
bounded by 0.7m), then we can upper bound Ay, 4/ by a constant.
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The following two lemmas show that under input class A’, f,, can be tracked efficiently using the AMS
framework in Section 2.

Lemma 7 Let f,, and the input class A" be defined above. We have Xy, 4 < 10 and inf 4rc o/ fm(A)) >
0.5.

Proof: Let r,# € Z™", where 7 is a (1 + ¢)-approximation to 7. Let X = X(r) = fi(r) — fu(r — 1)
and X = X (7). Taking the derivative, X'(r) = f/.(r) — f/ (r — 1) = —log (1 + ﬁ) < 0, and thus

inf X = £ (0.7m) — fr(0.7m — 1) "% ' 1og 0.71 > 0.5.
When r > 2, we have

| X (r) — X(7)| < erlog (1 + (1_61)7_1) < 5¢;

and when r = 1, we have 7 = r hence X = X. Therefore ‘X — X’ <5e<10-¢-X (asinf X > 0.5).

Consequently we can set A = 10, and thus Ay 4 = inf{A} < 10. B
Next, given any A’ € A’, we have m; < 0.7m for all i € [n], and thus f,,(4") = |j,‘ Dicn] fm(ms) >
log 0.7~ > 0.5. O

Lemma 8 Let f,,, and A’ be defined above. Algorithm 3 (with CountEachSimple in Algorithm I and Al-
gorithm 2 replaced by CountEach) maintains a (1 + €, §)-approximation to f,,(A) for any A € A’ at the
coordinator, using O ((k:/62 +VE/€e?) - log 3 log? m) bits of communication, O(e~? - log® mlog 3) bits

space per site, and amortized O(¢~2 - log % log? m) time per item.

Proof: This lemma is a direct result of Corollary 1. The main task to derive the stated is to bound
sup e m(A). Recall that X (R) = fim(R) — fm(R — 1), as X’(R) < 0 we have 0.5 < X(0.7m) <
X < X(1) = logm. To give an upper bound of x, it suffices to use a = 0,b = logm, and set
E = inf gc a4/ fm(A) > 0.5, which gives an upper bound

sup m(A) < 3(1+a/E)*(a+)

=01
s T A) < =T E) (logm),

or (5, %,A’) = O(e2logmlogd1).

Thus we maintain ©(¢~2?logmlogd~!) copies of estimators at the coordinator. The lemma follows
by applying Corollary 1 with the values Ay, 4 and sup 4 4 7(A) chosen above (and note O(log §) =
O(log m)). O
3.3 Intuition on Tracking f,, under A4 = [n]™

To track f,, under input class A = [n]™, a key observation made by Chakrabarti et al. [5] is that we can
use the following expression to compute the entropy of A when the stream A € A has a frequent element z
(say, p. > 0.6):

HA) = =3 fulm)
=1
= (1-p:)E[X'] +p:log(1/p2), (10)
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where X' = f,(R) — fm (R — 1), and (S', R) S A\z. Note that A\z € A’. Thus by Lemma 8 we can

track E[X'] = f,(A\z2) efficiently.

We try to implement this idea in distributed monitoring. The remaining tasks are: (1) keep track of the
pair (S, R') (thus X”); and (2) keep track of (1 — p.) and p,. Compared with the streaming model [5], both
tasks in distributed monitoring require some new ingredients in algorithms and analysis, which we present
in Section 3.4 and Section 3.5, respectively.

3.4 The Algorithms

We first show how to maintain the pair (S, R), p, and 1 — p, approximately.

Maintain (S’, R'). As observed in [5], directly sampling (S’, R') is not easy. The idea in [5] is to maintain
(S0, Ro) A and (S1, R1) LS A\Sy. We also keep track of the item z with p, > 0.6, if exists. Now
we can construct (S, R') as follows: if z # Sp, then (S’, R') + (Sp, Ro); otherwise (S’, R') + (S1, R1).
The proof of the fact that S” is a random sample from A\ z can be found in [5], Lemma 2.4. Algorithm 5

and 6 show how to maintain Sp, S;. Algorithm 7 (that is, TrackR(e,d1), where d; will be set to 0/4k in

Algorithm 9) shows how to maintain (1 + 51)—approximations to Ry and R;, and consequently a

14 —<—, 8, )-approximation to R, which guarantees that | X’ — X’| < e - X’ holds with probability at
XAl

least (1 — 67).

Algorithm 5: Receive an item at a site (for the Shannon entropy)

1 initialize Sy = S1 =L, 7(Sp) = r(S1) = +o0;

2 foreach e received do

3 sample r(e) €r (0,1);

4 if e = Sy then

5 L if r(e) < r(Sp) then send the coordinator “update (Sp, 7(Sp)) with (e, r(e))”;

6 else if e #~ S) then

7 if 7(e) < r(Sp) then

8 send the coordinator “update (S, 7(S1)) with (S, 7(S0))”;

9 L send the coordinator “update (Sp, (Sp)) with (e, (e))”;

10 else if r(e) < (S1) then send the coordinator “update (S1,7(S1)) with (e, r(e))”;

Algorithm 6: Update samples at the coordinator (for the Shannon entropy)

1 foreach message msg received do
2 execute msg: update (Sp, 7(Sp)) and/or (S1,7(S1)) based on msg;
3 broadcast msg to all sites and request each site to execute the msg;

13



Algorithm 7: TrackR (e, 61): Maintain Ry and R; at the coordinator

1
2
3
4
5
6
7

®

initialize Sp = S1 =L, and r(Sp) = r(S1) = +o0;
set €1 + ﬁ;
if Sy is updated by the same element then restart CountEach(Sy, €1,01) ;
else if Sy is updated by a different element then restart CountEach(Sy, €1,01) ;
else if S is updated then
if St is updated by Sy then
L replace the whole data structure of CountEach(S1, €1, 61) with CountEach(Sp, €1, d1);

else restart CountEach(S1,€1,01) ;

Maintain p, and 1 — p,. Itis easy to use CountAll to maintain p, up to an additive approximation error
€, which is also a (1 + O(e))-approximation of p, if p, > 0.6. However, to maintain a (1 + ¢)-relative
approximation error of (1 — p,) is non-trivial when (1 — p.) is very close to 0. We make use of CountAll,
CountEachSimple and CountMin to construct an algorithm TrackProb(e, §), which maintains a (1 + €, 9)-
approximation of (1 — p,) at the coordinator when p, > 0.6. We describe TrackProb in Algorithm 8.

Algorithm 8: TrackProb (¢, §): Approximate the empirical probability of a frequent element

=)

initialize z < _L; ¢t < 0; Vi € [k], ct; < 0;

/+ run the following processes in parallel: */
run CountAll(0.01) ;

run y < CountEachSimple(—z,¢€/4) ;

run m < CountEachSimple(|[n],e/4);

the coordinator maintains a counter ct that counts the number of items received by all sites up to the
last update of z;

each site maintains a local CountMin(e/4,0) sketch;

7 each site S; maintains a counter ct; that counts the number of items received at S;;

/* monitored by CountAll(0.01) */

8 if CountAll identifies a new frequent element e with p. > 0.59 then

10
11
12

13

z < e. Broadcast z to all sites;

restart v <— CountEachSimple(—z,€/4);

each site S; sends its local CountMin sketch and local counter ct; to the coordinator;

the coordinator merges k local CountMin sketches to a global CountMin, and sets ct = 3,y cti

ct—CountMin|z]+~y . ~ ~
ct=CountMinlz|+y, 5« 1 —p_,.

m s Y2

return z, p_, <

Putting Things Together. Let (Sy, Ro) and (S;, R1) be samples and their associated counts maintained
by Algorithm 5, 6, and 7. The final algorithm for tracking H (A) is depicted in Algorithm 9.
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Algorithm 9: TrackEntropy (e, §): Approximate the Shannon entropy
1 K < 480 21n(4071)(2 + logm);

/+* maintain z, p, and p_, x/
2 run TrackProb(e/4,5/2);
/* get Kk independent copies of (SO,RO,Sl,Rl) */

3 run k copies of Algorithm 5, 6, and TrackR(e/6,9/(4k)) in parallel;

4 if p, > 0.65 then

/* For each copy of (SO,RO,Sl,Rl), construct R’ */
5 if Sy = zthen R’ « Ry ;

6 else i/ « Ry ;

/ * ESt(fm,R/,li) gives the average of Kk copies of fm(f%’)—fm(f?’—l) */
7 | return (1 — p,)Est(fn, R, k) + p.log(1/p.);

8 else

L return Est(f,,, Ro, k)

-]

3.5 The Analysis

We prove the following result in this section.

Theorem 4 TrackEntropy(e, d) maintains at the coordinator a (1 + €, d)-approximation to the Shannon
entropy, using O ((k/62 +Vk/€e) - log % log® m) bits of communication, O(e~2 - log % log® m) bits space

per site and amortized O(e~2 - log % log® m) time per item.
We first show the correctness of TrackEntropy, and then analyze its costs.

Correctness. We establish the correctness by the following two lemmas. The first lemma shows that if there
is a frequent element = with empirical probability p, > 0.6, then Algorithm 8 properly maintains 1 — p,.
The second lemma shows the correctness of Algorithm 9 for any input A € [n]™.

Lemma9 p_, (see Line 13 of Algorithm 8) is a (1 + €, d)-approximation to (1 — p,).

Proof: Let z (p, > 0.6) be the candidate frequent element if exists. Let #(z) be the time step of the most
recent update of z. At any time step, let A? be the substream consisting of all items received on or before
t(z), ct = ‘AO , and let A be the rest of the joint stream A. Let m? and m? , be the frequency of element
zin A® and the sum of frequencies of elements other than z in A°, respectively. Similarly, let m! and m® ,
be defined for A*.

Algorithm 8 computes 7!, as an approximation to m', by CountEachSimple(—z,¢/4), and 1 as
an approximation to m by CountEachSimple([n], e/4), both at the coordinator. The coordinator can also
extract from the global CountMin sketch an 2, which approximates m? up to an additive approximation
error $mY , with probability (1 — &). At Line 13 of Algorithm 8, at any time step, the coordinator can
compute

X ct —md +ml,
l=p,=p,=—"""

~ )
m



where 1Y is an (£m? _, §)-approximation of m?, and /! , and 1 are (1 + €/4)-approximation of m! , and
m, respectively.
The lemma follows by further noting that ct = m? +m? .. O

Lemma 10 TrackEntropy(e, 0) (Algorithm 9) correctly maintains at the coordinator a (1+¢, §)-approximation
to the empirical entropy H(A).

Proof: Similar to [5] Theorem 2.5, we divide our proof into two cases.

Case 1: there does not exist a z with p, < 0.65. We reach line 9 of Algorithm 9. The assumption that
€ < 1/20 implies p, < 0.7, and thus the input stream A € A’. It is easy to verify that our choices of
parameters satisfy the premise of Lemma 3, thus the correctness.

Case 2: there is a z with p, > 0.65. We reach line 7 of Algorithm 9. In this case we use Equation (10).
The assumption that ¢ < 1/20 implies p, > 0.6, thus A\z € A’. At line 3, we run TrackR(e/6, %)
so that with probability 1 — g, the « copies X's satisfy | X’ — X/| < &X' simultaneously by a union
bound. One can verify based on (5) that our choice for  is large enough to ensure that Est(f,,, R, k) is a
(14€/4, 8 /4)-approximation to E[X"]. Applying the same argument as in Lemma 3, we have Est( f,,, &', x)
as a (1 + €/2,d/2)-approximation to E[X”].

Atline 2, TrackProb(e/4,0/2) gives (1 — p,) as a (1+¢€/4, §/2)-approximation to (1 — p,) (by Lemma
9). Further noting that when (1 — p.) is a (1 + ¢/4)-approximation to (1 — p,), we have

|}§z IOg(l/ﬁz) — Dz IOg(l/pz”

p-log(1/p.)
P> — p:| d(plog 1/19)'
p=log(1/p2) pell ) dp
i(l —Pz)
A 7 pge
p-log(1/ps)

< €.

Thus (1 — p.)ESt(fm, R, k) + - logﬁ% is a (1 + ¢,0)-approximation to H(A) = (1 — p,)E[X'] +
P, log p%. g

Communication Cost. We shall consider the extra cost introduced by the following adaptations to the
general AMS Sampling framework described in Section 2: (1) we need to maintain Sy and .S rather than to
simply maintain S; and (2) we have a new subroutine TrackProb. It turns out that (1) will only introduce an
additional multiplicative factor of log m to the communication, and (2) is not the dominating cost.

We first bound the total number of times CountEach(Sy) and CountEach(S7) being restarted.

Lemma 11 Let Cy and C be the frequency of CountEach(Sy) and CountEach(S;) being restarted in Al-
gorithm 7, respectively. Then (Co + C1) is bounded by O(log? m) with probability at least 1 — m /5.

Proof: by Lemma 4, Cj is bounded by O(log m) with probability at least 1 — m~1/3. Now let us focus on
Cy. Suppose n; < ng < ... < nc, are the global indices of items that update Sy. Let b; = 7(a,, ), we have
by > by > ... > bg,. Let A; be the substream of (ay,;, an,;+1, - - - aniﬂ_l) obtained by collecting all items
that will be compared with (S1); thus |4;| < m and each item in A; is associated with a rank uniformly

16



sampled from (b;,1). For a fixed Cp, by Lemma 4 and a union bound we have that C; < O(Cplogm)

with probability at least 1 — m({(}?) Also recall that Cy < 2logm with probability 1 — m~'/3. Thus
C1 = O(log? m) with probability at least 1 — 2 Tlr‘;f‘/’f O

We now bound the total communication cost.
Lemma 12 TrackProb(e, §) uses O(% log % log® m) bits of communication.

Proof: We show that z will be updated by at most O(logm) times. Suppose at some time step g items
have been processed, and z = a is the frequent element. By definition, the frequency of a must satisfy
mgq > 0.58mg. We continue to process the incoming items, and when z is updated by another element at the
moment the m-th item being processed, we must have m, < 0.42m;. We thus have m > 822 =1.38 >
1, which means that every time 2z gets updated, the total number of items has increased by a factor of at least

1.38 since the last update of z. Thus the number of updates of z is bounded by O(log m).

We list the communication costs of all subroutines in TrackProb.
(1) CountAll(0.01) costs O(klog? m) bits;
(2) CountEachSimple([n], €/4) costs O(% logm) bits;
(3) CountEachSimple(—z, €/4) costs O(£ logm) bits;
(4) sending k sketches of CountMin(e/4, ) to the coordinator costs O(% log § log m) bits;
(5) sending k local counters to the coordinator costs O(k log m) bits.

Among them, (3) (4) (5) need to be counted by O(logm) times, and thus the total communication cost is
bounded by O( log % log® m). O

Combining Lemma 2, Lemma 10, Lemma 11 and Lemma 12, we now prove Theorem 4,

Proof: We have already showed the correctness and the communication cost. The only things left are the
space and processing time per item. The processing time and space usage are dominated by those used to
track (S0, Ro, S1, R1)’s. So the bounds given in Lemma 8 also hold.

t

3.6 Sliding Windows

In Section 2.4 we have extended our general AMS sampling algorithm to the sequence-based sliding window
case. We can apply that scheme directly to the Shannon entropy. However, the communication cost is
high when the Shannon entropy of the stream is small. On the other hand, it is unclear if we can extend

the technique of removing the frequent element to the sliding window case: it seems hard to maintain

(Sy, RY) & Av and (S, RY) S A"\ S§ simultaneously in the sliding window using poly(k, 1/¢, log w)

communication, poly(1 / ¢,log w) space per site and poly(1 /¢, log w) processing time per item.
By slightly adapting the idea in Section 2.4, we have the following result that may be good enough for
most practical applications.
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Theorem S There is an algorithm that maintains H (A"™) at the coordinator as an approximation to the
Shannon entropy H(A"™) in the sequence-based sliding window case such that H(A"™) is a (1 + €,0)-
approximation to H(A") when H(A") > 1 and an (¢, §)-approximation when H(A") < 1. The algorithm
uses O ((k/62 +Vk/e) - % log* m) bits of communication, O(e=2 - log % log® m) bits space per site and

amortized O(e~2 - log % log? m) time per item.

Proof: Instead of setting x (the number of sample copies we run in parallel) as Equation (5), we simply
set K = O(e 2logwlog§1), thus the space and time usage for each site. The correctness is easy to see:
since we are allowed to have an additive approximation error e (rather than ¢E[X]) when E[X] < 1, we can

replace € by ﬁ in Inequality (1) to cancel E[X]. For the communication cost, we just replace the value of

K in Section 2.4 (defined by Equation (5)) with ©(e 2 log wlog 5 1). O

With the same argument we have a result for the time-based sliding window case where the window size
is t.

Theorem 6 There is an algorithm that maintains H (AY) at the coordinator as an approximation to the
Shannon entropy H (A?!) in the time-based sliding window setting such that H (A%) is a (1+¢, §)-approximation
to H(A") when H(A') > 1 and an (¢, d)-approximation when H(A') < 1. The algorithm uses

0 ((k:/e2 +VE/e3) - 3 log? m) bits of communication, O(e~%-log log* m) bits space per site and amor-

tized O(e~2 - log % log® m) time per item.

4 Tsallis Entropy

Recall that p’ = (p1,p2,...,pn) = (52, 52,..., ™n) is the vector of empirical probabilities. The g-th
Tsallis entropy of a stream A is defined as
T =
) = —=-

Itis well-known that when ¢ — 1, T, converges to the Shannon entropy. In this section, we give an algorithm
that continuously maintains a (1 + €, §)-approximation to 7(p) for any constant ¢ > 1.

Similar to the analysis for the Shannon entropy, we again assume that we can track the exact value of m
at the coordinator without counting its communication cost. To apply the general AMS sampling scheme,
we use gm(z) = — m(; )9, hence

B = L3 (2]

i€[n]

= 1= ! =(a- VTP

i€[n]

Let Z consist of elements in the stream A such that each z € Z has m, > 0.3m. Thus |Z| < 4. Consider
the following two cases:

e Z = ). In this case g, (4) > 1— (3)47%.
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e 7 # (). In this case

Im(A) = (1 - Zm) In(A\Z) + % > gm(ms)

z€Z z€Z
with G (A\Z) > 1 — (3)771.

Thus we can use the same technique as that for the Shannon entropy. That is, we can track the frequency of
each element z € Z separately (at most 4 of them), and simultaneously remove all occurrences of elements
in Z from A and apply the AMS sampling scheme to the substream A\ Z.

We only need to consider the input class A’ = {A € [n]™ : 0 < m/ < m,Vi € [n],m; < 0.3m}.
The algorithm is essentially the same as the one for the Shannon entropy in Section 3; we thus omit its
description.

Theorem 7 There is an algorithm that maintains at the coordinator a (1 + €, 0)-approximation to Ty(A)
for any constant ¢ > 1, using O <(k:/62 +Vk/e®) - log % log* m) bits of communication. Each site uses
O(e7? - log % log® m) and amortized O(e~? - log % log m) time per item.

Proof: The algorithm and correctness proof are essentially the same as that for the Shannon entropy in
Section 3. We thus only analyze the costs.
Let us first bound the corresponding Ay, 4/, sup 4 4 ™(A) for g, under the input class A’:

P A
E:Al’relfél’gm(A) =1- <3> = 0(1).

Let h(z) = gm(x) — gm(z — 1), W (z) < 0. As g > 1,

[h(m)] = gm(m —1)
= m—l—m(l—é)
= ¢—14+0(1/m).

We thus set @ = ¢. On the other hand, h(1) < 1, we thus setb = 1. Now sup 4c 4 7(A) = O (%);(“b)) =
O(1) (recall that g is constant).
Next, note that
—1
h(z)=-m' 92! —(z - 1)) +1~1—¢q <£>q , and
m
h(z) =h((L+e)a) ~ —m! ™% (ga?" —q(1+€)7 '2?7)
x\q-!
R~ —1 (—) .
elg-1)

Also note if z < 0.3m, then (%)q_l < (%)q_l and h(z) > h(0.3m) = §(1). Therefore for ¢ > 1 we can
find a large enough constant A to make Equation (3) hold.

For the communication cost, simply plugging A\, 4 = O(1) and sup ¢ 4 7(A) = O(1) to Equa-
tion (9) yields our statement. Note that we have k = ©(¢~2log '), hence imply the space usage and the

processing time per item (using Corollary 1). ([l

We omit the discussion on sliding windows since it is essentially the same as that in the Shannon entropy.
The results are presented in Table 1.
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5 Concluding Remarks

In this paper we have given improved algorithms for tracking the Shannon entropy function and the Tsallis
entropy function in the distributed monitoring model. A couple of problems remain open. First, we do not
know if our upper bound is tight. In [32] a lower bound of Q(k/¢2) is given for the case when we have item
deletions. It is not clear if the same lower bound will hold for the insertion-only case. Second, in the sliding
window case, can we keep the approximation error to be multiplicative even when the entropy is small, or do
strong lower bounds exist? The third, probably most interesting, question is that whether we can apply the
AMS sampling framework to track other functions with improved performance in the distributed monitoring
model? Candidate functions include Renyi entropy, f-divergence, mutual information, etc. Finally, it would
be interesting to implement and test the proposed algorithms on real-world datasets, and compare them with
related work competitors.
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A Proof of Lemma 4

Proof: We can assume that Uy, . . ., Uy, are distinct, since the event that U; = U for some 7 # j has measure
0. Let T; = min{Uy, ... Uy, }. Let OD; denote the order of Uy, . .., U;. Let ¥; = {Permutation of [¢]}. It is
clear that for any o € %;, Pr[OD; = o | T; > t] = Pr[OD; = o] = 4. Since the order of Uy, . .., U; does
not depend on the minimal value in that sequence, we have

Pr[OD; = 0,T; > t] = Pr[OD; = o | T; > t| - Pr[T; > {]
= Pr[OD; = o] - Pr[T; > t].

Therefore, the events {OD; = o} and {7; > ¢} are independent.
For any given o € ;1 and z € {0,1} :

PI‘[Ji =z ’ ODi_l = J]
= lim PI‘[JZ‘ = Z,Tz’_l >t | OD;_1 = J]
t—0

I PI‘[JZ' =z | T,1>1t,0D;,_1 = O’]

= 11

t—0 PI‘[ODZ‘_l = U]/PI‘[Ti_l >1t,0D;_1 = J]
Pr|J;, =2 |T;— t| - Pr|T;_ t

— lim r[z Z|11>] I‘[11>] (12)
t—0 PI‘[ODZ‘_l = U]/PI‘[ODi_l = J]

= lim PI‘[JZ' =zTi1 > t]
t—0

= PI‘[JZ' = Z],

1D

where (11) to (12) holds because the events {.J; = z} and {OD;_; = o} are conditionally independent
given {T;_1 > t}, and the events {OD; = ¢} and {7; > ¢} are independent.

Therefore, J; and OD;_; are independent. Consequently, J; is independent of Jy, ..., J;_1, since the
latter sequence is fully determined by OD;_;.

Pr[J; =1] = Pr[U; <min{U,...,U;_1}]
1
0 1

Thus E[J;] = Pr[J; = 1] = 1. By the linearity of expectation, E[J] = > icm] 1 ~ logm.
Since Ji, ...,y are independent, Pr[.J > 2logm] < m~'/3 follows from a Chernoff Bound. O
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B The Assumption of Tracking m Exactly

We explain here why it suffices to assume that m can be maintained at the coordinator exactly without any
cost. First, note that we can always use CountEachSimple to maintain a (1 + €2)-approximation of m using
O(eﬁ2 log m) bits of communication, which will be dominated by the cost of other parts of the algorithm for
tracking the Shannon entropy. Second, the additional error introduced for the Shannon entropy by the e2m
additive error of m is negligible: let g,(m) = fin(v) — fm(z — 1) = xlog 2t — ( — 1) log -™5, and recall
(in the proof of Lemma 7) that X > 0.5 under any A € A’. Itis easy to verify that

|92((1 £ €)m) — go(m)| = O(%) < O()X,

which is negligible compared with | X — X| < O(e)X (the error introduced by using R to approximate R).
Similar arguments also apply to X', and to the analysis of the Tsallis Entropy.

C Pseudocode for CountEachSimple

Algorithm 10, 11 describe how we can maintain a (1 4 €)-approximation to the frequency of element e.

Algorithm 10: Receive an item e at a site

1 initialize ¢ < 1,ct < 0;

2 foreach e received do

3 ct < ct+1;

4 if ¢t = 1 then

5 L send a bit to the coordinator;

6 if ct > (1 + €)c then

7 c 4+ ct;
8 send a bit to the coordinator;

Algorithm 11: CountEachSimple (e, ¢) maintains c as the count at the coordinator

1 initialize ct; < 0 for all i € [k];
2 initialize ¢ < 0;

/* maintain ¢ as the count */
3 while True do

4 if received a bit from site i then
5 if ct; = 0 then

6 c+—c+1;

7 ct; + 1;

8 else

9 c+ c+e€-cty

10 cti < (1+€)cts;
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