Linear Sketches – A Useful Tool in Streaming and Compressive Sensing

Qin Zhang

Linear sketch

• Random linear projection $M : \mathbb{R}^n \to \mathbb{R}^k$ that preserves properties of any $v \in \mathbb{R}^n$ with high prob. where $k \ll n$.

$$\begin{bmatrix} M \\ V \end{bmatrix} = \begin{bmatrix} Mv \\ W \end{bmatrix} \longrightarrow \text{ answer}$$

Linear sketch

• Random linear projection $M : \mathbb{R}^n \to \mathbb{R}^k$ that preserves properties of any $v \in \mathbb{R}^n$ with high prob. where $k \ll n$.

$$\begin{bmatrix} M \\ V \end{bmatrix} \begin{bmatrix} M \\ V \end{bmatrix} = \begin{bmatrix} M \\ M \\ V \end{bmatrix} \longrightarrow \text{ answer}$$

Simple and useful: Statistics/graph/algebraic problems in data streams, compressive sensing, ...

Linear sketch

• Random linear projection $M : \mathbb{R}^n \to \mathbb{R}^k$ that preserves properties of any $v \in \mathbb{R}^n$ with high prob. where $k \ll n$.

$$\begin{bmatrix} M \\ V \end{bmatrix} \begin{bmatrix} M \\ V \end{bmatrix} = \begin{bmatrix} M \\ M \end{bmatrix} \longrightarrow \text{ answer}$$

Simple and useful: Statistics/graph/algebraic problems in data streams, compressive sensing, ...

And rich in theory! You will see in this course.

• The model (Alon, Matias and Szegedy 1996)

The model (Alon, Matias and Szegedy 1996)

etc.

The model (Alon, Matias and Szegedy 1996)

etc.

A list of theoretical problems

- **Game** 1: A sequence of numbers
 - **Q**: What's the median?

Q: What's the median?

- Game 1: A sequence of numbers
 - **Q**: What's the median?

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Alice and Bob become friends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Carol and Eva become friends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Eva and Bob become friends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Dave and Paul become friends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Alice and Paul become friends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Eva and Bob unfriends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Alice and Dave become friends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Bob and Paul become friends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Dave and Paul unfriends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

Dave and Carol become friends

- Game 1: A sequence of numbers
 - **Q**: What's the median?

- Game 2: Relationships between Alice, Bob, Carol, Dave, Eva and Paul
 - **Q**: Are Eva and Bob connected by friends?

- Game 1: A sequence of numbers
 - **Q**: What's the median?

- Game 2: Relationships between Alice, Bob, Carol, Dave, Eva and Paul
 - **Q**: Are Eva and Bob connected by friends?
 - **A**: YES. Eva \Leftrightarrow Carol \Leftrightarrow Dave \Leftrightarrow Alice \Leftrightarrow Bob

- Game 1: A sequence of numbers
 - **Q**: What's the median?

- Game 2: Relationships between Alice, Bob, Carol, Dave, Eva and Paul
 - **Q**: Are Eva and Bob connected by friends?
 - **A**: YES. Eva \Leftrightarrow Carol \Leftrightarrow Dave \Leftrightarrow Alice \Leftrightarrow Bob
- Why hard? Short of memory!

A simple example: distinct elements

The problem

Q: Why linear sketch can be maintained in the streaming model?

A simple example: distinct elements

The problem

How many distinct elements? Approximation needed.

A simple example: distinct elements

How many distinct elements? Approximation needed.

■ Search version ⇒ Decision version

Let *D* be # distinct elements:

- If $D \ge T(1 + \epsilon)$, then answer YES.
- If $D \leq T/(1 + \epsilon)$, then answer NO.

Try $T = 1, (1 + \epsilon), (1 + \epsilon)^2, ...$

Now, the decision problem

The algorithm

- 1. Select a random set $S \subseteq \{1, 2, ..., n\}$, s.t. for each i, independently, we have $\Pr[i \in S] = 1/T$
- 2. Make a pass over the stream, maintaining $Sum_S(x) = \sum_{i \in S} x_i$ Note: this is a **linear sketch**.
- 3. If $Sum_S(x) > 0$, return YES, otherwise return NO.

Now, the decision problem

The algorithm

- 1. Select a random set $S \subseteq \{1, 2, ..., n\}$, s.t. for each i, independently, we have $\Pr[i \in S] = 1/T$
- 2. Make a pass over the stream, maintaining $Sum_S(x) = \sum_{i \in S} x_i$ Note: this is a **linear sketch**.
- 3. If $Sum_S(x) > 0$, return YES, otherwise return NO.

Lemma

Let P = Pr[SumS(x) = 0]. If T is large enough, and ϵ is small enough, then

- If $D \ge T(1+\epsilon)$, then $P < 1/e \epsilon/3$.
- If $D \leq T/(1+\epsilon)$, then $P > 1/e + \epsilon/3$.

(Introduce a few useful probabilistic basics)

Repeat to amplify the success probability

- 1. Select k sets S_1, \ldots, S_k as in previous algorithm, for $k = C \log(1/\delta)/\epsilon^2$, C > 0
- 2. Let Z be the number of values of $Sum_{S_j}(x)$ that are equal to 0, j = 1, ..., k.
- 3. If Z < k/e then report YES, otherwise report NO.

Repeat to amplify the success probability

- 1. Select k sets S_1, \ldots, S_k as in previous algorithm, for $k = C \log(1/\delta)/\epsilon^2$, C > 0
- 2. Let Z be the number of values of $Sum_{S_j}(x)$ that are equal to 0, j = 1, ..., k.
- 3. If Z < k/e then report YES, otherwise report NO.

Lemma

If the constant C is large enough, then this algorithm reports a correct answer with probability $1 - \delta$.

Repeat to amplify the success probability

- 1. Select k sets S_1, \ldots, S_k as in previous algorithm, for $k = C \log(1/\delta)/\epsilon^2$, C > 0
- 2. Let Z be the number of values of $Sum_{S_j}(x)$ that are equal to 0, j = 1, ..., k.
- 3. If Z < k/e then report YES, otherwise report NO.

Lemma

If the constant C is large enough, then this algorithm reports a correct answer with probability $1 - \delta$.

Theorem

The number of distinct elements can be $(1 \pm \epsilon)$ -approximated with probability $1 - \delta$ using $O(\log n \log(1/\delta)/\epsilon^3)$ words.

www.cse.ust.hk/~qinzhang/HKUST-minicourse/index.html

www.cse.ust.hk/~qinzhang/HKUST-minicourse/index.html

That's all for lecture 1. Thank you.

Frequency moments: $F_p = \sum_i |f_i|^p$, f_i : frequency of item *i*.

- F_0 : number of distinct items.
- F_1 : total number of items.
- *F*₂: size of self-join.

Frequency moments: $F_p = \sum_i |f_i|^p$, f_i : frequency of item *i*.

- F_0 : number of distinct items.
- F_1 : total number of items.
- *F*₂: size of self-join.

A very good measurement of the skewness of the dataset.

Frequency moments: $F_p = \sum_i |f_i|^p$, f_i : frequency of item *i*.

- F_0 : number of distinct items.
- F_1 : total number of items.
- *F*₂: size of self-join.

A very good measurement of the skewness of the dataset.

Norms:
$$L_p = F_p^{1/p}$$

L_2 estimation

- The sketch for L_2 : a linear sketch $Rx = [Z_1, \ldots, Z_k]$, where each entry of $k \times n$ ($k = O(1/\epsilon^2)$) matrix R has distribution $\mathcal{N}(0, 1)$.
 - Each of Z_i is draw from $\mathcal{N}(0, ||x||_2^2)$. Alternatively, $Z_i = ||x||_2 G_i$, where G_i drawn from $\mathcal{N}(0, 1)$.

L_2 estimation

- The sketch for L_2 : a linear sketch $Rx = [Z_1, \ldots, Z_k]$, where each entry of $k \times n$ ($k = O(1/\epsilon^2)$) matrix R has distribution $\mathcal{N}(0, 1)$.
 - Each of Z_i is draw from $\mathcal{N}(0, ||x||_2^2)$. Alternatively, $Z_i = ||x||_2 G_i$, where G_i drawn from $\mathcal{N}(0, 1)$.

The estimator:

 $Y = \text{median}\{|Z_1|, \dots, |Z_k|\}/\text{median}\{G\}; \ G \sim \mathcal{N}(0, 1)^{-a}$

^{*a*}*M* is the median of a random variable *R* if $\Pr[|R| \le M] = 1/2$

L_2 estimation

- The sketch for L_2 : a linear sketch $Rx = [Z_1, \ldots, Z_k]$, where each entry of $k \times n$ ($k = O(1/\epsilon^2)$) matrix R has distribution $\mathcal{N}(0, 1)$.
 - Each of Z_i is draw from $\mathcal{N}(0, ||x||_2^2)$. Alternatively, $Z_i = ||x||_2 G_i$, where G_i drawn from $\mathcal{N}(0, 1)$.

The estimator:

 $Y = \text{median}\{|Z_1|, \dots, |Z_k|\}/\text{median}\{G\}; \ G \sim \mathcal{N}(0, 1)^{-a}$

 ^{a}M is the median of a random variable R if $\Pr[|R| \leq M] = 1/2$

Sounds like magic? The intuition behind:

For "nice" – looking distributions (e.g., the Gaussian), the median of those samples, for large enough # samples, should converge to the median of the distribution.

The proof

Closeness in Probability

Let U_1, \ldots, U_k be i.i.d. real random variables chosen from any distribution having continuous c.d.f F and median M. Defining $U = \text{median}\{U_1, \ldots, U_k\}$, there is an absolute constant C > 0, $Pr[F(U) \in (1/2 - \epsilon, 1/2 + \epsilon)] \ge 1 - e^{-Ck\epsilon^2}$

The proof

Closeness in Probability

Let U_1, \ldots, U_k be i.i.d. real random variables chosen from any distribution having continuous c.d.f F and median M. Defining $U = \text{median}\{U_1, \ldots, U_k\}$, there is an absolute constant C > 0, $Pr[F(U) \in (1/2 - \epsilon, 1/2 + \epsilon)] \ge 1 - e^{-Ck\epsilon^2}$

Closeness in Value

Let F be a c.d.f. of a random variable |G|, G drawn from $\mathcal{N}(0, 1)$. There exists an absolute constant C' > 0 such that if for any $z \ge 0$ we have $F(z) \in (1/2 - \epsilon, 1/2 + \epsilon)$, then $z = M \pm C'\epsilon$.

The proof

Closeness in Probability

Let U_1, \ldots, U_k be i.i.d. real random variables chosen from any distribution having continuous c.d.f F and median M. Defining $U = \text{median}\{U_1, \ldots, U_k\}$, there is an absolute constant C > 0, $Pr[F(U) \in (1/2 - \epsilon, 1/2 + \epsilon)] \ge 1 - e^{-Ck\epsilon^2}$

Closeness in Value

Let F be a c.d.f. of a random variable |G|, G drawn from $\mathcal{N}(0, 1)$. There exists an absolute constant C' > 0 such that if for any $z \ge 0$ we have $F(z) \in (1/2 - \epsilon, 1/2 + \epsilon)$, then $z = M \pm C'\epsilon$.

Theorem

$$Y = ||x||_2 (M \pm C'\epsilon)/M = ||x||_2 (1 \pm C''\epsilon),$$

w.h.p.

Generalization

• Key property of **Guassian distribution**: If U_1, \ldots, U_n and U are i.i.d drawn from Guassian distribution, then $x_1U_1 + \ldots + x_nU_n \sim ||x||_p U$ for p = 2

Generalization

- Key property of **Guassian distribution**: If U_1, \ldots, U_n and U are i.i.d drawn from Guassian distribution, then $x_1U_1 + \ldots + x_nU_n \sim ||x||_p U$ for p = 2
- Such distributions are called "*p*-stable" [Indyk '06]
 Good news: *p*-stable distributions exist for any
 p ∈ (0, 2]

Generalization

- Key property of **Guassian distribution**: If U_1, \ldots, U_n and U are i.i.d drawn from Guassian distribution, then $x_1U_1 + \ldots + x_nU_n \sim ||x||_p U$ for p = 2
- Such distributions are called "*p*-**stable**" [Indyk '06] Good news: *p*-stable distributions exist for any $p \in (0, 2]$
 - For p = 1, we get **Cauchy distribution** with density function:
 - $f(x) = 1/[\pi(1+x^2)]$

L_p (p > 2) (Not linear mapping but important)

• We instead approximate
$$F_p = \sum_{i=1}^n x_i^p = \|x\|_p^p$$

L_p (p > 2) (Not linear mapping but important)

- We instead approximate $F_p = \sum_{i=1}^n x_i^p = ||x||_p^p$
- First attempt: Use two passes.
 - Pick a random element *i* from the stream in 1st pass.
 (Q: How?)
 - 2. Compute *i*'s frequency x_i in 2nd pass
 - 3. Finally, return $Y = mx_i^{p-1}$.

L_p (p > 2) (Not linear mapping but important)

- We instead approximate $F_p = \sum_{i=1}^n x_i^p = ||x||_p^p$
- First attempt: Use two passes.
 - Pick a random element *i* from the stream in 1st pass.
 (Q: How?)
 - 2. Compute *i*'s frequency x_i in 2nd pass
 - 3. Finally, return $Y = mx_i^{p-1}$.
- Second attempt: Collapse the two passes above
 - 1. Pick a random element *i* from the stream, count the number of occurances of *i* in the rest of the stream, denoted by *r*.
 - 2. Now we use r instead of x_i to construct the estimator: $Y' = m(r^p (r-1)^p)$.

Heavy hitters

L_p heavy hitter set:

 $HH^{p}_{\phi}(x) = \{i : |x_{i}| \ge \phi ||x||_{p}\}$

L_p heavy hitter set:

$$HH_{\phi}^{p}(x) = \{i : |x_{i}| \ge \phi ||x||_{p}\}$$

• L_p Heavy Hitter Problem: Given ϕ, ϕ' , (often $\phi' = \phi - \epsilon$), return a set S such that $HH^p_{\phi}(x) \subseteq S \subseteq HH^p_{\phi'}(x)$ L_p heavy hitter set:

$$HH_{\phi}^{p}(x) = \{i : |x_{i}| \ge \phi ||x||_{p}\}$$

- L_p Heavy Hitter Problem: Given ϕ, ϕ' , (often $\phi' = \phi - \epsilon$), return a set S such that $HH^p_{\phi}(x) \subseteq S \subseteq HH^p_{\phi'}(x)$
- L_p Point Query Problem:
 Given \(\ell\), after reading the whole stream, given \(i\), report

$$x_i^* = x_i \pm \epsilon \left\| x \right\|_p$$

L₂ point query

The algorithm:

[Gilbert, Kotidis, Muthukrishnan and Strauss '01]

- Maintain a sketch Rx such that $s = ||Rx||_2 = (1 \pm \epsilon) ||x||_2$ (R is a $O(1/\epsilon^2 \log(1/\delta)) \times n$ matrix, which can be constructed, e.g., by taking each cell to be $\mathcal{N}(0, 1)$)
- Estimator: $x_i^* = (1 ||Rx/s Re_i||_2^2/2)s$

L₂ point query

The algorithm:

[Gilbert, Kotidis, Muthukrishnan and Strauss '01]

- Maintain a sketch Rx such that $s = ||Rx||_2 = (1 \pm \epsilon) ||x||_2$ (R is a $O(1/\epsilon^2 \log(1/\delta)) \times n$ matrix, which can be constructed, e.g., by taking each cell to be $\mathcal{N}(0, 1)$)
- Estimator: $x_i^* = (1 ||Rx/s Re_i||_2^2/2)s$

Johnson-Linderstrauss Lemma

 $\forall x \|x\|_2 = \ell$, we have $(1 - \epsilon)\ell \le \|Rx\|_2^2/k \le (1 + \epsilon)\ell$ w.p. $1 - \delta$.

L₂ point query

The algorithm:

[Gilbert, Kotidis, Muthukrishnan and Strauss '01]

- Maintain a sketch Rx such that $s = ||Rx||_2 = (1 \pm \epsilon) ||x||_2$ (R is a $O(1/\epsilon^2 \log(1/\delta)) \times n$ matrix, which can be constructed, e.g., by taking each cell to be $\mathcal{N}(0, 1)$)
- Estimator: $x_i^* = (1 ||Rx/s Re_i||_2^2/2)s$

Johnson-Linderstrauss Lemma

 $\forall x \|x\|_2 = \ell$, we have $(1 - \epsilon)\ell \le \|Rx\|_2^2/k \le (1 + \epsilon)\ell$ w.p. $1 - \delta$.

Theorem

We can solve L_2 point query, with approximation ϵ , and failure probability δ by storing $O(1/\epsilon^2 \log(1/\delta))$ numbers.

L_1 point query

The algorithm for $x \ge 0$ [Cormode and Muthu '05]

- Pick d $(d = \log(1/\delta))$ random hash functions h_1, \ldots, h_d where $h_i : \{1, \ldots, n\} \rightarrow \{1, \ldots, w\}$ $(w = 2/\epsilon)$.
- Maintain *d* vectors Z^1, \ldots, Z^d where $Z^t = \{Z_1^t, \ldots, Z_w^t\}$ such that $Z_j^t = \sum_{i:h_t(i)=j} x_i$
- Estimator: $x_i^* = \min_t Z_{h_t(i)}^t$

L_1 point query

The algorithm for $x \ge 0$ [Cormode and Muthu '05]

- Pick d $(d = \log(1/\delta))$ random hash functions h_1, \ldots, h_d where $h_i : \{1, \ldots, n\} \rightarrow \{1, \ldots, w\}$ $(w = 2/\epsilon)$.
- Maintain *d* vectors Z^1, \ldots, Z^d where $Z^t = \{Z_1^t, \ldots, Z_w^t\}$ such that $Z_j^t = \sum_{i:h_t(i)=j} x_i$

• Estimator:
$$x_i^* = \min_t Z_{h_t(i)}^t$$

Theorem

We can solve L_1 point query, with approximation ϵ , and failure probability δ by storing $O(1/\epsilon \log(1/\delta))$ numbers.

The model (Candes-Romberg-Tao '04; Donoho '04)

Applicaitons

- Medical imaging reconstruction
- Single-pixel camera
- Compressive sensor network

etc.

Formalization

Lp/Lq guarantee: The goal to acquire a signal x = [x₁,...,x_n] (e.g., a digital image). The acquisition proceeds by computing a measurement vector Ax of dimension m ≪ n. Then, from Ax, we want to recover a k-sparse approximation x' of x so that

$$\|x - x'\|_q \le C \cdot \min_{\|x''\|_0 \le k} \|x - x''\|_p$$
 (*)

Formalization

Lp/Lq guarantee: The goal to acquire a signal x = [x₁,...,x_n] (e.g., a digital image). The acquisition proceeds by computing a measurement vector Ax of dimension m ≪ n. Then, from Ax, we want to recover a k-sparse approximation x' of x so that

$$\|x - x'\|_{q} \leq C \cdot \min_{\|x''\|_{0} \leq k} \|x - x''\|_{p} \quad (*)$$

Formalization

• Lp/Lq guarantee: The goal to acquire a signal $x = [x_1, \ldots, x_n]$ (e.g., a digital image). The acquisition proceeds by computing a measurement vector Ax of dimension $m \ll n$. Then, from Ax, we want to recover a k-sparse approximation x' of x so that

$$\|x - x'\|_{q} \leq C \cdot \min_{\|x''\|_{0} \leq k} \|x - x''\|_{p} \quad (*)$$

Often study: L_{1}/L_{1} , L_{1}/L_{2} and L_{2}/L_{2}
Formalization

• Lp/Lq guarantee: The goal to acquire a signal $x = [x_1, \ldots, x_n]$ (e.g., a digital image). The acquisition proceeds by computing a measurement vector Ax of dimension $m \ll n$. Then, from Ax, we want to recover a k-sparse approximation x' of x so that

$$\|x - x'\|_{q} \leq C \cdot \min_{\|x''\|_{0} \leq k} \|x - x''\|_{p} \quad (*)$$

Often study: L_{1}/L_{1} , L_{1}/L_{2} and L_{2}/L_{2}

For each: Given a (random) matrix A, for each signal x,
 (*) holds w.h.p.

For all: One matrix A for all signals x. Stronger.

Results

Scale: Excellent Very Good

Good

Fair

Result Table

Paper	Rand. / Det.	Sketch length	Encode time	Col. sparsity/ Update time	Recovery time	Apprx	Logond
[CCF'02], [CM'06]	R	k log n	n log n	log n	n log n	12 / 12	 n=dimension of x m=dimension of Ax
	R	k log⁰ n	n log⁰ n	log⁰ n	k log⁰ n	12 / 12	
[CM'04]	R	k log n	n log n	log n	n log n	11 / 11	
	R	k log ^c n	n log ^c n	log∘ n	k log⁰ n	11 / 1	 k=sparsity of x*
[CRT'04] [RV'05]	D	k log(n/k)	nk log(n/k)	k log(n/k)	n°	12 / 11	 T = #iterations
	D	k log ^c n	n log n	k log⁰ n	n°	12 / 11	
[GSTV'06] [GSTV'07]	D	k log ^c n	n log⁰ n	log∘ n	k log ^c n	11 / 11	Approx guarantee:
	D	k log ^c n	n log⁰ n	k log⁰ n	k² log⁰ n	12 / 11	• 12/12: $ x-x^* _2 \le C x-x' _2$
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n°	1 / 1	• 12/11: $ x-x^* _2 \le C x-x' _1/k^{1/2}$
[GLR'08]	D	k logn ^{logloglogn}	kn ^{1-a}	n ^{1-a}	n°	12 / 11	• 1/ 1: $x-x^*$ ₁ \leq C $x-x'$ ₁
[N√'07], [DM'08], [NT'08,BD'08]	D	k log(n/k)	nk log(n/k)	k log(n/k)	nk log(n/k) * T	12 / 11	
	D	k log⁰ n	n log n	k log⁰ n	n log n * T	12 / 11	
[IR'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)	11 / 11	
[BIR'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k) *T	11 / 11	
[DIP'09]	D	$\Omega(k \log(n/k))$				1 / 1	
[CDD'07]	D	$\Omega(\mathbf{n})$				12/12	

Caveats: (1) only results for general vectors x are shown; (2) all bounds up to O() factors; (3) specific matrix type often matters (Fourier, sparse, etc); (4) ignore universality, explicitness, etc (5) most "dominated" algorithms not shown;

Up to year 2009 ... copied from Indky's talk

For each (L_1/L_1)

• The algorithm for L_1 point query gives a L_1/L_1 sparse approximation.

• The algorithm for L_1 point query gives a L_1/L_1 sparse approximation.

Recall L_1 Point Query Problem: Given ϵ , after reading the whole stream, given *i*, report $x_i^* = x_i \pm \epsilon ||x||_1$

• The algorithm for L_1 point query gives a L_1/L_1 sparse approximation.

Recall L_1 Point Query Problem: Given ϵ , after reading the whole stream, given *i*, report $x_i^* = x_i \pm \epsilon ||x||_1$

Set $\epsilon = \alpha/k$ and $\delta = 1/n^2$ in L_1 point query. And then return a vector x' consisting of k largest (in magnitude) elements of x^* . It gives w.p. $1 - \delta$,

$$\|\mathbf{x} - \mathbf{x}'\|_1 \le (1 + 3\alpha) \cdot \operatorname{Err}_1^k$$

Total measurements: $m = O(k/\alpha \cdot \log n)$

A matrix A satisfies (k, δ) -**RIP (Restricted Isometry Property)** if \forall k-sparse vector x we have $(1 - \delta) ||x||_2 \le ||Ax||_2 \le (1 + \delta) ||x||_2$.

A matrix A satisfies (k, δ) -**RIP (Restricted Isometry Property)** if \forall k-sparse vector x we have $(1 - \delta) ||x||_2 \le ||Ax||_2 \le (1 + \delta) ||x||_2$.

Johnson-Linderstrauss Lemma

 $\forall x \text{ with } \|x\|_2 = 1$, we have $7/8 \le \|Ax\|_2 \le 8/7$ w.p. $1 - e^{-O(m)}$.

A matrix A satisfies (k, δ) -**RIP (Restricted Isometry Property)** if \forall k-sparse vector x we have $(1 - \delta) ||x||_2 \le ||Ax||_2 \le (1 + \delta) ||x||_2$.

Johnson-Linderstrauss Lemma

 $\forall x \text{ with } \|x\|_2 = 1$, we have $7/8 \le \|Ax\|_2 \le 8/7$ w.p. $1 - e^{-O(m)}$.

Theorem

If each entry of A is i.i.d. as $\mathcal{N}(0,1)$, and m = O(klog(n/k)), then A satisfies (k, 1/3)-RIP w.h.p.

A matrix A satisfies (k, δ) -**RIP (Restricted Isometry Property)** if \forall k-sparse vector x we have $(1 - \delta) ||x||_2 \le ||Ax||_2 \le (1 + \delta) ||x||_2$.

Johnson-Linderstrauss Lemma

$$\forall x \text{ with } \|x\|_2 = 1$$
, we have $7/8 \le \|Ax\|_2 \le 8/7$ w.p. $1 - e^{-O(m)}$.

Theorem

If each entry of A is i.i.d. as $\mathcal{N}(0,1)$, and m = O(klog(n/k)), then A satisfies (k, 1/3)-RIP w.h.p.

Main Theorem

If A has (6k, 1/3)-RIP. Let x^* be the solution to the LP: minimize $||x^*||_1$ subject to $Ax^* = Ax$ (x^* is k-sparse). Then $||x - x^*||_2 \le C/\sqrt{k} \cdot Err_1^k$ for any x

The lower bounds

• What's known: There exists a $m \times n$ matrix A with $m = O(k \log n)$ (can be improved to $m = O(k \log(n/k))$, and a L_1/L_1 recovery algorithm \mathcal{R} so that for each x, $\mathcal{R}(Ax) = x'$ such that w.h.p.

$$||x - x'||_1 \le C \cdot \min_{||x''||_0 \le k} ||x - x''||_1.$$

The lower bounds

• What's known: There exists a $m \times n$ matrix A with $m = O(k \log n)$ (can be improved to $m = O(k \log(n/k))$, and a L_1/L_1 recovery algorithm \mathcal{R} so that for each x, $\mathcal{R}(Ax) = x'$ such that w.h.p.

$$||x - x'||_1 \le C \cdot \min_{||x''||_0 \le k} ||x - x''||_1.$$

- We are going to show that this is optimal. That is, $m = \Omega(k \log(n/k))$. [Do Ba et. al. SODA '10] To show this we need
 - Communication complexity
 - Coding theory

Communication complexity

They want to jointly compute some function f(x, y)

Communication complexity

They want to jointly compute some function f(x, y)

We would like to minimize

- Total bits of communication
- # rounds of communication (today we only consider 1-round protocol)

Augmented indexing

Promise Input:

- Alice gets $x = \{x_1, x_2, \dots, x_d\} \in \{0, 1\}^d$ Bob gets $y = \{y_1, y_2, \dots, y_d\} \in \{0, 1, \bot\}^d$ such that for some (unique) *i*:
- 1. $y_i \in \{0, 1\}$
- 2. $y_k = x_k$ for all k > i
- 3. $y_1 = y_2 = \ldots = y_{i-1} = \bot$

Output:

Does $x_i = y_i$ (YES/NO)?

Augmented indexing

Promise Input:

- Alice gets $x = \{x_1, x_2, \dots, x_d\} \in \{0, 1\}^d$ Bob gets $y = \{y_1, y_2, \dots, y_d\} \in \{0, 1, \bot\}^d$ such that for some (unique) *i*:
- 1. $y_i \in \{0, 1\}$
- 2. $y_k = x_k$ for all k > i
- 3. $y_1 = y_2 = \ldots = y_{i-1} = \bot$

Output:

Does $x_i = y_i$ (YES/NO)?

Theorem

Any 1-round protocol for Augmented-Indexing that succeeds w.p. $1 - \delta$ for some small const δ has communication complexity $\Omega(d)$.

The proof

• Let X be the maximal set of k-sparse n-dimensional binary vectors with minimum Hamming distance k. We have $\log |X| = \Omega(k \log(n/k))$.

The proof

- Let X be the maximal set of k-sparse n-dimensional binary vectors with minimum Hamming distance k. We have $\log |X| = \Omega(k \log(n/k))$.
- Restate of the input for Augmented-Indexing (AI): Alice is given $y \in \{0, 1\}^d$ and Bob is given $i \in d$ and $y_{i+1}, y_{i+2}, \ldots, y_d$. Goal: Bob wants to learn y_i .

The proof

- Let X be the maximal set of k-sparse n-dimensional binary vectors with minimum Hamming distance k. We have $\log |X| = \Omega(k \log(n/k))$.
- Restate of the input for Augmented-Indexing (AI): Alice is given $y \in \{0, 1\}^d$ and Bob is given $i \in d$ and $y_{i+1}, y_{i+2}, \ldots, y_d$. Goal: Bob wants to learn y_i .
- A protocol using L₁/L₁ recovery for AI:
 Set d = log |X| log n. Let D = 2C + 3
 (C is the constant in the sparse recovery)

Protocol in next slides

The proof (cont.)

A protocol using L_1/L_1 recovery for AI:

- 1. Alice splits her string y into log n contiguous chunks $y^1, \ldots, y^{\log n}$, each containing log |X| bits. She use y^j as an index into X to choose x_j . Alice define: $x = D^1 x_1 + D^2 x_2 + \ldots + D^{\log n} x_{\log n}$.
- 2. Alice and Bob use shared randomness to choose a random matrix A with orthonormal rows, and round it to A' with $b = O(\log n)$ bits per entry. Alice computes A'x and send to Bob.
- 3. Bob uses *i* to compute j = j(i) for which the bit y_i occurs in y^j . Bob also use y_{i+1}, \ldots, y_d to compute $x_{j+1}, \ldots, x_{\log n}$, and he can compute $z = D^{j+1}x_{j+1} + D^{j+2}x_{j+2} + \ldots + D^{\log n}x_{\log n}$.
- 4. Set w = x z Bob then computes A'w using A'z and A'x
- 5. From w Bob can recover w' such that $\|w - u - w'\|_1 \leq C \cdot \min_{\|x''\|_0 \leq k} \|w - u - w''\|_1$. where $u \in_R B_1^n(k)$ (the L_1 ball of radius k)
- 6. From w' he can recover x_j , thus y^j , thus bit y_i

Next topic: Graph Algorithms

Goal: sample an element from the support of $a \in \mathbb{R}^n$

Goal: sample an element from the support of $a \in \mathbb{R}^n$

Algorithm

- Maintain \tilde{F}_0 , an (1 ± 0.1) -approximation to F_0 .
- Hash items using $h_j : [n] \rightarrow [0, 2^j 1]$ for $j \in [\log n]$.
- For each *j*, maintain:

$$\begin{array}{l} - \ D_j = (1 \pm 0.1) \left| \{t \ | \ h_j(t) = 0\} \right| \\ - \ S_j = \sum_{t, h_j(t) = 0} f_t i_t \\ - \ C_j = \sum_{t, h_j(t) = 0} f_t \end{array}$$

Goal: sample an element from the support of $a \in \mathbb{R}^n$

Algorithm

- Maintain \tilde{F}_0 , an (1 ± 0.1) -approximation to F_0 .
- Hash items using $h_j : [n] \rightarrow [0, 2^j 1]$ for $j \in [\log n]$.
- For each *j*, maintain:

$$\begin{array}{l} - D_{j} = (1 \pm 0.1) \left| \{ t \mid h_{j}(t) = 0 \} \right| \\ - S_{j} = \sum_{t, h_{j}(t) = 0} f_{t} i_{t} \\ - C_{j} = \sum_{t, h_{j}(t) = 0} f_{t} \end{array}$$

At level $j = 2 + \lceil \log \tilde{F}_0 \rceil$, there is a *unique* element in the stream that maps to 0 with constant probability.

Goal: sample an element from the support of $a \in \mathbb{R}^n$

Algorithm

- Maintain \tilde{F}_0 , an (1 ± 0.1) -approximation to F_0 .
- Hash items using $h_j : [n] \rightarrow [0, 2^j 1]$ for $j \in [\log n]$.
- For each *j*, maintain:

$$- D_j = (1 \pm 0.1) |\{t \mid h_j(t) = 0\}| - S_j = \sum_{t,h_j(t)=0} f_t i_t$$

$$-C_j = \sum_{t,h_j(t)=0}^{t,h_j(t)=0} f_t$$

Lemma

At level $j = 2 + \lceil \log \tilde{F}_0 \rceil$, there is a *unique* element in the stream that maps to 0 with constant probability.

Uniqueness is verified if $D_j = 1 \pm 0.1$. If unique, then $S_j = C_j$ gives identity of the element and C_j is the count.

Graphs

In semi-streaming, want to process graph defined by edges e_1, \ldots, e_m with $\tilde{O}(n)$ memory and reading sequence in order.

- In semi-streaming, want to process graph defined by edges e_1, \ldots, e_m with $\tilde{O}(n)$ memory and reading sequence in order.
- For example: Connectivity is easy with Õ(n) space if edges are only inserted. But what if edges get deleted?

- In semi-streaming, want to process graph defined by edges e_1, \ldots, e_m with $\tilde{O}(n)$ memory and reading sequence in order.
- For example: Connectivity is easy with O
 (n) space if edges are only inserted. But what if edges get deleted?

A sketch matrix with dimension $\tilde{O}(n) \times n^2$ suffice! To delete *e* from *G*: update $MA_G \rightarrow MA_G - MA_e = MA_{G-e}$, where A_G is the adjacency matrix of *G*.

- In semi-streaming, want to process graph defined by edges e_1, \ldots, e_m with $\tilde{O}(n)$ memory and reading sequence in order.
- For example: Connectivity is easy with O
 (n) space if edges are only inserted. But what if edges get deleted?

A sketch matrix with dimension $\tilde{O}(n) \times n^2$ suffice! To delete *e* from *G*: update $MA_G \rightarrow MA_G - MA_e = MA_{G-e}$, where A_G is the adjacency matrix of *G*.

Magic? Mmm, the information of connectivity is $\tilde{O}(n)$:-)

Connectivity

Basic algorithm (Spanning Forest):

- 1. For each node, sample a random incident edge
- 2. Contract selected edges. Repeat until no edges.

Connectivity

Basic algorithm (Spanning Forest):

- 1. For each node, sample a random incident edge
- 2. Contract selected edges. Repeat until no edges.

Lemma

Takes $O(\log n)$ steps and selected edges include spanning forest.

Basic algorithm (Spanning Forest):

- 1. For each node, sample a random incident edge
- 2. Contract selected edges. Repeat until no edges.

Lemma

Takes $O(\log n)$ steps and selected edges include spanning forest.

Graph Representation For node *i*, let a_i be vector indexed by node pairs. Non-zero entries: $a_i[i,j] = 1$ if j > i and $a_i[i,j] = -1$ if j < i.

Basic algorithm (Spanning Forest):

- 1. For each node, sample a random incident edge
- 2. Contract selected edges. Repeat until no edges.

Lemma

Takes $O(\log n)$ steps and selected edges include spanning forest.

Graph Representation For node *i*, let a_i be vector indexed by node pairs. Non-zero entries: $a_i[i,j] = 1$ if j > i and $a_i[i,j] = -1$ if j < i.

Lemma

For any subset of nodes $S \subset V$,

$$\mathsf{support}(\sum_{i\in S}a_i) = E[S, V \setminus S]$$

Connectivity (cont.)

Sketch: Apply log *n* sketches C_i to each a_j

Sketch: Apply log *n* sketches C_i to each a_j

Run previous algorithm in sketch space::

- 1. Use $C_1 a_j$ to get incident edge on each node j
- 2. For i = 2 to t:
 - To get an incident edge on supernode $S \subset V$ use:

$$\sum_{j\in S} C_i a_j = C_i (\sum_{j\in S} a_j)$$

Use L_0 sampling algorithm to sample an edge

$$e \in \mathsf{support}(\sum_{i \in S} a_i) = E[S, V ackslash S]$$