Linear Sketches

— A Useful Tool in Streaming

and Compressive Sensing

Qin Zhang
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= Random linear projection M : R” — R* that preserves
properties of any v € R" with high prob. where k < n.

[ = ] e

" Simple and useful: Statistics/graph /algebraic problems
iIn data streams, compressive sensing, ...

And rich in theory! You will see in this course.
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" The model (Alon, Matias and Szegedy 1996)
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Data streams

" The model (Alon, Matias and Szegedy 1996)

RAM
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" The model (Alon, Matias and Szegedy 1996)
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= A list of theoretical problems
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Why hard?

® Game 1: A sequence of numbers
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Why hard?

® Game 1: A sequence of numbers

Q: What's the median?

N

® Game 2: Relationships between Alice, Bob, Carol, Dave,
Eva and Paul

Q: Are Eva and Bob connected by friends?

A: YES. Eva & Carol & Dave & Alice & Bob
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Why hard?

® Game 1: A sequence of numbers

Q: What's the median?

N

® Game 2: Relationships between Alice, Bob, Carol, Dave,
Eva and Paul

Q: Are Eva and Bob connected by friends?

A: YES. Eva & Carol & Dave & Alice & Bob

= Why hard? Short of memory!
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A simple example: distinct elements

® The problem

RAM

OD ®® ® ©

Q: Why linear sketch can be w

maintained in the streaming model? CPU
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® The problem
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A simple example: distinct elements

® The problem

RAM

OD ®® ® ©

W/

CPU

How many distinct elements?

Approximation needed.

B Search version = Decision version

Let D be # distinct elements:
o If D> T(1+ ¢), then answer YES.
o If D < T/(1+ ¢€), then answer NO.
Try T=1,(14+¢€),(1+¢€)?,...
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Now, the decision problem

The algorithm

1. Select a random set S C {1,2,...,n}, s.t. for each |,
independently, we have Pr[i € S§]=1/T

2. Make a pass over the stream, maintaining Sumgs(x) = >
Note: this is a linear sketch.

3. If Sums(x) > 0, return YES, otherwise return NO.

ics Xi
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Now, the decision problem

The algorithm

1. Select a random set S C {1,2,...,n}, s.t. for each |,
independently, we have Pr[i € S| =1/T

2. Make a pass over the stream, maintaining Sumgs(x) = >
Note: this is a linear sketch.

3. If Sums(x) > 0, return YES, otherwise return NO.

Lemma

Let P = Pr[SumS(x) = 0]. If T is large enough, and € is small
enough, then

o If D>T(1+¢),then P<1/e—€/3.
o If D T/(1+¢€), then P>1/e+€¢/3.

ics Xi

(Introduce a few useful probabilistic basics)
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Amplify the success probability

Repeat to amplify the success probability

1. Select k sets S1,..., 5 as in previous algorithm, for
k = Clog(1/5)/€?, C >0

2. Let Z be the number of values of Sums (x) that are equal to 0,
Jj=1... k.

3. If Z < k/e then report YES, otherwise report NO.
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3. If Z < k/e then report YES, otherwise report NO.

Lemma

If the constant C is large enough, then this algorithm reports a
correct answer with probability 1 — 0.
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Amplify the success probability

Repeat to amplify the success probability

1. Select k sets 51,..., Sk as in previous algorithm, for
k= Clog(1/8)/e*, C >0

2. Let Z be the number of values of Sums (x) that are equal to 0,
j=1,..., k.

3. If Z < k/e then report YES, otherwise report NO.

Lemma

If the constant C is large enough, then this algorithm reports a
correct answer with probability 1 — 0.

The number of distinct elements can be (1 + ¢)-approximated
with probability 1 — ¢ using O(log nlog(1/4)/€) words.
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Course plan

www.cse.ust.hk/~qinzhang/HKUST-minicourse/index.html
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Course plan

www.cse.ust.hk/~qinzhang/HKUST-minicourse/index.html

That's all for lecture 1.
Thank you.
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Frequency moments and norms

Frequency moments: F, = > |fi|”, fi: frequency of item i.
e [o: number of distinct items.
e fi: total number of items.

o [: size of self-join.
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Frequency moments and norms

Frequency moments: F, = > |fi|”, fi: frequency of item i.
e [o: number of distinct items.
e fi: total number of items.

o [: size of self-join.

A very good measurement of the skewness of the dataset.

Norms: L, = F/"
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B The sketch for L,: a linear sketch Rx = [Z1, ..., Zk], where each
entry of k x n (k= O(1/€?)) matrix R has distribution A/(0, 1).

e Each of Z; is draw from N(0, Hng)
Alternatively, Z; = ||x||, G;, where G; drawn from A/(0, 1).
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B The sketch for L: a linear sketch Rx = [Z1, ..., Zx], where each
entry of k x n (k = O(1/€%)) matrix R has distribution A/(0, 1).

e Each of Z; is draw from N(0, Hng)
Alternatively, Z; = ||x||, G;, where G; drawn from A/(0, 1).

® The estimator:
Y = median{|Zy|,...,|Zk|}/median{G}; G ~ N(0,1) 2

M is the median of a random variable R if Pr[|R| < M] =1/2

®  Sounds like magic? The intuition behind:
For “nice”— looking distributions (e.g., the Gaussian), the median
of those samples, for large enough # samples, should converge to
the median of the distribution.
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The proof

B Closeness in Probability

Let Ui,..., Uk bei.i.d. real random variables chosen from any
distribution having continuous c.d.f F and median M. Defining
U = median{ Uy, ..., U}, there is an absolute constant C > 0,

PHF(U) € (1/2 — e.1/2 4 €)] > 1 — e~k
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Let Ui,..., Uk bei.i.d. real random variables chosen from any
distribution having continuous c.d.f F and median M. Defining
U = median{ Uy, ..., U}, there is an absolute constant C > 0,

PrlF(U) € (1/2—€,1/2+¢€)] > 1 — e~k

B Closeness in Value
Let F be a c.d.f. of a random variable |G|, G drawn from A(0, 1).
There exists an absolute constant C’ > 0 such that if for any
z>0we have F(z) € (1/2—¢,1/2+¢€), then z=M + C'e.
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The proof

® Closeness in Probability

Let Ui,..., Uk bei.i.d. real random variables chosen from any
distribution having continuous c.d.f F and median M. Defining
U = median{ Uy, ..., U}, there is an absolute constant C > 0,

PrlF(U) € (1/2—€,1/2+¢€)] > 1 — e~k

B Closeness in Value
Let F be a c.d.f. of a random variable |G|, G drawn from A(0, 1).
There exists an absolute constant C’ > 0 such that if for any
z>0we have F(z) € (1/2—¢,1/2+¢€), then z=M + C'e.

-
Y =|lx]l, (M« C'e)/M = ||x]l, (1 £ C"¢), =
w.h.p. -
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Generalization

m Key property of Guassian distribution:
If Uy,...,U, and U are i.i.d drawn from Guassian

distribution, then xq Uy + ... + x, U, ~ [|x]| , U for
p=>2
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m Key property of Guassian distribution:
If Uy,...,U, and U are i.i.d drawn from Guassian
distribution, then xq Uy + ... + x, U, ~ [|x]| , U for
p=2

® Such distributions are called “p-stable” [Indyk '06]
Good news: p-stable distributions exist for any

p € (0,2]

For p = 1, we get Cauchy distribution
with density function:

f(x) =1/[r(1+ x*)]




L, (p > 2) (Not linear mapping but important)

" We instead approximate F, = 27:1 X}D = HXHZ
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L, (p > 2) (Not linear mapping but important)

" We instead approximate F, = 27:1 X}[9 = HXHZ

" First attempt: Use two passes.

1. Pick a random element / from the stream in 1st pass.
(Q: How?)
2. Compute i's frequency x; in 2nd pass

3. Finally, return Y = mx?~".
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L, (p > 2) (Not linear mapping but important)

" We instead approximate F, = > 7, xP = HXHz

" First attempt: Use two passes.

1. Pick a random element / from the stream in 1st pass.
(Q: How?)

2. Compute i's frequency x; in 2nd pass

3. Finally, return Y = mx?~".

" Second attempt: Collapse the two passes above

1. Pick a random element / from the stream, count the
number of occurances of / in the rest of the stream,

denoted by r.

2. Now we use r instead of x; to construct the
estimator: Y' = m(r? — (r — 1)P).

14-3



" [, heavy hitter set:

HHY (x) = {i : |xil > ¢ |||}
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Heavy hitters

" [, heavy hitter set:

HHY (x) = {i : |xil > ¢ |||}

= [, Heavy Hitter Problem:
Given ¢, @', (often ¢’ = ¢ — €), return a set S such that

HH;(x) € S C HH}, (x)
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Heavy hitters

" [, heavy hitter set:

HHY (x) = {i : |xil > ¢ |||}

= [, Heavy Hitter Problem:
Given ¢, @', (often ¢’ = ¢ — €), return a set S such that

HH;(x) € S C HH}, (x)

= [, Point Query Problem:

Given ¢, after reading the whole stream, given I, report

x' =x;te HXHP
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[> point query

The algorithm:
[Gilbert, Kotidis, Muthukrishnan and Strauss '01]

e Maintain a sketch Rx such that s = ||Rx||, = (1 £ €) ||x||,
(Risa O(1/€%log(1/8)) x n matrix, which can be constructed,
e.g., by taking each cell to be N(0,1))

e Estimator: x* = (1 — ||[Rx/s — Reill5 /2)s
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The algorithm:
[Gilbert, Kotidis, Muthukrishnan and Strauss '01]

e Maintain a sketch Rx such that s = ||Rx||, = (1 £ €) ||x||,
(Risa O(1/€%log(1/8)) x n matrix, which can be constructed,
e.g., by taking each cell to be N(0,1))

e Estimator: x* = (1 — ||[Rx/s — Reill5 /2)s

Johnson-Linderstrauss Lemma
V x ||x||, = ¢, we have (1 —¢)f < HRXH% [k < (1+¢€)l w.p. 1-0.
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[> point query

The algorithm:
[Gilbert, Kotidis, Muthukrishnan and Strauss '01]

e Maintain a sketch Rx such that s = ||Rx||, = (1 £ €) ||x||,
(Risa O(1/€%log(1/8)) x n matrix, which can be constructed,
e.g., by taking each cell to be N(0,1))

e Estimator: x* = (1 — ||[Rx/s — Reill5 /2)s

Johnson-Linderstrauss Lemma

V x ||x||, = ¢, we have (1 —¢)f < HRXH% [k < (1+¢€)l w.p. 1-0.

We can solve L, point query, with approximation ¢, and failure
probability § by storing O(1/€?log(1/5)) numbers.
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[1 point query

The algorithm for x > 0 [Cormode and Muthu '05]

e Pick d (d =log(1/9)) random hash functions hy, ..., hy where
hi :{1,....n} = {1,...,w} (w=2/e).

e Maintain d vectors Z1,...,Z9 where Zt = {ZF,...,Zt} such
that Zf = 3 ip.(i)=j Xi

e Estimator: x" = min; Z,
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[1 point query

The algorithm for x > 0 [Cormode and Muthu '05]

e Pick d (d =log(1/9)) random hash functions hy, ..., hy where
hi :{1,....n} = {1,...,w} (w=2/e).

e Maintain d vectors Z1,...,Z9 where Zt = {ZF,...,Zt} such
that Zf = 3 ip.(i)=j Xi

e Estimator: x" = min; Z,

We can solve L; point query, with approximation ¢, and failure
probability ¢ by storing O(1/elog(1/9)) numbers.
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Compressive sensing

The model (Candes-Romberg-Tao '04; Donoho '04)

44

E ._._..“_ij_:.l'g Applicaitons
X (| =

- » '-.Jt e Medical

i Compression imaging

] Random projection

reconstruction

y ol RY & e Single-pixel
, min u
- 5 H camera
i »i » : e Compressive
Recovery = sensor network
L1 norm minimization u

etc.
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Formalization

" [p/Lq guarantee: The goal to acquire a signal

X = [xq,...,%n] (e.g., a digital image). The acquisition
proceeds by computing a measurement vector Ax of
dimension m < n. Then, from Ax, we want to recover a
k-sparse approximation x’ of x so that

/ . //
b=l < € min fhe=x"ll, ()
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X = [xq,...,%n] (e.g., a digital image). The acquisition
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k-sparse approximation x’ of x so that

/ . //
b=l < o min =", ()

Err¥(x)
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Formalization

" [p/Lq guarantee: The goal to acquire a signal

X = [xq,...,%n] (e.g., a digital image). The acquisition
proceeds by computing a measurement vector Ax of
dimension m < n. Then, from Ax, we want to recover a
k-sparse approximation x’ of x so that

/ . //
b=l < o min =", ()

k
" Often study: Ll/Ll, Ll/L2 and L2/L2 Errp (*)
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Formalization

" [p/Lq guarantee: The goal to acquire a signal

X = [xq,...,%n] (e.g., a digital image). The acquisition
proceeds by computing a measurement vector Ax of
dimension m < n. Then, from Ax, we want to recover a
k-sparse approximation x’ of x so that

x—X|l <C- min |x—x" *

b xlg <€ omin el ()
k

" Often study: Ll/Ll, Ll/L2 and L2/L2 Errp (*)

® For each: Given a (random) matrix A, for each signal x,
() holds w.h.p.

For all: One matrix A for all signals x. Stronger.
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Results

Scale: [EXGEIGREVery Good| Good | Fair |

Result Table

Paper Rand. | Sketch Encode Col. sparsity/ | Recovery time | Apprx
/Det. | length ti Update ti
e ime pdate time Legend:
[cCF02], n=dimension of x
[CM'06] -
[CV04] * m=dimension of Ax
* k=sparsity of x*
[CRT’04] « T = #iterations
[RV'05]
[GSTV'06] Approx guarantee:
[GSTVO7] < 12/12; [[x-x*|b < C|x=x||1
[BGIKS'08] 12111 |[x-x* || = C|[x~X|I:/K'™2
[GLR'08] <M =Xl = Clix-x]}s
[NV'07], [DM'08],
[NT'08,BD’08]
[IR'08]
[BIR'08]
[DIP'09] D Q(k log(n/k)) 11711
[CDD'07] Q(n) 12712

Caveats: (1) only results for general vectors x are shown; (2) all bounds up to O() factors; (3) specific matrix type often matters
(Fourier, sparse, etc); (4) ignore universality, explicithess, etc (5) most “dominated” algorithms not shown;

Up to year 2009 ... copied from Indky's talk
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For each (Ly/L;)

" The algorithm for L; point query gives a L;/L; sparse
approximation.
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For each (Ly/L;)
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approximation.

Recall L; Point Query Problem: Given ¢, after reading

the whole stream, given I, report x* = X;

" The algorithm for L; point query gives a L;/L; sparse

+ e [|x]l;



For each (Ly/L;)

21-3

The algorithm for Ly point query gives a Ly/L; sparse
approximation.

Recall L; Point Query Problem: Given ¢, after reading
the whole stream, given i, report x* = x; & € ||x||;

Set ¢ = a/k and § = 1/n? in Ly point query. And then
return a vector x’ consisting of k largest (in magnitude)
elements of x*. It gives w.p. 1 — 9,

Ix = x'|l; < (1+3a) - Errf

Total measurements: m = O(k/« - log n)



A matrix A satisfies (k,)-RIP (Restricted Isometry Property) if
V k-sparse vector x we have (1 —9) ||x|[, < ||Ax|[, < (14 9) x|,
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For all (Ly/L5)

A matrix A satisfies (k,)-RIP (Restricted Isometry Property) if
V k-sparse vector x we have (1 —9) ||x|[, < ||Ax|[, < (14 9) x|,

Johnson-Linderstrauss Lemma

V x with ||x||, = 1, we have 7/8 < ||Ax|, < 8/7 w.p. 1—e~9(m)



A matrix A satisfies (k,)-RIP (Restricted Isometry Property) if
V k-sparse vector x we have (1 —9) ||x|[, < ||Ax|[, < (14 9) x|,

Johnson-Linderstrauss Lemma

V x with ||x||, = 1, we have 7/8 < ||Ax|, < 8/7 w.p. 1—e~9(m)

If each entry of Aisi.i.d. as N(0,1), and m = O(klog(n/k)),
then A satisfies (k,1/3)-RIP w.h.p.



For all (Ly/L5)

A matrix A satisfies (k,)-RIP (Restricted Isometry Property) if
V k-sparse vector x we have (1 —9) ||x||, < ||Ax||, < (1 +6) ||x]],.

Johnson-Linderstrauss Lemma

V x with ||x||, = 1, we have 7/8 < ||Ax|, < 8/7 w.p. 1—e~9(m)

If each entry of Aisi.i.d. as N(0,1), and m = O(klog(n/k)),
then A satisfies (k,1/3)-RIP w.h.p.

If A has (6k,1/3)-RIP. Let x* be the solution to the LP:
minimize ||x*||; subject to Ax* = Ax (x* is k-sparse). Then

[x — x*||, < C/Vk-Errf  for any x
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The lower bounds

® What's known: There exists a m X n matrix A with
m = O(klog n) (can be improved to m = O(klog(n/k)),
and a Ly/L; recovery algorithm R so that for each x,
R(Ax) = x" such that w.h.p.

/ . 14
=l < € min b= "],
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The lower bounds

23-2

What’s known: There exists a m x n matrix A with

m = O(klog n) (can be improved to m = O(klog(n/k)),
and a Ly/L; recovery algorithm R so that for each x,
R(Ax) = x" such that w.h.p.

/ . 14
=l < € min [l =]

We are going to show that this is optimal. That is,
m = Q(klog(n/k)). [Do Ba et. al. SODA '10]
To show this we need

e Communication complexity

e Coding theory



Communication complexity

s v\ Round 1
:\'r'} Round 2
K - .
A :
X ° y

They want to jointly compute some function f(x, y)
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Communication complexity

0'\ Round 1
/:! > - Round 2
V. °
A :
X ° y

They want to jointly compute some function f(x, y)

We would like to minimize
e [otal bits of communication

e # rounds of communication
(today we only consider 1-round protocol)

24-2



Augmented indexing

Promise Input:
Alice gets x = {x1,x2,...,x4} € {0,1}¢

Bob gets y = {_)/1,_)/2, e ,_)/d} = {07 1, J—}d
such that for some (unique) i:

1. y,-E{O,l}
2. yx = xx for all k > |
3. y1:y2:...:y,'_1:J_

Output:
Does x; = y; (YES/NQO)?

25-1



Augmented indexing

Promise Input:
Alice gets x = {x1,x2,...,x4} € {0,1}¢

Bob gets y = {_)/1,_)/2, e ,_)/d} = {07 1, J—}d
such that for some (unique) i:

1. y,-E{O,l}
2. yx = xx for all k > |
3. y1:y2:...:y,'_1:J_

Output:
Does x; = y; (YES/NQO)?

Any 1-round protocol for Augmented-Indexing that succeeds w.p.
1 — 4 for some small const § has communication complexity €(d).
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The proof

et X be the maximal set of k-sparse n-dimensional
oinary vectors with minimum Hamming distance k. We

nave log | X| = Q(k log(n/k)).
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The proof

et X be the maximal set of k-sparse n-dimensional
oinary vectors with minimum Hamming distance k. We

nave log | X| = Q(k log(n/k)).

" Restate of the input for Augmented-Indexing (Al):
Alice is given y € {0,1}? and Bob is given i € d and
, ¥4. Goal: Bob wants to learn y;.

Yi+1, Yi+2, ...
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The proof

et X be the maximal set of k-sparse n-dimensional
oinary vectors with minimum Hamming distance k. We

nave log | X| = Q(k log(n/k)).

" Restate of the input for Augmented-Indexing (Al):
Alice is given y € {0,1}? and Bob is given i € d and
Vit1, Vit2, ..., Yd. Goal: Bob wants to learn y;.

" A protocol using L;/L; recovery for Al:
Set d = log |X|logn. Let D =2C +3
(C is the constant in the sparse recovery)

Protocol in next slides
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The proof (cont.)

A protocol using L;/L; recovery for Al:

1. Alice splits her string y into log n contiguous chunks yloooL e,
each containing log | X| bits. She use y’ as an index into X to
choose x;. Alice define: x = D'x; + D?xy + ...+ D'® "Xiog n-

2. Alice and Bob use shared randomness to choose a random matrix A
with orthonormal rows, and round it to A" with b = O(log n) bits
per entry. Alice computes A’x and send to Bob.

3. Bob uses i to compute j = (i) for which the bit y; occurs in /.
Bob also use yit1,...,yqs to compute Xj11,...,Xogn, and he can

4. Set w = x — z Bob then computes A'w using A’z and A’x

5. From w Bob can recover w’ such that
fw —u—w; < C-minj <k ||lw—u—w’|.

where u €r Bi'(k) (the L; ball of radius k)

6. From w’ he can recover x;, thus y’, thus bit y;
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Next topic:
Graph Algorithms



Lo sampling

Goal: sample an element from the support of a € R”
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Lo sampling

Goal: sample an element from the support of a € R”

Algorithm

e Maintain Fo, an (1 + 0.1)-approximation to Fg.
e Hash items using h; : [n] — [0,2/ — 1] for j € [log n].
e For each j, maintain:

= Dy = (1 £0.1)[1t | h(t) = 0}

29-2



Lo sampling

Goal: sample an element from the support of a € R”

Algorithm

e Maintain Fo, an (1 + 0.1)-approximation to Fg.

e Hash items using h; : [n] — [0,2/ — 1] for j € [log n].

e For each j, maintain:
= D=1 +01)[1t | hi(t) =0}
- 5= Zt,hj(t):o friy
- (= Zt,hj(t):O fi

Lemma

At level j = 2 + [log Fo], there is a unique element in the stream
that maps to 0 with constant probability.



Lo sampling

Goal: sample an element from the support of a € R”

Algorithm

e Maintain Fo, an (1 4 0.1)-approximation to Fo.
e Hash items using h; : [n] — [0,2/ — 1] for j € [log n].
e For each j, maintain:
- 5= Zt,hj(t)ZO friy
- (= Zt,hj(t):O fi

Lemma

At level j = 2 + [log Fo], there is a unique element in the stream
that maps to 0 with constant probability.

Uniqueness is verified if D; =1+ 0.1. If unique, then 5; = C; gives
identity of the element and C; is the count.
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" In semi-streaming, want to process graph defined by
edges e1,...,en with O(n) memory and reading
sequence in order.
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" In semi-streaming, want to process graph defined by
edges e1,...,en with O(n) memory and reading
sequence in order.

" For example: Connectivity is easy with O(n) space if
edges are only inserted. But what if edges get deleted?
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In semi-streaming, want to process graph defined by
edges e1,...,en with O(n) memory and reading
sequence in order.

For example: Connectivity is easy with O(n) space if
edges are only inserted. But what if edges get deleted?

A sketch matrix with dimension O(n) x n? suffice!

To delete e from G: update
MAgc — MAg — MA. = MAg_.,
where Ag is the adjacency matrix of G.



" In semi-streaming, want to process graph defined by
edges e1,...,en with O(n) memory and reading
sequence in order.

" For example: Connectivity is easy with O(n) space if
edges are only inserted. But what if edges get deleted?

A sketch matrix with dimension O(n) x n? suffice!

To delete e from G: update
MAgc — MAg — MA. = MAg_.,
where Ag is the adjacency matrix of G.

Magic? Mmm, the information of connectivity is O(n) :-)
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Connectivity

Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

31-1



Connectivity

Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Lemma

Takes O(log n) steps and selected edges include spanning forest.
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Connectivity

Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Lemma

Takes O(log n) steps and selected edges include spanning forest.

Graph Representation For node /, let a; be vector
indexed by node pairs. Non-zero entries: a;[i,j] =1 if
Jj>iandaili,j]l=-1if j <.
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Connectivity

Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Lemma

Takes O(log n) steps and selected edges include spanning forest.

Graph Representation For node /, let a; be vector
indexed by node pairs. Non-zero entries: a;[i,j] =1 if
Jj>iandaili,j]l=-1if j <.

Lemma

For any subset of nodes S C V/,
support() ;s ai) = E[S, V\S]
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Connectivity (cont.)

Sketch: Apply log n sketches C; to each a;
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Connectivity (cont.)

Sketch: Apply log n sketches C; to each a;

Run previous algorithm in sketch space::
1. Use Cia; to get incident edge on each node j
2. Fori =2to t:
e To get an incident edge on supernode S C V use:

Zjes Ciaj = Ci(zjes aj)
Use Ly sampling algorithm to sample an edge

e € support() ..sa;) = E[S, V\S]
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