
1-1

Linear Sketches

– A Useful Tool in Streaming

and Compressive Sensing

Qin Zhang
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Linear sketch
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properties of any v ∈ Rn with high prob. where k � n.

=M

v

Mv answer



2-2

Linear sketch

Random linear projection M : Rn → Rk that preserves
properties of any v ∈ Rn with high prob. where k � n.

=M

v

Mv answer

Simple and useful: Statistics/graph/algebraic problems
in data streams, compressive sensing, . . .



2-3

Linear sketch

Random linear projection M : Rn → Rk that preserves
properties of any v ∈ Rn with high prob. where k � n.

=M

v

Mv answer

Simple and useful: Statistics/graph/algebraic problems
in data streams, compressive sensing, . . .

And rich in theory! You will see in this course.
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The model (Alon, Matias and Szegedy 1996)
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Data streams

RAM

CPU

The model (Alon, Matias and Szegedy 1996)

Applicaitons

etc.

A list of theoretical problems
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Why hard?

Game 1: A sequence of numbers
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Why hard?

Game 1: A sequence of numbers

Game 2: Relationships between Alice, Bob, Carol, Dave,

Eva and Paul

Q: What’s the median?
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Q: Are Eva and Bob connected by friends?
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Why hard?

Game 1: A sequence of numbers

Game 2: Relationships between Alice, Bob, Carol, Dave,

Eva and Paul

Q: What’s the median?

A: 33

Q: Are Eva and Bob connected by friends?

A: YES. Eva ⇔ Carol ⇔ Dave ⇔ Alice ⇔ Bob

Why hard? Short of memory!
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A simple example: distinct elements

RAM

CPU

The problem

9 7 6 3 3 9

Q: Why linear sketch can be
maintained in the streaming model?



6-2

A simple example: distinct elements

RAM

CPU

The problem

9 7 6 3 3 9

How many distinct elements?

Approximation needed.



6-3

A simple example: distinct elements

RAM

CPU

The problem

9 7 6 3 3 9

How many distinct elements?

Approximation needed.

Search version ⇒ Decision version

Let D be # distinct elements:

• If D ≥ T (1 + ε), then answer YES.

• If D ≤ T/(1 + ε), then answer NO.

Try T = 1, (1 + ε), (1 + ε)2, . . .
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Now, the decision problem

The algorithm

1. Select a random set S ⊆ {1, 2, . . . , n}, s.t. for each i ,
independently, we have Pr[i ∈ S ] = 1/T

2. Make a pass over the stream, maintaining SumS(x) =
∑

i∈S xi
Note: this is a linear sketch.

3. If SumS(x) > 0, return YES, otherwise return NO.
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Now, the decision problem

The algorithm

1. Select a random set S ⊆ {1, 2, . . . , n}, s.t. for each i ,
independently, we have Pr[i ∈ S ] = 1/T

2. Make a pass over the stream, maintaining SumS(x) =
∑

i∈S xi
Note: this is a linear sketch.

3. If SumS(x) > 0, return YES, otherwise return NO.

Lemma

Let P = Pr [SumS(x) = 0]. If T is large enough, and ε is small
enough, then

• If D ≥ T (1 + ε), then P < 1/e − ε/3.

• If D ≤ T/(1 + ε), then P > 1/e + ε/3.

(Introduce a few useful probabilistic basics)
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Amplify the success probability

Repeat to amplify the success probability

1. Select k sets S1, . . . ,Sk as in previous algorithm, for
k = C log(1/δ)/ε2, C > 0

2. Let Z be the number of values of SumSj (x) that are equal to 0,
j = 1, . . . , k.

3. If Z < k/e then report YES, otherwise report NO.
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2. Let Z be the number of values of SumSj (x) that are equal to 0,
j = 1, . . . , k.

3. If Z < k/e then report YES, otherwise report NO.

Lemma

If the constant C is large enough, then this algorithm reports a
correct answer with probability 1− δ.
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Amplify the success probability

Repeat to amplify the success probability

1. Select k sets S1, . . . ,Sk as in previous algorithm, for
k = C log(1/δ)/ε2, C > 0

2. Let Z be the number of values of SumSj (x) that are equal to 0,
j = 1, . . . , k.

3. If Z < k/e then report YES, otherwise report NO.

Lemma

If the constant C is large enough, then this algorithm reports a
correct answer with probability 1− δ.

Theorem

The number of distinct elements can be (1± ε)-approximated
with probability 1− δ using O(log n log(1/δ)/ε3) words.
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Course plan

www.cse.ust.hk/~qinzhang/HKUST-minicourse/index.html
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Course plan

www.cse.ust.hk/~qinzhang/HKUST-minicourse/index.html

That’s all for lecture 1.

Thank you.
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Frequency moments: Fp =
∑

i |fi |
p, fi : frequency of item i .

• F0: number of distinct items.

• F1: total number of items.

• F2: size of self-join.
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Frequency moments and norms

Frequency moments: Fp =
∑

i |fi |
p, fi : frequency of item i .

• F0: number of distinct items.

• F1: total number of items.

• F2: size of self-join.

A very good measurement of the skewness of the dataset.

Norms: Lp = F
1/p
p
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L2 estimation

The sketch for L2: a linear sketch Rx = [Z1, . . . ,Zk ], where each
entry of k × n (k = O(1/ε2)) matrix R has distribution N (0, 1).

• Each of Zi is draw from N (0, ‖x‖22).
Alternatively, Zi = ‖x‖2 Gi , where Gi drawn from N (0, 1).
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L2 estimation

The sketch for L2: a linear sketch Rx = [Z1, . . . ,Zk ], where each
entry of k × n (k = O(1/ε2)) matrix R has distribution N (0, 1).

• Each of Zi is draw from N (0, ‖x‖22).
Alternatively, Zi = ‖x‖2 Gi , where Gi drawn from N (0, 1).

The estimator:

Y = median{|Z1| , . . . , |Zk |}/median{G}; G ∼ N (0, 1) a

aM is the median of a random variable R if Pr[|R| ≤ M] = 1/2

Sounds like magic? The intuition behind:
For “nice”– looking distributions (e.g., the Gaussian), the median
of those samples, for large enough # samples, should converge to
the median of the distribution.
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The proof

Closeness in Probability
Let U1, . . . ,Uk be i.i.d. real random variables chosen from any
distribution having continuous c.d.f F and median M. Defining
U = median{U1, . . . ,Uk}, there is an absolute constant C > 0,

Pr [F (U) ∈ (1/2− ε, 1/2 + ε)] ≥ 1− e−Ckε
2
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The proof

Closeness in Probability
Let U1, . . . ,Uk be i.i.d. real random variables chosen from any
distribution having continuous c.d.f F and median M. Defining
U = median{U1, . . . ,Uk}, there is an absolute constant C > 0,

Pr [F (U) ∈ (1/2− ε, 1/2 + ε)] ≥ 1− e−Ckε
2

Closeness in Value
Let F be a c.d.f. of a random variable |G |, G drawn from N (0, 1).
There exists an absolute constant C ′ > 0 such that if for any
z ≥ 0 we have F (z) ∈ (1/2− ε, 1/2 + ε), then z = M ± C ′ε.

Theorem

Y = ‖x‖2 (M ± C ′ε)/M = ‖x‖2 (1± C ′′ε),
w.h.p.
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Generalization

Key property of Guassian distribution:
If U1, . . . ,Un and U are i.i.d drawn from Guassian
distribution, then x1U1 + . . .+ xnUn ∼ ‖x‖p U for
p = 2
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Generalization

Key property of Guassian distribution:
If U1, . . . ,Un and U are i.i.d drawn from Guassian
distribution, then x1U1 + . . .+ xnUn ∼ ‖x‖p U for
p = 2

Such distributions are called “p-stable” [Indyk ’06]
Good news: p-stable distributions exist for any
p ∈ (0, 2]

For p = 1, we get Cauchy distribution
with density function:

f (x) = 1/[π(1 + x2)]
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Lp (p > 2) (Not linear mapping but important)

We instead approximate Fp =
∑n

i=1 x
p
i = ‖x‖pp
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Lp (p > 2) (Not linear mapping but important)

We instead approximate Fp =
∑n

i=1 x
p
i = ‖x‖pp

First attempt: Use two passes.

1. Pick a random element i from the stream in 1st pass.
(Q: How?)

2. Compute i ’s frequency xi in 2nd pass

3. Finally, return Y = mxp−1
i .
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Lp (p > 2) (Not linear mapping but important)

We instead approximate Fp =
∑n

i=1 x
p
i = ‖x‖pp

Second attempt: Collapse the two passes above

1. Pick a random element i from the stream, count the
number of occurances of i in the rest of the stream,
denoted by r .

2. Now we use r instead of xi to construct the
estimator: Y ′ = m(rp − (r − 1)p).

First attempt: Use two passes.

1. Pick a random element i from the stream in 1st pass.
(Q: How?)

2. Compute i ’s frequency xi in 2nd pass

3. Finally, return Y = mxp−1
i .
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Heavy hitters

Lp heavy hitter set:

HHp
φ(x) = {i : |xi | ≥ φ ‖x‖p}
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Lp heavy hitter set:

HHp
φ(x) = {i : |xi | ≥ φ ‖x‖p}

Lp Heavy Hitter Problem:

Given φ, φ′, (often φ′ = φ− ε), return a set S such that

HHp
φ(x) ⊆ S ⊆ HHp

φ′(x)
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Heavy hitters

Lp heavy hitter set:

HHp
φ(x) = {i : |xi | ≥ φ ‖x‖p}

Lp Heavy Hitter Problem:

Given φ, φ′, (often φ′ = φ− ε), return a set S such that

HHp
φ(x) ⊆ S ⊆ HHp

φ′(x)

Lp Point Query Problem:

Given ε, after reading the whole stream, given i , report

x∗i = xi ± ε ‖x‖p
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L2 point query

The algorithm:
[Gilbert, Kotidis, Muthukrishnan and Strauss ’01]

• Maintain a sketch Rx such that s = ‖Rx‖2 = (1± ε) ‖x‖2
(R is a O(1/ε2 log(1/δ))× n matrix, which can be constructed,
e.g., by taking each cell to be N (0, 1))

• Estimator: x∗i = (1− ‖Rx/s − Rei‖22 /2)s
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L2 point query

The algorithm:
[Gilbert, Kotidis, Muthukrishnan and Strauss ’01]

• Maintain a sketch Rx such that s = ‖Rx‖2 = (1± ε) ‖x‖2
(R is a O(1/ε2 log(1/δ))× n matrix, which can be constructed,
e.g., by taking each cell to be N (0, 1))

• Estimator: x∗i = (1− ‖Rx/s − Rei‖22 /2)s

TheoremJohnson-Linderstrauss Lemma

∀ x ‖x‖2 = `, we have (1− ε)` ≤ ‖Rx‖22 /k ≤ (1 + ε)` w.p. 1− δ.
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L2 point query

The algorithm:
[Gilbert, Kotidis, Muthukrishnan and Strauss ’01]

• Maintain a sketch Rx such that s = ‖Rx‖2 = (1± ε) ‖x‖2
(R is a O(1/ε2 log(1/δ))× n matrix, which can be constructed,
e.g., by taking each cell to be N (0, 1))

• Estimator: x∗i = (1− ‖Rx/s − Rei‖22 /2)s

Theorem

We can solve L2 point query, with approximation ε, and failure
probability δ by storing O(1/ε2 log(1/δ)) numbers.

TheoremJohnson-Linderstrauss Lemma

∀ x ‖x‖2 = `, we have (1− ε)` ≤ ‖Rx‖22 /k ≤ (1 + ε)` w.p. 1− δ.
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L1 point query

The algorithm for x ≥ 0 [Cormode and Muthu ’05]

• Pick d (d = log(1/δ)) random hash functions h1, . . . , hd where
hi : {1, . . . , n} → {1, . . . ,w} (w = 2/ε).

• Maintain d vectors Z 1, . . . ,Z d where Z t = {Z t
1 , . . . ,Z

t
w} such

that Z t
j =

∑
i :ht(i)=j xi

• Estimator: x∗i = mint Z
t
ht(i)
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L1 point query

The algorithm for x ≥ 0 [Cormode and Muthu ’05]

• Pick d (d = log(1/δ)) random hash functions h1, . . . , hd where
hi : {1, . . . , n} → {1, . . . ,w} (w = 2/ε).

• Maintain d vectors Z 1, . . . ,Z d where Z t = {Z t
1 , . . . ,Z

t
w} such

that Z t
j =

∑
i :ht(i)=j xi

• Estimator: x∗i = mint Z
t
ht(i)

Theorem

We can solve L1 point query, with approximation ε, and failure
probability δ by storing O(1/ε log(1/δ)) numbers.
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Compressive sensing

The model (Candes-Romberg-Tao ’04; Donoho ’04)

Applicaitons

etc.

• Medical
imaging
reconstruction

• Single-pixel
camera

• Compressive
sensor network
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Formalization

Lp/Lq guarantee: The goal to acquire a signal
x = [x1, . . . , xn] (e.g., a digital image). The acquisition
proceeds by computing a measurement vector Ax of
dimension m� n. Then, from Ax , we want to recover a
k-sparse approximation x ′ of x so that

‖x − x ′‖q ≤ C · min
‖x′′‖0≤k

‖x − x ′′‖p (∗)
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Lp/Lq guarantee: The goal to acquire a signal
x = [x1, . . . , xn] (e.g., a digital image). The acquisition
proceeds by computing a measurement vector Ax of
dimension m� n. Then, from Ax , we want to recover a
k-sparse approximation x ′ of x so that
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Formalization

Lp/Lq guarantee: The goal to acquire a signal
x = [x1, . . . , xn] (e.g., a digital image). The acquisition
proceeds by computing a measurement vector Ax of
dimension m� n. Then, from Ax , we want to recover a
k-sparse approximation x ′ of x so that

‖x − x ′‖q ≤ C · min
‖x′′‖0≤k

‖x − x ′′‖p (∗)

Often study: L1/L1, L1/L2 and L2/L2

For each: Given a (random) matrix A, for each signal x ,

(∗) holds w.h.p.

For all: One matrix A for all signals x . Stronger.

Errkp (x)



20-1

Results

Up to year 2009 ... copied from Indky’s talk
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For each (L1/L1)

The algorithm for L1 point query gives a L1/L1 sparse
approximation.
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The algorithm for L1 point query gives a L1/L1 sparse
approximation.

Recall L1 Point Query Problem: Given ε, after reading
the whole stream, given i , report x∗i = xi ± ε ‖x‖1
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For each (L1/L1)

The algorithm for L1 point query gives a L1/L1 sparse
approximation.

Recall L1 Point Query Problem: Given ε, after reading
the whole stream, given i , report x∗i = xi ± ε ‖x‖1

Set ε = α/k and δ = 1/n2 in L1 point query. And then
return a vector x ′ consisting of k largest (in magnitude)
elements of x∗. It gives w.p. 1− δ,

‖x − x ′‖1 ≤ (1 + 3α) · Errk1

Total measurements: m = O(k/α · log n)
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For all (L1/L2)

A matrix A satisfies (k , δ)-RIP (Restricted Isometry Property) if
∀ k-sparse vector x we have (1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2.
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A matrix A satisfies (k , δ)-RIP (Restricted Isometry Property) if
∀ k-sparse vector x we have (1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2.

TheoremJohnson-Linderstrauss Lemma

∀ x with ‖x‖2 = 1, we have 7/8 ≤ ‖Ax‖2 ≤ 8/7 w.p. 1− e−O(m).
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For all (L1/L2)

A matrix A satisfies (k , δ)-RIP (Restricted Isometry Property) if
∀ k-sparse vector x we have (1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2.

TheoremJohnson-Linderstrauss Lemma

∀ x with ‖x‖2 = 1, we have 7/8 ≤ ‖Ax‖2 ≤ 8/7 w.p. 1− e−O(m).

Theorem

We can solve L1 point query, with approximation ε, and failure
probability δ by storing O(1/ε log(1/δ)) numbers.

Theorem

If each entry of A is i.i.d. as N (0, 1), and m = O(klog(n/k)),
then A satisfies (k, 1/3)-RIP w.h.p.
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For all (L1/L2)

A matrix A satisfies (k , δ)-RIP (Restricted Isometry Property) if
∀ k-sparse vector x we have (1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2.

Theorem

We can solve L1 point query, with approximation ε, and failure
probability δ by storing O(1/ε log(1/δ)) numbers.

Main Theorem

If A has (6k, 1/3)-RIP. Let x∗ be the solution to the LP:
minimize ‖x∗‖1 subject to Ax∗ = Ax (x∗ is k-sparse). Then

‖x − x∗‖2 ≤ C/
√
k · Errk1 for any x

TheoremJohnson-Linderstrauss Lemma

∀ x with ‖x‖2 = 1, we have 7/8 ≤ ‖Ax‖2 ≤ 8/7 w.p. 1− e−O(m).

Theorem

We can solve L1 point query, with approximation ε, and failure
probability δ by storing O(1/ε log(1/δ)) numbers.

Theorem

If each entry of A is i.i.d. as N (0, 1), and m = O(klog(n/k)),
then A satisfies (k, 1/3)-RIP w.h.p.
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The lower bounds

What’s known: There exists a m × n matrix A with
m = O(k log n) (can be improved to m = O(k log(n/k)),
and a L1/L1 recovery algorithm R so that for each x ,
R(Ax) = x ′ such that w.h.p.

‖x − x ′‖1 ≤ C · min
‖x′′‖0≤k

‖x − x ′′‖1 .
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The lower bounds

What’s known: There exists a m × n matrix A with
m = O(k log n) (can be improved to m = O(k log(n/k)),
and a L1/L1 recovery algorithm R so that for each x ,
R(Ax) = x ′ such that w.h.p.

‖x − x ′‖1 ≤ C · min
‖x′′‖0≤k

‖x − x ′′‖1 .

We are going to show that this is optimal. That is,
m = Ω(k log(n/k)). [Do Ba et. al. SODA ’10]
To show this we need

• Communication complexity

• Coding theory
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Communication complexity

Round 1

Round 2

x y

They want to jointly compute some function f (x , y)
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Communication complexity

Round 1

Round 2

x y

They want to jointly compute some function f (x , y)

We would like to minimize

• Total bits of communication

• # rounds of communication
(today we only consider 1-round protocol)
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Augmented indexing

Promise Input:
Alice gets x = {x1, x2, . . . , xd} ∈ {0, 1}d

Bob gets y = {y1, y2, . . . , yd} ∈ {0, 1,⊥}d
such that for some (unique) i :

1. yi ∈ {0, 1}
2. yk = xk for all k > i

3. y1 = y2 = . . . = yi−1 =⊥

Output:
Does xi = yi (YES/NO)?
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Augmented indexing

Promise Input:
Alice gets x = {x1, x2, . . . , xd} ∈ {0, 1}d

Bob gets y = {y1, y2, . . . , yd} ∈ {0, 1,⊥}d
such that for some (unique) i :

1. yi ∈ {0, 1}
2. yk = xk for all k > i

3. y1 = y2 = . . . = yi−1 =⊥

Output:
Does xi = yi (YES/NO)?

Theorem

We can solve L1 point query, with approximation ε, and failure
probability δ by storing O(1/ε log(1/δ)) numbers.

Theorem

Any 1-round protocol for Augmented-Indexing that succeeds w.p.
1− δ for some small const δ has communication complexity Ω(d).
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The proof

Let X be the maximal set of k-sparse n-dimensional
binary vectors with minimum Hamming distance k . We
have log |X | = Ω(k log(n/k)).
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The proof

Restate of the input for Augmented-Indexing (AI):
Alice is given y ∈ {0, 1}d and Bob is given i ∈ d and

yi+1, yi+2, . . . , yd . Goal: Bob wants to learn yi .

Let X be the maximal set of k-sparse n-dimensional
binary vectors with minimum Hamming distance k . We
have log |X | = Ω(k log(n/k)).
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The proof

Restate of the input for Augmented-Indexing (AI):
Alice is given y ∈ {0, 1}d and Bob is given i ∈ d and

yi+1, yi+2, . . . , yd . Goal: Bob wants to learn yi .

A protocol using L1/L1 recovery for AI:
Set d = log |X | log n. Let D = 2C + 3
(C is the constant in the sparse recovery)

Protocol in next slides

Let X be the maximal set of k-sparse n-dimensional
binary vectors with minimum Hamming distance k . We
have log |X | = Ω(k log(n/k)).
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The proof (cont.)

A protocol using L1/L1 recovery for AI:

1. Alice splits her string y into log n contiguous chunks y 1, . . . , y log n,
each containing log |X | bits. She use y j as an index into X to
choose xj . Alice define: x = D1x1 + D2x2 + . . .+ D log nxlog n.

2. Alice and Bob use shared randomness to choose a random matrix A
with orthonormal rows, and round it to A′ with b = O(log n) bits
per entry. Alice computes A′x and send to Bob.

3. Bob uses i to compute j = j(i) for which the bit yi occurs in y j .
Bob also use yi+1, . . . , yd to compute xj+1, . . . , xlog n, and he can
compute z = D j+1xj+1 + D j+2xj+2 + . . .+ D log nxlog n.

4. Set w = x − z Bob then computes A′w using A′z and A′x

5. From w Bob can recover w ′ such that
‖w − u − w ′‖1 ≤ C ·min‖x′′‖0≤k ‖w − u − w ′′‖1 .
where u ∈R Bn

1 (k) (the L1 ball of radius k)

6. From w ′ he can recover xj , thus y j , thus bit yi
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Next topic:

Graph Algorithms
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L0 sampling

Goal: sample an element from the support of a ∈ Rn



29-2

L0 sampling

Goal: sample an element from the support of a ∈ Rn

• Maintain F̃0, an (1± 0.1)-approximation to F0.
• Hash items using hj : [n]→ [0, 2j − 1] for j ∈ [log n].
• For each j , maintain:

– Dj = (1± 0.1) |{t | hj(t) = 0}|
– Sj =

∑
t,hj (t)=0 ft it

– Cj =
∑

t,hj (t)=0 ft

Algorithm



29-3

L0 sampling

Goal: sample an element from the support of a ∈ Rn

• Maintain F̃0, an (1± 0.1)-approximation to F0.
• Hash items using hj : [n]→ [0, 2j − 1] for j ∈ [log n].
• For each j , maintain:

– Dj = (1± 0.1) |{t | hj(t) = 0}|
– Sj =

∑
t,hj (t)=0 ft it

– Cj =
∑

t,hj (t)=0 ft

Algorithm

Theorem

We can solve L1 point query, with approximation ε, and failure
probability δ by storing O(1/ε log(1/δ)) numbers.

Lemma

At level j = 2 + dlog F̃0e, there is a unique element in the stream
that maps to 0 with constant probability.
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L0 sampling

Goal: sample an element from the support of a ∈ Rn

• Maintain F̃0, an (1± 0.1)-approximation to F0.
• Hash items using hj : [n]→ [0, 2j − 1] for j ∈ [log n].
• For each j , maintain:

– Dj = (1± 0.1) |{t | hj(t) = 0}|
– Sj =

∑
t,hj (t)=0 ft it

– Cj =
∑

t,hj (t)=0 ft

Algorithm

Uniqueness is verified if Dj = 1± 0.1. If unique, then Sj = Cj gives
identity of the element and Cj is the count.

Theorem

We can solve L1 point query, with approximation ε, and failure
probability δ by storing O(1/ε log(1/δ)) numbers.

Lemma

At level j = 2 + dlog F̃0e, there is a unique element in the stream
that maps to 0 with constant probability.
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Graphs

In semi-streaming, want to process graph defined by
edges e1, . . . , em with Õ(n) memory and reading
sequence in order.
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Graphs

In semi-streaming, want to process graph defined by
edges e1, . . . , em with Õ(n) memory and reading
sequence in order.

For example: Connectivity is easy with Õ(n) space if
edges are only inserted. But what if edges get deleted?
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Graphs

In semi-streaming, want to process graph defined by
edges e1, . . . , em with Õ(n) memory and reading
sequence in order.

For example: Connectivity is easy with Õ(n) space if
edges are only inserted. But what if edges get deleted?

A sketch matrix with dimension Õ(n)× n2 suffice!

To delete e from G : update
MAG → MAG −MAe = MAG−e ,
where AG is the adjacency matrix of G .
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Graphs

In semi-streaming, want to process graph defined by
edges e1, . . . , em with Õ(n) memory and reading
sequence in order.

For example: Connectivity is easy with Õ(n) space if
edges are only inserted. But what if edges get deleted?

A sketch matrix with dimension Õ(n)× n2 suffice!

To delete e from G : update
MAG → MAG −MAe = MAG−e ,
where AG is the adjacency matrix of G .

Magic? Mmm, the information of connectivity is Õ(n) :-)
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Connectivity

Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.
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Connectivity

Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Lemma

Takes O(log n) steps and selected edges include spanning forest.
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Connectivity

Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Graph Representation For node i , let ai be vector
indexed by node pairs. Non-zero entries: ai [i , j ] = 1 if
j > i and ai [i , j ] = −1 if j < i .

Lemma

Takes O(log n) steps and selected edges include spanning forest.
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Connectivity

Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Graph Representation For node i , let ai be vector
indexed by node pairs. Non-zero entries: ai [i , j ] = 1 if
j > i and ai [i , j ] = −1 if j < i .

We can solve L1 point query, with approximation ε, and failure
probability δ by storing O(1/ε log(1/δ)) numbers.

Lemma

For any subset of nodes S ⊂ V ,

support(
∑

i∈S ai ) = E [S ,V \S ]

Lemma

Takes O(log n) steps and selected edges include spanning forest.
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Connectivity (cont.)

Sketch: Apply log n sketches Ci to each aj
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Connectivity (cont.)

Sketch: Apply log n sketches Ci to each aj

Use L0 sampling algorithm to sample an edge

e ∈ support(
∑

i∈S ai ) = E [S ,V \S ]

Run previous algorithm in sketch space::
1. Use C1aj to get incident edge on each node j
2. For i = 2 to t:
• To get an incident edge on supernode S ⊂ V use:∑

j∈S Ciaj = Ci (
∑

j∈S aj)


