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• Retailer databases

• Logistics, financial & health data

• Social network

• Pictures by mobile devices

• Internet of Things

• New forms of scientific data

Source and Challenge

Source

• Volume

• Velocity

• Variety (Documents, Stock records, Personal profiles,
Photographs, Audio & Video, 3D models, Location data, . . . )

Challenge

} The focus of algorithm design
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What is the meaning of Big Data IN THEORY?

We don’t define Big Data in terms of TB, PB, EB, . . .

The data is stored there, but no time to read them all.
What can we do?

The data is too big to fit in main memory.
What can we do?

The data is too big to be stored in a single machine.
What can we do if we do not want to throw them away?

Read some of them. Sublinear in time

Store on the disk (page/block access) Sublinear in I/O

Throw some of them away. Sublinear in space

Store in multiple machines, which collaborate via communication

Sublinear in communication
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What do we mean by “sublinear”?

Time/space/communication

spent is o(input size)
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Conceretly, theory folks talk about the following ...

Sublinear time algorithms

Sublinear time approximation algorithms

Property testing (not in this course)

Sublinear space algorithms

Data stream algorithms

Sublinear communication algorithms

Multiparty communication protocols/algorithms
(particular models: MapReduce, BSP, . . . )

Sublinear I/O algorithms (not in this course)

External memory data structures/algorithms
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Sublinear in time

Given a social network graph, we want to compute its average degree.
(i.e., the average # of friends people have in the network)

Can we do it without quering the degrees of all nodes?
(i.e., asking everyone)

Example:
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Why hard? You can’t see everything in sublinear time!

Computing exact average degree is impossible without
querying at least n − 1 nodes (n: # total nodes).

So our goal is to get a (1 + ε)-approximation w.h.p.
(ε is a very small constant, e.g., 0.01)

Can we simply use sampling?

So can we do anything non-trivial?

(think about it, and we will discuss later in the course)

No, it doesn’t work. Consider the star, with degree sequence
(n − 1, 1, . . . , 1).
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Sublinear in space

The data stream model (Alon, Matias and Szegedy 1996)

RAM

CPU
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Sublinear in space

The data stream model (Alon, Matias and Szegedy 1996)

Applications

Internet Router.

RAM

CPU

Router

Packets limited space

Stock data, ad auction, flight logs on tapes, etc.

The router wants to maintain some statistics on data.
E.g., want to detect anomalies for security.
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A:
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Why hard? Cannot store everything.

Game 1: A sequence of numbers

Game 2: Relationships between

Alice, Bob, Carol, Dave, Eva and Paul

Q: What’s the median?

A: 33

Q: Are Eva and Bob connected by friends?

A: YES. Eva ⇔ Carol ⇔ Dave ⇔ Alice ⇔ Bob

Have to allow approx/randomization given a small memory.
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Sublinear in communication

x1 = 010011 x2 = 111011

x3 = 111111

xk = 100011

They want to jointly compute f (x1, x2, . . . , xk) (e.g., f is # distinct ele)

Goal: minimize total bits of communication

The model
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x1 = 010011 x2 = 111011

x3 = 111111

xk = 100011

They want to jointly compute f (x1, x2, . . . , xk) (e.g., f is # distinct ele)

Goal: minimize total bits of communication

The model

Applicaitons

etc.
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Why hard? You do not have a global view of the data.

Let’s think about the graph connectivity problem:
k machine each holds a set of edges of a graph.

Goal: compute whether the graph is connected.

A trivial solution: each

machine sends a local

spanning forest to the first

machine. Cost O(kn log n)

bits.

What if the graph is node partitioned among the k machines?

That is, each node is stored in 1 machine with all adjancent edges.

Can we do better, e.g., o(kn) bits of communication?
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Problems

Statistical
problems

• Frequency moments Fp

F0: #distinct elements

F2: size of self-join

• Heavy hitters

• Quantile

• Entropy

• . . .

Numerical
linear algebra

• Lp regression

• Low-rank

approximation

• . . .

Graph problems

• Connectivity

• Bipartiteness

• Counting triangles

• Matching

• Minimum spanning tree

• . . .

DB queries

Strings

Geometry problems

• Conjuntive

queries

• Edit distance

• Longest increasing
sequence

• Clustering

• Earth-Mover Distance

. . .
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Example: random sampling

in data stream

RAM

CPU
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A toy example: Reservoir Sampling

Tasks: Find a uniform sample from a stream of unknown
length, can we do it in O(1) space?

Algorithm: Store 1-st item. When the i-th (i > 1) item arrives

With probability 1/i , replace the current sample;
With probability 1− 1/i , throw it away.

Space: O(1)

Correctness: each item is included in the final sample w.p.
1
i × (1− 1

i+1 )× . . .× (1− 1
n ) = 1

n (n: total # items)
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Tasks: Find a uniform sample from the last w items.
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Maintain a sample for Sliding Windows

Tasks: Find a uniform sample from the last w items.

Algorithm:

– For each xi , we pick a random value vi ∈ (0, 1).
– In a window < xj−w+1, . . . , xj >, return value xi with
smallest vi .
– To do this, maintain the set of all xi in sliding window
whose vi value is minimal among subsequent values.

Space (expected): 1/w + 1/(w − 1) + . . .+ 1/1 = logw .

Correctness: Obvious.
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Resources

There is no textbook for the class.

Reference for part of the course: lecture notes by Amit
Chakrabarti

Background on Randomized Algorithms:

• Probability and Computing

by Mitzenmacher and Upfal

(Advanced undergraduate textbook)

• Randomized Algorithms

by Motwani and Raghavan

(Graduate textbook)
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Instructors

• Instructor: Qin Zhang
Email: qzhangcs@iu.edu
Office hours: by appointment
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Grading

I am thinking about it. Assignments + Final Project
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Prerequisites

A research-oriented course. Will be quite mathematical.

One is expected to know:
basics on algorithm design and analysis + basic probability.

e.g., have taken B403 “Introduction to Algorithm Design
and Analysis” or equivalent courses.

I will NOT start with things like big-O notations, the
definitions of expectation and variance, and hashing.



22

Thank you!


