
Fault Tolerance: Consensus

Distributed Systems



Agenda

Today
• Paxos
• How to design a fault-tolerant distributed algorithm?

• Which algorithm? Why, Totally Ordered Multicast, ofcourse!



Redundancy for failure masking

Types of redundancy
• Information redundancy: Add extra bits to data units so that

errors can recovered when bits are garbled.
• Time redundancy: Design a system such that an action can be

performed again if anything went wrong. Typically used when faults
are transient or intermittent.

• Physical redundancy: add equipment or processes in order to allow
one or more components to fail. This type is extensively used in
distributed systems.



Triple Modular Redundancy

Device

A1

A2

A3

V1

V2

V3

B1

B2

B3

V4

V5

V6

C1

C2

C3

V7

V8

V9

Voter

Often used in safety-critical systems such as avionics



Process resilience

Basic idea
Protect against malfunctioning processes through process replication,
organizing multiple processes into process group. Distinguish between
flat groups and hierarchical groups.

Flat group

Hierarchical group Coordinator

Worker



Groups and failure masking

k-fault tolerant group
When a group can mask any k concurrent member failures (k is called
degree of fault tolerance).
How large does a k-fault tolerant group need to be?

• With halting failures (crash/omission/timing failures): we need a
total of k + 1 members as no member will produce an incorrect
result, so the result of one member is good enough.

• With arbitrary failures: we need 2k + 1 members so that the
correct result can be obtained through a majority vote.

Important assumptions
• All members are identical
• All members process commands in the same order

State Machine Replication: We can now be sure that all processes do
exactly the same thing.



Consensus

In a fault-tolerant process group, each non-faulty process executes the
same commands, and in the same order, as every other nonfaulty process.

Reformulation
Nonfaulty group members need to reach consensus on which command
to execute next.

• Termination: All non-faulty processes must eventually decide on a
value

• Agreement: All non-faulty processes agreee on same value
• Validity: Agreed upon value must be the same as the initial

proposed “source” value

Totally Ordered Multicast
• Applicable IFF no failures
• How to handle missing acknowledgements?



FLP Consensus Impossibility

Fisher,Lynch, and Patterson—1985
• If we assume totally asynchronous system model
• And if failures are fail-stop
• Then it is impossible to have a deterministic consensus protocol

Asynchronous: no assumptions about process execution speeds or
message delivery times



PAXOS



Realistic Consensus: Paxos

Assumptions (rather weak ones, and realistic)

• A partially synchronous system (in fact, it may even be
asynchronous).

• Communication between processes may be unreliable: messages
may be lost, duplicated, or reordered.

• Corrupted message can be detected (and thus subsequently
ignored).

• All operations are deterministic: once an execution is started, it is
known exactly what it will do.

• Processes may exhibit crash failures, but not arbitrary failures.
• Processes do not collude.



Essence of Paxos

• Out of N nodes, some (ideally, one) act as a leader
• Leader presents the consensus value to the acceptors, counts the

ballots for acceptance of the majority, and notifies acceptors of
success

• Paxos can mask failure of a minority of N nodes
• Agent processes have persistent storage that survives crashes
• Leaders have no persistent storage

Why majority consensus is required
• Assume two concurrent leaders P and Q
• If P and Q receive [n/2] + 1 acks, at least one process must be

common



Paxos Components

Proposer Acceptor Learner

P

P

P

A

A

A

L

L

L

C

C

C

C

C

Server process

Clients
Single client request/response

Other request



Rounds and Ballots

• Paxos proceeds in rounds. Each round has three phases.
• Each round has uniquely numbered ballot
• If no failures, then consensus reached in one round
• Any would-be leader can start a new round on any (apparent) failure
• Consensus is reached when some leader successfully completes a

round



Paxos Phases



Phase 1: Leader election

1. Would-be leader chooses unique ballot ID (round #)
2. Proposes “Can I lead?”
3. Other processes return highest ballot ID seen so far. Can only lead if

these are smaller than ballot ID proposed.
4. If majority respond, and no one knows of a higher ballot number,

then you are the leader for this round.
Also called the “Prepare” phase.



Phases 2–3: Leading a round

• Choose “suitable value” v for this ballot/round
• Ask agents to accept value
• If majority respond and agree, then tell everyone the round

succeeded.
• Else, move on, and ask for another round



Paxos Phases



Choosing a suitable value

• Assume a majority of agents responded
• If no agent accepted a value from some previous round/ballot, then

can choose any value leader wants
• Else, they tell you ballot ID and value. Find most recent value that

any corresponding agent accepted, and choose it for this ballot too.



Distributed Algorithm

Persistent State of acceptors
np: Highest prepare seen
na, va: Highest accept seen

Proposer
While not decided:

1. Choose unique ballot number n
2. Send prepare(n) to all servers including self
3. If promise(n, na, va) from majority:
4. v � = va with highest na. Otherwise choose own v
5. Send accept(n, v’) to all
6. If accept_ok(n) from majority, send decided(v’) to all



Algorithm for Acceptors

Persistent State
np: Highest prepare seen
na, va: Highest accept seen

Handling Prepare Messages
1. If n > np:
2. np = n ; reply promise(n, na, va)
3. Else, reply prepare_reject

Handling accept messages
1. If n >= np:
2. np = n ; na = n ; va = v
3. reply accept_ok(n)
4. Else, reply accept_reject



Anchoring a value

• A round “anchors” if majority of agents hear the Accept command
and obey

• The round may then fail if many agents fail, many command
messages are lost, or if another leader usurps.

• Safety: Once a round anchors, no subsequent round can change it
• System may have another round, possibly with different leader, until

all nodes learn of the success.
• Reminder: Agents read persistent log after crash restarts



Paxos Properties

• Run by a set of leader processes that guide a set of agent processes
• It is correct no matter how many simultaenous leaders there are
• It is correct no matter how often processes fail/recover, their speeds,

message losses/delays/duplicated
• Terminates if there is a single leader for long enough time during

which the leader can talk to majority of processes twice
• It may not terminate if there are always too many leaders



Why Paxos Works

Key invariant
If some round commits, then any subsequent round chooses the same
value, or it fails

• Leader L or round R that follows a successful round P with value v.
• Either L learns of (P,v), or R fails
• P got responses from majority. If R does too, then some agent

responds to both.
• If L does learn of (P,v), then L must choose v as the suitable value



Anchoring and agreement

• Once a value is decided, the decision is final and no different value
can be chosen

• Agreement if �n/2� + 1 acceptors out of n are up and able to
communicate

• Acceptors broadcast agreement to Learners, and learners must
acknowledge!

• Acceptors check if learned value matches their stored agreement
value



TOM vs Paxos

• Totally Ordered Multicast with no failures gives consensus
• With failures, cannot afford to wait for all responses
• Hence can have multiple leaders in Paxos
• Fault-tolerant version of TOM : “atomic multicast”
• Atomic multicast is equivalent to consensus
• Used in ZooKeeper (ZAB: Zookeeper Atomic Broadcast)



Paxos Simulation Scenarios

1. Simple case: 1 leader
2. 2 leaders
3. Acceptor failure in phase 1
4. Acceptor failure in phase 2
5. Leader fails after phase 1



Duelling Leaders

• Liveness can be compromised if there are two leaders
• If higher ballot number is seen, then phase 2 cannot succeed
• Potential solution: Randomized waiting



Multi-paxos

• Optimization to reduce number of phases
• “Master leases”: avoid first round of messages
• Leader serves until lease expires.
• Replicas cannot process messages from other wannabe leaders while

lease holds



Quorums

• Vanilla paxos: Majority of all acceptors
• Can use quorums of acceptors in phase 2 and 3
• Quorum acceptance suffices



Usecases

• Fault-tolerant storage of metadata
• State machine replication
• Log replication (Apache Kafka)
• Coordinating replica sets
• Leader election
• Synchronization (Mutual exclusion, distributed barriers...)
• Message queues (not ideal!)



When to use paxos

• Paxos provides strong consistency
• Should not be in critical path
• All reads should not have to go through paxos
• Use paxos for small amount of metadata
• Carefully consider replica placement if over a Wide Area Network



Real life use cases

• Google’s chubby lock service
• First known use of paxos in large scale environment?

• Apache Zookeeper



Implementations of Paxos

• Raft. “Easier” to understand alternative to Paxos
• OpenReplica
• libpaxos
• WPaxos



Resources

• Lamport. Part time Parliament (1988)
• Lamport. Paxos made simple
• Butler Lampson. How to Build a Highly Available System Using

Consensus
• Paxos made moderately complex http://paxos.systems
• Paxos made live (real-world implementation issues)
• Consensus in the Cloud: Paxos Systems Demystified


