
Introduction to Fault Tolerance

Distributed Systems



Dependability

A component provides services to clients. To provide services, the
component may require the services from other components ⇒ a
component may depend on some other component.

Specifically
A component C depends on C∗ if the correctness of C ’s behavior
depends on the correctness of C∗’s behavior. (Components are processes
or channels.)

Requirements related to dependability

Requirement Description
Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Maintainability How easy can a failed system be repaired

Hardware and software components are never perfect and can fail in different
ways.



Reliability Model

• R(t): Probability of no failures till time t
• N: Total number of components
• G(t) : Number of good/available components
• F(t) : Number of bad/failed components

1. R(t) = G(t)
N = 1 − F (t)

N
2. Failure rate is defined as: λ(t) = 1

G(t)
dF (t)

dt

3. Differentiating R: dR(t)
dt = − 1

N
dF (t)

dt
4. Assume a constant failure rate λ(t) = λ

5. dR(t)
dt = −λR(t)

6. R(t) = e−λt

Imagine you want to understand the number of remaining drives from a big batch
of hard drives



Exponential Distributions

• R(t) = e−λt

• Number of failures till time t, F (t) = 1 − R(t) = 1 − e−λt

• This is the CDF of the exponential distribution!
• Probability mass function: dF (t)

dt = λeλt

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1 CDF λ = 0.5

PMF λ = 0.5

Time

Pr
ob

ab
ilit

y



Reliability versus availability

Reliability R(t) of component C
Conditional probability that C has been functioning correctly during [0, t)
given C was functioning correctly at time T = 0.

Traditional metrics
• Mean Time To Failure (MTTF): The average time until a

component fails = 1/λ

• Mean Time To Repair (MTTR): The average time needed to
repair a component.

• Mean Time Between Failures (MTBF): Simply MTTF + MTTR.



Reliability versus availability

Availability A(t) of component C
Average fraction of time that C has been up-and-running in interval
[0, t).

• Long-term availability A: A(∞)
• Note: A = MTTF

MTBF = MTTF
MTTF+MTTR

Observation
Reliability and availability make sense only if we have an accurate
notion of what a failure actually is.



Failures, errors, and faults

Term Description Example
Failure A component is not living up

to its specifications
Crashed program

Error Part of a component that can
lead to a failure

Programming bug

Fault Cause of an error Sloppy programmer

Error causes faults that lead to component failures.



Handling Faults
Term Description Example
Fault prevention Prevent the occurrence

of a fault
Don’t hire sloppy pro-
grammers

Fault tolerance Build a component such
that it can mask the oc-
currence of a fault

Build each component
by two independent pro-
grammers

Fault removal Reduce the presence,
number, or seriousness
of a fault

Get rid of sloppy pro-
grammers

Fault forecasting Estimate current pres-
ence, future incidence,
and consequences of
faults

Estimate how a re-
cruiter is doing when it
comes to hiring sloppy
programmers



Failure models
Type Description of server’s behavior
Crash failure Halts, but is working correctly until it halts
Omission failure Fails to respond to incoming requests

Receive omission Fails to receive incoming messages
Send omission Fails to send messages

Timing failure Response lies outside a specified time interval
Response failure Response is incorrect

Value failure The value of the response is wrong
State-transition failure Deviates from the correct flow of control

Arbitrary failure May produce arbitrary responses at arbitrary
times



Halting failures

C no longer perceives any activity from C ∗ — a halting failure?
Distinguishing between a crash or omission/timing failure may be
impossible.

Asynchronous versus synchronous systems
• Asynchronous system: no assumptions about process execution

speeds or message delivery times → cannot reliably detect crash
failures.

• Synchronous system: process execution speeds and message
delivery times are bounded → we can reliably detect omission
and timing failures.

• In practice we have partially synchronous systems: most of the
time, we can assume the system to be synchronous, yet there is no
bound on the time that a system is asynchronous → can normally
reliably detect crash failures.



Halting failures

Assumptions we can make

Halting type Description
Fail-stop Crash failures, but reliably detectable
Fail-noisy Crash failures, eventually reliably detectable
Fail-silent Omission or crash failures: clients cannot tell

what went wrong
Fail-safe Arbitrary, yet benign failures (i.e., they can-

not do any harm)
Fail-arbitrary Arbitrary, with malicious failures



Byzantine Faults

• Presenting different symptoms to different observers
• Most challenging failure mode
• Byzantine Generals Problem: coordinate an attack
• Generals must vote and agree on attack/retreat decision
• Votes are multi-cast (No centralized ballot)
• Trecherous generals can send attack votes to some and retreat to

others
• Agreement reached with majority of non-faulty generals
• For n faulty processes, cannot have agreement with only 3n processes

You can tell from the historical allegory that this is Lamport’s work...



3 Generals with 1 Traitor

Essence
We consider process groups in which communication between process is
inconsistent: (a) improper forwarding of messages, or (b) telling
different things to different processes.

P1

P2P3

a a

b

P1

P2P3

a b

b

(a) (b)



Distributed Algorithms With Failures

Exercise
Think about behavior of various distributed algorithms in presence of
failures:

• Leader election
• Total Order Multicast


