
Causal Consistency

Distributed Systems

Lecture 14

Sequential consistency

Definition
The result of any execution is the same as if the operations of all
processes were executed in some sequential order, and the operations of
each individual process appear in this sequence in the order specified by
its program.

• All writes are seen in the same order by all processes.
• Implemented using write-primaries or total-order-broadcast
• Writes are blocking: Slow performance
• Replicas can be geographically distributed

Consistency Models

https://jepsen.io/consistency

Causal consistency

Definition
Writes that are potentially causally related must be seen by all processes
in the same order. Concurrent writes may be seen in a different order by
different processes.

P1: W(x)a

R(x)a

R(x)a

R(x)a

P2:

P3:

P4:

W(x)c

W(x)b

R(x)b

R(x)b

R(x)c

R(x)c

• Processs “communicate” via the datastore and not with each other
• Reading a variable value potentially causes subsequent write on the

same process
• Happens before dependency graph composed of Write-Read-Write

edges: W(x) < R(x)a < W(x)b
• P2:W(x)b and P1:W(x)c are concurrent. P3 and P4 can thus see

different orderings.

Why Causal Consistency?

1. Sally cannot find her son Billy. She posts update S to her friends: “I
think Billy is missing!”

2. Momentarily after Sally posts S, Billy calls his mother to let her
know that he is at a friend’s house. Sally edits S, resulting in S2:
“False alarm! Billy went out to play.”

3. 3 . Sally’s friend James observes S2 and posts status J in response:
“What a relief!”

If causality is not respected, a third user, Henry, could perceive effects
before their causes; if Henry observes S and J but not S2, he might think
James is pleased to hear of Billy’s would-be disappear- ance! If the site
had respected causality, then Henry could not have observed J without S.
(From “Bolt-on Causal Consistency”. Baillis et.al. SIGMOD ’13)

Causal Consistency Examples

(a) A violation of a causally-consistent store. (b) A correct
sequence of events in a causally-consistent store

P1: W(x)a

R(x)aP2:

P3:

P4:

W(x)b

R(x)a

R(x)a

R(x)b

R(x)b

P1: W(x)a

P2:

P3:

P4:

W(x)b

R(x)a

R(x)a

R(x)b

R(x)b

(a) (b)

1. P1:W(x)a → P2:R(x)a → Wx(b). Thus the two writes are causally
related and must take effect in same order.

2. Writes are not causally related (no interleaved read), and thus can
be seen in any order.

More Causal Consistency Examples

P1: W(x)a

R(x)aP2:

P3:

P4:

W()by

R(x)a

R(x)?

R()y ?

R()by

• What should the reads return?
• P3 R(x): a
• Acceptable for P4 to return NULL

Causal Consistency Caveats

• Similar in principle to causal-order broadcast discussed earlier
• Dont want to see a reply before original post
• In causal-order broadcast, a process waits if it receives a message

from the “future”, based on its vector clock timestamp.
• Same principle can be used to implement causal consistency
• Reads are causally related to writes.
• Out of band causality is not captured

• Cant “phone” a friend and coordinate
• Fails to capture causality of writes
• “When you see x=1, write y=1”

Implementing Causal Consistency

Causal consistency the strongest we can have in presence of partitions

P1: W(x)a

R(x)aP2:

P3:

P4:

W()by

R(x)a

R(x)?

R()y ?

R()by

• Need to keep track of causal histories
• P3 needs to know about W (x)a → W (y)b
• Need to keep a dependency graph of operations
• Similar to causal order broadcast
• When reading from a replica, “wait” until replica has applied all

causally preceeding writes
• For performance, want to lazily propagate writes
• Note: Local-read sequential consistency algorithm has eager

propagation.

Vector-clock based Algorithm

1. Local reads. Writes are non-blocking (async broadcast).
2. Causal Memory: Definitions, Implementation, and Programming
3. https://smartech.gatech.edu/bitstream/handle/1853/

6781/GIT-CC-93-55.pdf?sequence=1&isAllowed=y

4. Each replica maintains outgoing and incoming queue of write
requests.

5. Write requests timestamped with vector clocks t (t[i]: number of
writes known by i)

6. Incoming queue sorted by timestamp s.
7. Apply write only if all caught up (s[j] == t[j] + 1), where j is source

of broadcast.

https://smartech.gatech.edu/bitstream/handle/1853/6781/GIT-CC-93-55.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/6781/GIT-CC-93-55.pdf?sequence=1&isAllowed=y

Recall Primary-based Replication

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2

Primary-based Implementation

• All writes go through a primary. (For simplicity, assume 1 primary
for all objects)

• Writes are thus naturally causally ordered

Central Problem
If a client issues reads to two different replicas, how to ensure that the
reads are causally ordered?

All read and write operations are logical-clock timestamped:
1. Write operations assigned monotonically increasing timestamps by

primary
2. Before a read, compute minimum acceptable timestamp.

• Max ts across reads over all keys, and writes for that key
3. Each replica maintains Mr: max timestamp of all writes received by

that replica
4. Read returns from replica only when Mr > read timestamp

Doug Terry et.al. “Consistency-Based Service Level Agreements for
Cloud Storage”

Eventual Consistency

• Concurrent updates are rare
• Mostly: read-write conflicts
• Examples: Web-caches, CDN’s, DNS

Eventual Consistency
If no updates take place for a long time, all replicas eventually become
consistent (have the same data stored)

• Easy to implement
• In practice, write-write conflicts handled through some form of

leader election
• Inconsistency windows often small (<500 ms)

Consistency for mobile users

Example
Consider a distributed database to which you have access through your
notebook. Assume your notebook acts as a front end to the database.

• At location A you access the database doing reads and updates.
• At location B you continue your work, but unless you access the

same server as the one at location A, you may detect
inconsistencies:

• your updates at A may not have yet been propagated to B
• you may be reading newer entries than the ones available at A
• your updates at B may eventually conflict with those at A

The only thing you really want is that the entries you updated and/or
read at A, are in B the way you left them in A. In that case, the
database will appear to be consistent to you.

Basic architecture

The principle of a mobile user accessing different replicas of a
distributed database

Read and write operations

Client moves to other location
and (transparently) connects to
other replica

Wide-area network

Replicas need to maintain
client-centric consistency

Portable computer

Distributed and replicated database

