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Problems with Lamport Clocks
• Lamport timestamps do not capture causality.
• With Lamport’s clocks, one cannot directly compare the timestamps of two 

events to determine their precedence relationship.
• The main problem is that a simple integer clock cannot order both events 

within a process and events in different processes.
• Knowing that C(a) < C(b) is true does not allow us to conclude that a ® b is true.



Vector Clocks
• Happened-before relation is a partial order
• But the domain of Lamport clocks (natural numbers) is a total order (wrt <)
• Do not provide complete information about the happened-before relation 

• Key idea: assign vector timestamps to events 
• s.v refers to the vector timestamp assigned to state s 

• For all s,t: s-->t IFF s.v < t.v 
• Want the timestamps also to be partial order 
• For two vectors x,y of dimension N:
• x<y = 



Properties of  Vector Timestamps 

• vi [i] is the number of events that have occurred so far at Pi 

• If vi [j] = k then Pi  knows that k events have occurred at Pj



Vector Clock Update Rules
1. Initially all clock values are set to the smallest value (e.g., 0).
2. The local clock value is incremented at least once before each primitive event in a 

process i.e., vi[i] = vi[i] +1
3. The current value of the entire logical clock vector is delivered to the receiver for 

every outgoing message.
4. Values in the timestamp vectors are never decremented.
5. Upon receiving a message, the receiver sets the value of each entry in its local 

timestamp vector to the maximum of the two corresponding values in the local vector 
and in the remote vector received.   

• Let vq be piggybacked on the message sent by process q to process p; We then have:
• For i = 1 to num-processes {

vp[i] = max(vp[i], vq [i] )
}
vp[p] = vp[p] + 1;



Vector Clock Example 
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Vector Clock Comparison
Vectors are compared by each corresponding element 

s = t if all elements equal  
s >= t if all elements of s >= all elements of t , and atleast one element of s > t 
s > t if all elements s > all elements of t 



Vector Clock Proof 
s-->t IFF s.v < t.v



Vector Clock Refinements



Direct Dependency Clocks
• Simplification of vector clocks.
• Each process still maintains vector timestamps
• But, only sends it’s logical timestamp component with messages (i.e., process-i

sends v[i], instead of entire vector v)
• On receive, process-j updates only two VC components:
• It’s own v[j], is simply incremented 
• The sender’s component, v[i], is updated using max of earlier value and value sent in the 

message

• Direct dependency clocks can capture “directly happened before” relationships
• Message path contains at most one message. 



Singhal-Kshemkalyani Optimization
• Goal: reduce the size of VC sent along with messages
• Main idea: Send compressed timestamps (only those components that have 

changed since the last message to the same recipient)
• BUT: Each process must remember the VC they last sent to other processes. 
• O(n^2) storage overhead 

• Singhal-Kshemkalyani technique cuts this overhead down to O(n)
• Maintain Last-sent and Last-updated vectors, which contain only single timestamps last 

sent/updated to/from each process, instead of entire vectors



Version Vectors
• Convential VC: One entry for every process, including clients!
• Can be in the millions

• Version vectors: maintained by each server replica for each object 
• N replicas for an object, then 𝑉![𝑖] is number of updates generated at replica i

that is known by replica-j 
• Can be expanded/pruned as replicas leave and join 
• Zero-valued entries add no distinguishing information 

• Dynamic Version Vector Maintenance. David Ratner, Peter Reiher, and Gerald 
Popek



Version Vector Example

Time



Causal Order Broadcast



Vector Timestamps and Causality
• We have looked at total order of messages where all messages are processed in 

the same order at each process.
• It is possible to have any order where all you care about is that a message 

reaches all processes, but you don’t care about the order of execution.
• Causal order is used when a message received by a process can potentially affect 

any subsequent message sent by that process.  Those messages should be 
received in that order at all processes.  Unrelated messages may be delivered in 
any order.



Display from a Bulletin Board Program
• Users run bulletin board applications which multicast messages
• One multicast group per topic (e.g. os.interesting)
• Require reliable multicast - so that all members receive messages
• Ordering:

Bulletin board:os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

total (makes 
the numbers 
the same at 
all sites)

FIFO (gives sender order)

causal (makes 
replies come after 
original message)

•



Example Application: Bulletin Board
• A totally-ordered multicasting scheme does not imply that if message B is 

delivered after message A, that B is a reaction to A.
• Totally-ordered multicasting is too strong in this case.
• The receipt of an article causally precedes the posting of a reaction. The receipt 

of the reaction to an article should always follow the receipt of the article.  



Example Application: Bulletin Board
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Example Application: Bulletin Board
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END


