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Agenda
• Why distributed data processing? 
• Simple data parallelization 
• The MapReduce system
• How MapReduce works 
• Google File System for distributed storage 
• MapReduce examples 
• Fault-tolerance
• Map reduce performance Issues 
• Limitations



Processing Data
• Data on file system on disk
• Simple processing flow:

• 1. Read into memory
• 2. Process data (apply some 

function)
• 3. Write back to disk



Why Multiple Servers?
• Data size larger than disk capacity
• Sequentially processing data can be slow

• Limited by disk read/write speeds 
• Parallel processing can significantly reduce 

time

• Single point of failure with a single server



Multiple Servers: Divide and Conquer

• Data processed by individual servers must be 
“aggregated” or collected 

• May require significant communication 

• Divide input data among multiple servers
• Each server processes a partition in parallel
• ???
• Profit!?

F(x[0..N/2]) F(x[N/2..N])

G(F(x[0..N/2]), F(x[N/2..N]))



Published at OSDI 2004. 
>25,000 citations



Why MapReduce?

• Automated parallelization and distribution of data and processing
• Clean, powerful, well-understood abstraction (Map and Reduce)
• Fault-tolerance
• Scalability: 1000s of servers, TBs of data, … 
• Apache Hadoop: widely used open source Java implementation 



Some MapReduce Problems

• Word-count 
• Creating an inverted index

• Which documents does a word occur in?
• Useful if you are building a search engine

• Log-processing
• Filter log messages which match some condition
• IP address == 156.54.61.* 

• Matrix processing
• PageRank, matrix multiplication, … 



(List (Processing (Like) It’s) 1959)
• LISP: Everything is a List
• ‘(1 2 3 4 5 6)
• Map: Apply a function element-wise
• (map square ‘(1 2 3 4 5))

•  ‘(1 4 9 16 25)

• Reduce:  Aggregate values in a list
• Also called fold

• (reduce sum ‘(1 2 3 4 5))
•  15

• Can pass any associative function

(reduce sum (map square ‘(1 2 3 4 5)))
 Sum of squares



Map Reduce Semantics
• Map: (k1, v1)  list(k2, v2)
• Reduce: (k2, list(v2))  list(v3)



MapReduce System Architecture



Computation Flow
• Map tasks turn chunks into series of key-value pairs based on user-provided fn
• Key-value pairs from all map tasks are collected and sorted/grouped by key
• Each reducer task gets a subset of keys

• Master uses a hash function to assign a key to one of R reducers 
• All key-val pairs with the same key are processed by the same reducer task 

• Reducer tasks process one key at a time, and combine all values associated with 
that key based on reduce function



Example



Distributed File System
• MapReduce distributes computation
• Distributing and managing data is as important, if not more
• Storing data centrally:

• I/O bottleneck 
• Processing data in parallel not very useful if limited by single disk



Data Storage: Google File System



Google File System
• Distributed FS for large datasets
• Supports read, write, open, close, record-append operations 
• Can run on off-the-shelf computing clusters 

• No specialized hardware required 

• Provides fault tolerance via replicating each piece of data three times
• Replicas can also be used for load balancing



Overlay File Systems

• Data is stored in “chunk servers”
• HDFS files: sequence of chunks

• Chunks are just large blocks (64MB)

• Chunk-servers store chunks as files in a local file-system (such as ext4)
• HDFS files are indexed by a central “namenode”
• (HDFS-file-name, chunk-number)  Chunk-servers, chunk-handle



GFS Architecture



MapReduce Examples



Word-count 
• Mapper: Emit (word,1) pairs 
• Grouping by key :

• (the,1), (the,1),….              Sent to Reducer 0
• (apple, 1), (apple,1),….        Sent to Reducer 1 
• (car, 1), (car,1)…..               Sent to Reducer 2 
• (dog, 1), (dog,1),….  Sent to Reducer 0 
• …. 

• Reducer function is simple addition, and each reducer outputs:
• (the, 102)
• (apple, 4)
• …



Grep
• Mapper: Emit (word, line-number) pairs 
• Grouping by key :

• (word1, [line-1, line-4, line-3, line-2, line-100])
• (word2, [line-3, line-4, line-6, line-7])

• Map output is usually sorted by key:
• (word1, [1,2,3,4,100])
• (word2, [3,4,6,7]

• Reducer:
• Do nothing 



Combiners
• Sometimes, Reduce function is associative and commutative

• f(f(a, b), c) =f(a, f(b, c))
• f(a, b) = f(b, a)
• Example: Addition

• In such cases, can combine map-output before sending to reducer
• In case of word-count example:

• Map-output: [(word-1,1), (word-1, 1),…,, (word-2,1)… ]
• With combiner: [(word-1, 20), (word-2, 12)]



Map Output (Intermediate Data)
• Each mapper groups its output by key

• Usually done by sorting entire local map output

• Creates an intermediate file for each reducer
• If M mappers and R reducers: up to M*R total intermediate files 



Matrix-Vector Multiplication
• Matrix, M and vector, v. Want to multiply : Mv

• V=[v1,…vn]. M is nXn matrix

• Matrix partitioned by row 
• Map: outputs (𝑖, 𝑚௜௝ ∗ 𝑣௝ሻ
• Reduce: sum up all values for each key to output (𝑖, 𝑥௝ሻ

• QS: What if we can’t fit v in memory?
• QS: Co-occurrence matrix of words in a corpus



Inverted Index
• How many times does a word occur in 

each document? 



Relational Operations 
• MapReduce can also be used to run relational operations 

• Select, Project, Joins, … 

• Selection and projection are straight forward (essentially just filtering using 
map)

• Natural joins with MapReduce
• Assume: R(a,b) and S(b,c) are two relations 
• Map: Emit (b, (R, a)) Where R is just the relation name and a “tag” 
• Reduce: For each key (b), output all tuples in the values list (a,c) 
• Apache Hive translates SQL queries into a MapReduce program



Fault-Tolerance
• Master fails

• Switch to secondary master 
• Restart entire job 

• Worker fails
• If running map: restart map tasks on available/free worker nodes
• If running reduce: restart reducer tasks 

• File-system (HDFS/GFS) has a single master node 
• FS index stored in memory 



Performance Issues 
• Map output barrier  Even partitioning of mappers workload required

• Usually achieved by evenly splitting the input
• Assumes that element-wise map function has uniform cost 

• Speculative execution (backup tasks)
• Run the same task on multiple workers
• If some workers are slow (stragglers)

• Reducer skew: A major problem
• Recall that all values of a specific key must be handled by same reducer 
• What if there’s a really popular key?



MapReduce Limitations

• Static data
• Append-only usually OK

• Restrictive programming model 
• No support for dataflows

• How many mappers and reducers?
• How much memory to allocate?
• Purely batch processing 

• Jobs can take hours to complete
• No streaming, interactive analytics



When NOT  To Use MapReduce
• Modern computing hardware has plenty of computing power:

• A typical laptop: 8 cores, 16 GB RAM, 512 GB SSD (usually NVMe)
• A typical server: 64 cores, 256 GB RAM, 2 TB SSD, … 

• Is your dataset really that large?
• Wikipedia: 30 GB

• In many cases, an optimized non-distributed implementation beats a large 
cluster (!)
• Frank McSherry’s blog 


