Logical Clocks

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical

clankc whirh ran ha noead tn tatally ardar tho avantc

A distributed system consists of a collection of distinct
processes which are spatially separated, and which com-
municate with one another by exchanging messages. A
network of interconnected computers, such as the ARPA
net, is a distributed system. A single computer can also
be viewed as a distributed system in which the central
control unit, the memory units, and the input-output

C 77 *. system is distributed
i CO M ATION s 1s not negligible com-
p F n a single process.
1arily with systems of
s >wever, many of our
r . In particular, a mul-
ti nputer tnvolves prob-
I¢ ied system because of
tl h certain events can
0
' metimes impossible to
S t:?,‘,';o,t ,- red first. The relation
“ AR nly a partial ordering
0 ‘, e found that problems
dqe 7 N ~ fully aware of this fact

Time

* On a single process/server, we can tell which event occurred first by
looking at the system clock value

* Time helps order events. Timestamp(a) < Timestamp (b) : a happened
before b

« Also useful for capturing (potential) causality:
 Timestamp(a) < Timestamp(b) : a could have potentially caused b

« BUT: Distributed Systems have no shared global clock

« Can’t compare timestamps across machines

* Even if we could, can we solve coordination problems without using
physical time?
« Capture the essence of what timestamps are.

Ordering Of Events

* Want to capture causality. If a could have potentially caused b, then a
happened before b.

« Similar to space-time diagrams in relativity (light-cone).
* Messages reflect the entire causal history upto that point.

* Happened-before relation:

|. If aand b are two events that occur in the same process, and a comes before b,
then a->b

2. If a corresponds to sending a msg, and b is the receipt of that message, then a—>b
3. Transitive:a=>b and b—>¢, then a—>c¢

* This is a partial ordering of events in a system

Ordering Of Events Example
a\ b e
~4— 2 —+— =

4, |
\ a>b bsd bse
= Y » c—>4

-l

e — (0—> CB N

Partial order =2 Some events will be concurrent
“1(c— @

Happened Before Relationship

* First fundamental result in distributed computing

* Partial order among events
* Process-order, send-receive order, transitivity

* Important that all processes agree on the order of events

%1/2/33 Total Ocder)
7\ L | R
723 §@<§?5§ T
e .
fic a t !
=R O S

(:J

Logical Clocks

* How to maintain a global view of system behavior that is consistent with
the happened-before relation!?

* Approach: assign a timestamp C(e) to each event e, such that:
(5)* If a>b, then C(a) < C(b) -

* C must be monotonically increasing
* How to attach a timestamp to an event when there’s no global clock?

* Maintain a consistent set of logical clocks, one per process

Lamport Clocks

* Each process maintains a local counter and adjusts this counter
|. New local event, increment
2. Send a timestamp with each message sent by (i.e., ts(m) = sender’s clock)

3. Whenever a message is received by adjusts its local counter
= max{ ts(m), receiver clock} . Since this is a new event, increment

Message is delivered

Application sends message ~ % to application
Adjust local clock Adjust local clock
and timestamp message

Middleware layer

M\Iﬂl\ U(C» @ __- OO0 JUV

Procors L 01 O 5
P, P, P, ?mbab 2 é(,- O7 o

Lamport Clock Example

W

30 (@ Its clock 50
36 . 48/// 60
------- P, adjusts
Uz | At S e, (70
48 | / 69 80
70 Am/ 77 90

/6] - 85 100

Total Ordering of Time-stamps

" It’s possible for C; (e1) == C; (e,)
* |l.e.,, Lamport clock timestamps are not totally ordered
* We can break ties based on process-id

* For process P_i, the clock value becomes C;. 1
* For example: 3.2 for process-id==2

Example: Total-ordered Multicast

* Two replicas of database

* Pl adds $100 to an account (initial: $1000)
* P2 increments account by 1%

* Replica-1: $1111

* Replica-2: $1110 i Update 1

g
e ——-
-
-
-
-
-

(600
< 10D

 —

Update 1 is
performed before
update 2

Replicated database

________ sz, 3

Update 2 is
performed before
update

Totally Ordered Multicast

* Need to ensure that two update operations are performed in the same order
by all nodes

* Actual order of operations is immaterial (add first or interest first)

* Totally ordered multicast: All messages are delivered in the same order to each
receiver

* Assumption: No failures, and FIFO delivery of messages

Totally Ordered Multicast Intuition

* All messages timestamped with sender’s logical time
* Sender sends to all recipients, including itself
* When a message is received, put it in a receive buffer/queue

* Requirement: All processes deliver messages in same sequence
* Message at the head of the queue for all processes must be the same
* |.All processes must’ve received the message = Use acknowledgements

* 2.All processes keep queue sorted based on some message property

* Important FIFO message ordering assumption: Between pairs of processes, messages
cannot arrive out of order.

Totally Ordered Multicast Algorithm : All acks
multicast

* All messages timestamped with sender’s logical time
* Sender sends to all recipients, including itself

* When a message is received:
* |.ltis put into a local queue
* 2. Queue is ordered based on timestamp
* 3.The acknowledgement is multicast (with the receiver’s logical time ofcourse)

* Message is delivered to application only when:
|. It is at the head of the queue
2. All the acknowledgement for that message have been received

Example: Totally Ordered Multicast

Issue m

Send m

Recvn

San Francisco (P1)

C
C

C

> 1.1

C

>><i

3.

New York (P2)

» 1.2 Issuen
» 2.2 Send n

» 3.2 Recvm

Example: Totally Ordered Multicast

San Francisco (P1) New York (P2)

Issue m ol.1 O 1.2 Issuen

Send m O><i> 2.2 Send n

Recv n &3] » 3.2 Recvm

Cyb/ Q4.2 Send ack(m)

Recv ack(m) 1

Process m { 61 } Process m
Send ack(n) ¢ .

7 2 Recv ack(n)
Process n | '

Process n

Proof of Correctness

« Claim: All the messages will be delivered in the same order

 Proof by contradiction

 Let process A deliver i:M and B deliver |:N and wlog i<j

« B’s delivery means it has received all acks, including from A

« But has not received the original i:M message

 But this contradicts the FIFO message channel assumption
* i:M was sent before the ack of the j:N message since i<;

Totally Ordered Multicast Algorithm : 2 Rounds

* All messages timestamped with sender’s logical time
* Sender sends to all recipients, including itself

* When a message is received:

* |.ltis put into a local queue

* 2. Queue is ordered based on timestamp

« 3. Send ack to original sender (no broadcast) if msg in head of queue
« Sender marks message ‘ready’ when it is head of queue and all acks rcvd
« Sender broadcasts second round of ‘ready’ messages to others.

* Message is delivered to application only when:
|. It is at the head of the queue
2. 'Ready’ message has been received.

State Machine Replication

* Totally ordered multicast enables state machine replication

* Servers can be thought of deterministic state machines that change state based
on the messages they receive.

* Replicating state machines has many benefits: fault-tolerance, performance..
* If a server crashes, then contact other replicas

* With totally ordered multicast, all servers can execute the same operations in
the same order

* Totally-ordered multicast is the “holy grail” of distributed computing
* Yet we could somehow achieve it! Or did we??

Time in a conventional OS

Processes can get “system time” via systemcalls
* Such as gettimeofday() in UNIX

Time-stamps can be used for ordering and coordination

Example: make uses file modified time to decide what actions to run

If the OS is the only time-source, then all processes observe the same time

Is it possible to synchronize all clocks in a distributed system?

dC,(t)
at 1 et
Clock time, C) o(t) 1
& g
X, -
4@ ~dc,()
Q% c)\/Of’:(> dt

o

<1

\\“{(\GS

UTC, t

Physical Clocks and UTC

* Local time-keeping: crystal oscillator inside CPUs triggers timer interrupt in the

OS

* Multiple CPUs = difference in clock values

* Temperature (and other factors) also affect frequency clock skew
* Standardization: Universal Coordinated Time (UTC)

* Based on atomic clocks

* UTC “time” broadcast via radios, satellites, and through phone-numbers
* NIST +1-808-335-4363

* Accuracy is around 0.5ms

Clock Synchronization

* Precision: Keep deviation between two clocks on any two machines within a
specified bound

Vb Mpa \ COHO—C O LT

* Accuracy: The difference between all clocks and UTC time is less than \alpha

| Coth—+l <K

* Internal synchronization: Keep clocks precise

* External synchronization: Keep clocks accurate

NTP Network Time Protocol e Server B is a time-server with an accurate
) clock (say, atomic)

B * Server A wishes to get it’s clock
synchronized with B’s clock
* By periodically polling B
* A asks B for the time
* But messages face network delays!
A

* Collect 8 pairs of (\theta,\delta) and choose
\theta with lowest \delta

* Never set a clock backwards!

Q adistz ts Bme %“l .

_ {
g ’KOST(%TJ‘ ©P . Adjust rate of clock-ticks to slow-down or
OH= Tf;Tlr 1 g 2. catch-up to A’s time

D = /(S—Tér _(_C[;: ’(b - CQE_’(Q * Hierarchy of NTP servers
2 R

Keeping Time Without UTC

* NTP allows for external synchronization with UTC time
* Sometimes, internal consistency suffices

* Time server polls all other machines, computes average time, and broadcasts it

. 3:05
Time daemon 3-00 +5

300 /" 3.00 @)
+15

LGP Lok
eroaaa: Satgaccn

O @ SE D) 1D

2:50 3:25 2:50 3:25 3:05 3:05

