
Logical Clocks

Time
• On a single process/server, we can tell which event occurred first by

looking at the system clock value
• Time helps order events. Timestamp(a) < Timestamp (b) : a happened

before b
• Also useful for capturing (potential) causality:

• Timestamp(a) < Timestamp(b) : a could have potentially caused b

• BUT: Distributed Systems have no shared global clock
• Can’t compare timestamps across machines
• Even if we could, can we solve coordination problems without using

physical time?
• Capture the essence of what timestamps are.

Ordering Of Events

• Happened-before relation:
1. If a and b are two events that occur in the same process, and a comes before b,

then aàb
2. If a corresponds to sending a msg, and b is the receipt of that message, then aàb
3. Transitive: aàb and bàc, then aàc

• This is a partial ordering of events in a system

• Want to capture causality. If a could have potentially caused b, then a
happened before b.

• Similar to space-time diagrams in relativity (light-cone).
• Messages reflect the entire causal history upto that point.

Ordering Of Events Example

Partial order à Some events will be concurrent

Happened Before Relationship
• First fundamental result in distributed computing
• Partial order among events

• Process-order, send-receive order, transitivity

• Important that all processes agree on the order of events

Logical Clocks
• How to maintain a global view of system behavior that is consistent with

the happened-before relation?
• Approach: assign a timestamp C(e) to each event e, such that:

• If aàb, then C(a) < C(b)
• C must be monotonically increasing

• How to attach a timestamp to an event when there’s no global clock?
• Maintain a consistent set of logical clocks, one per process

Lamport Clocks
• Each process maintains a local counter and adjusts this counter
1. New local event, increment
2. Send a timestamp with each message sent by (i.e., ts(m) = sender’s clock)
3. Whenever a message is received by adjusts its local counter

= max{ ts(m), receiver clock} . Since this is a new event, increment

Lamport Clock Example

Total Ordering of Time-stamps

•

Example: Total-ordered Multicast
• Two replicas of database
• P1 adds $100 to an account (initial: $1000)
• P2 increments account by 1%
• Replica-1: $1111
• Replica-2: $1110

Totally Ordered Multicast
• Need to ensure that two update operations are performed in the same order

by all nodes
• Actual order of operations is immaterial (add first or interest first)
• Totally ordered multicast: All messages are delivered in the same order to each

receiver
• Assumption: No failures, and FIFO delivery of messages

Totally Ordered Multicast Intuition

• All messages timestamped with sender’s logical time
• Sender sends to all recipients, including itself
• When a message is received, put it in a receive buffer/queue
• Requirement: All processes deliver messages in same sequence

• Message at the head of the queue for all processes must be the same
• 1. All processes must’ve received the message à Use acknowledgements
• 2. All processes keep queue sorted based on some message property

• Important FIFO message ordering assumption: Between pairs of processes, messages
cannot arrive out of order.

Totally Ordered Multicast Algorithm : All acks
multicast

• All messages timestamped with sender’s logical time
• Sender sends to all recipients, including itself
• When a message is received:

• 1. It is put into a local queue
• 2. Queue is ordered based on timestamp
• 3. The acknowledgement is multicast (with the receiver’s logical time ofcourse)

• Message is delivered to application only when:
1. It is at the head of the queue
2. All the acknowledgement for that message have been received

Example: Totally Ordered Multicast

San Francisco (P1)
1.1
2.1

New York (P2)

1.2
2.2
3.2

Issue m
Send m

Recv n

Issue n
Send n
Recv m3.1

Example: Totally Ordered Multicast

San Francisco (P1)
1.1
2.1

3.1

5.1

New York (P2)

1.2
2.2
3.2
4.2

Issue m
Send m

Recv n

Issue n
Send n
Recv m
Send ack(m)

6.1
Send ack(n)

Recv ack(m)

7.2 Recv ack(n)

Process m

Process n
Process n

Process m

Proof of Correctness

• Claim: All the messages will be delivered in the same order
• Proof by contradiction
• Let process A deliver i:M and B deliver j:N and wlog i<j
• B’s delivery means it has received all acks, including from A
• But has not received the original i:M message
• But this contradicts the FIFO message channel assumption

• i:M was sent before the ack of the j:N message since i<j

Totally Ordered Multicast Algorithm : 2 Rounds

• All messages timestamped with sender’s logical time
• Sender sends to all recipients, including itself
• When a message is received:

• 1. It is put into a local queue
• 2. Queue is ordered based on timestamp
• 3. Send ack to original sender (no broadcast) if msg in head of queue

• Sender marks message ‘ready’ when it is head of queue and all acks rcvd
• Sender broadcasts second round of ‘ready’ messages to others.
• Message is delivered to application only when:

1. It is at the head of the queue
2. ‘Ready’ message has been received.

State Machine Replication
• Totally ordered multicast enables state machine replication
• Servers can be thought of deterministic state machines that change state based

on the messages they receive.
• Replicating state machines has many benefits: fault-tolerance, performance..

• If a server crashes, then contact other replicas

• With totally ordered multicast, all servers can execute the same operations in
the same order

• Totally-ordered multicast is the “holy grail” of distributed computing
• Yet we could somehow achieve it? Or did we??

• Processes can get “system time” via systemcalls
• Such as gettimeofday() in UNIX

• Time-stamps can be used for ordering and coordination
• Example: make uses file modified time to decide what actions to run
• If the OS is the only time-source, then all processes observe the same time
• Is it possible to synchronize all clocks in a distributed system?

Time in a conventional OS

Physical Clocks and UTC
• Local time-keeping: crystal oscillator inside CPUs triggers timer interrupt in the

OS
• Multiple CPUs : difference in clock values
• Temperature (and other factors) also affect frequency : clock skew
• Standardization: Universal Coordinated Time (UTC)
• Based on atomic clocks
• UTC “time” broadcast via radios, satellites, and through phone-numbers

• NIST +1-808-335-4363

• Accuracy is around 0.5ms

Clock Synchronization
• Precision: Keep deviation between two clocks on any two machines within a

specified bound

• Accuracy: The difference between all clocks and UTC time is less than \alpha

• Internal synchronization: Keep clocks precise
• External synchronization: Keep clocks accurate

NTP: Network Time Protocol • Server B is a time-server with an accurate
clock (say, atomic)

• Server A wishes to get it’s clock
synchronized with B’s clock
• By periodically polling B

• A asks B for the time
• But messages face network delays!
• Collect 8 pairs of (\theta,\delta) and choose

\theta with lowest \delta
• Never set a clock backwards!
• Adjust rate of clock-ticks to slow-down or

catch-up to A’s time
• Hierarchy of NTP servers

Keeping Time Without UTC
• NTP allows for external synchronization with UTC time
• Sometimes, internal consistency suffices
• Time server polls all other machines, computes average time, and broadcasts it

