Operating Systems:
Concurrency

Programs and processes

* A program is a series of instructions
* code for a single “process” of control

* Process: running program + state
* State: Input, output, memory, code, files, etc.
* Processes are one of the main abstractions provided by the operating system

* A“Thread” is an execution context with register state, a program counter
(PC) and a stack

* “Thread of execution”

* Multiple processes can be running the same program, even sharing the code in
the same memory space

* reduces memory overhead, which is important in limited memory environments like
embedded OSes

Processes as Distributed System Components

* Processes are isolated from each other, and thus “independent and autonomous”

* Each process is running its own code, with its own memory address space (local variables
etc)

* We will assume that the only way to communicate is explicit messages
* Using networking protocol
* Reading/writing to any shared object is communication!
* Any variables/data structures in memory
* Oir files on disk
* If you don’t share (too much) state, then it doesn’t matter where they run
* For most assighments, all processes will be running on the same machine (for convenience)

* But, your design should work even if the processes run on different machines!

Concurrent Execution

main.py . Driver program
import os, subprocess

p1 = subprocess.Popen('pythond alice.py', shell=True)
p2 = subprocess.Popen('python3 bob.py', shell=True)

Alice.py
import os,sys,time

while True:
time.sleep(1)
print("Alice here!")

Bob.py
import os,sys,time

while True:
time.sleep(1)
print("Bob here!")

Popen will launch in background and will
not block
« Wait for p1 to finish using p1.wait()
» Can also grab output of p1 using
capture_output
» See subprocess documentation!!
Careful around full pathnames
» Best practice: os.getcwd()+’alice.py’
» Shell=True passes envmt variables

Process Creation in UNIX/Bash

*>./my-program.o &

* #This creates a process that runs my-program.o, and runs it in the background
* Typical setup: spawn multiple processes :

* >./dist-program --node-id=1 --type=primary-node &

* >./dist-program --node-1id=2 --type=primary-node &

* >./dist-program --node-1id=3 --type=secondary-node &

* Exercise: Get comfortable with process creation and termination in your
language/environment

* Python subprocess

The process abstraction

One program counter

— Four program counters
A Process
E switch a D —_
LY B 2
o C —
o
G A * B Y C i DY B| =— —
E ML —
\V D Time —=
(a) (b) (c)

« Multiprogramming of four programs in the same address space
« Conceptual model of 4 independent, sequential processes
« Only one program active at any instant

UNIX Process Address Space

* Memory locations a process is allowed to address

« Each process runs in its own virtual memory address space that consists of:
» Stack space — used for function and system calls
» Data space — static variables, initialized globals
« Heap space — dynamically allocated variables

« Text — the program code (usually read only)
4 stack

Address <
space heap
data
N text

* Invoking the same program multiple times results in the creation of multiple distinct address spaces

UNIX Process Creation

» Parent processes create child processes, which, in turn create other
processes, forming a tree of processes

* Resource sharing options
« Parent and children share all resources
 Children share subset of parent’s resources
« Parent and child share no resources

« Execution options
« Parent and children execute concurrently
» Parent waits until children terminate

UNIX Process Creation (Cont.)

» Address space
 Child duplicate of parent
 Child has a program loaded into it

« UNIX examples
* fork system call creates new process

« exec system call used after a fork to replace the process’ memory space with a
new program

CPU Virtualization

* Processes create the illusion of multiple “virtual” CPUs that programs fully
control

* Process PCB contains program counter and other register state, allowing it
to be “resumed”

* Timesharing: OS switches process running on physical CPU at high
frequency (context switch)

* Virtualization is a key OS principle
* Applies to CPU, memory, I/O, ...

Example: process creation in UNIX

sh (pid = 22)

pid = fork()
if (pid == 0) {
// child.

éxec();

else {
// parent
wait () ;

}

sh (pid = 22)

pid = fork()
if (pid == 0) {
// child.

éxec();

else {
// parent
wait () ;

}

Process creation in UNIX example

sh (pid = 24)

pid = fork()
if (pid == 0) {
// child..

éxec();

else {
// parent
wait () ;

}

UNIX Threads

 Creation of a process using fork () is expensive (time and machine
effort)

* Memory copying to create a copy of the process
* In many cases just to call exec () and replace it
« There are ways to mitigate creating a complete copy

» Coordinating activities across process boundaries requires effort

* Threads are sometimes called lightweight processes

 What we have called a process is sometimes considered a heavyweight
process

« Athread contains the necessary state for a distinct activity (process in the
most general sense)

Single and Multithreaded Processes

ERIEEE
e e

One Thread Multiple Threads

Benefits of Threads

« Efficiency / economy
* Less memory, fewer system resources

* Responsiveness
* Lower startup time

» Easier resource sharing
« Natural sharing of memory, open files, etc.
* With caveats that we will discuss

» Concurrency
« Utilization of multiple processors or cores

* You can use threads as distributed system nodes, as long as you don't
use shared memory

Different Threading Models

* OS support for threads/kernel threads (pthreads):

* Linux sees threads as ‘tasks’ and treats them same as processes for
scheduling etc.

* Language runtime ‘userspace’ threads:
* Runtime switches the stack
* Python: Threading.thread(target=thread func, args=..)
* Go and goroutines

* Other concurrency abstractions:

* Actor model (Erlang etc)

Example app: TCP server

Python TCPServer

from socket import *
P welcom serverPort = 12000
greate TLF welcoming serverSocket = socket(AF_INET,SOCK_STREAM)

socket >
serverSocket.bind((”,serverPort))

serverSocket.listen(1)

server begins listening for

incoming TCPrequests ~ print “The server is ready to receive’
while 1:
loop forever . connectionSocket, addr = serverSocket.accept()

server waits on accept()
for incoming requests, new sentence = connectionSocket.recv(1024)

socket created on return _
time.sleep(10)
read bytes from socket (but > capltallz.edSentence = sente_ncg.upper()
not address as in UDP) connectionSocket.send(capitalizedSentence)
connectionSocket.close()

close connection to this ———
client (but not welcoming

socket)
Application Layer 2-17

Example app: Threaded TCP server

Python TCPServer

from socket import *
o TCP welcom serverPort = 12000
comket | EEOMNS T serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((”,serverPort))
o serverSocket.listen(1)
server begins listening for i .]
incoming TCPrequests ~ print “The server is ready to receive’
while 1:
. connectionSocket, addr = serverSocket.accept()
server waits on accept() threading.thread(handle_client, connectionSocket)
for incoming requests, new sentence = connectionSocket.recv(1024)
socket created on return i
time.sleep(10)
read bytes from socket (but capitalizedSentence = sentence.upper()
not address as in UDP) connectionSocket.send(capitalizedSentence)
connectionSocket.close()

»

loop forever

v

close connection to this ———
client (but not welcoming

socket)
Application Layer 2-18

Race Conditions

e Thread 1 e Thread 2
e X="9’ e X="b’
* Print(x) * Print(x)

» Output depends on order of execution of the threads
» Data Race: Whichever thread “wins” the race decides outcome

Synchronization Primitives: Mutual Exclusion

« Critical section: only one thread allowed at a time
* Lock = Threading.Lock()

 Lock.acquire()

« Manipulate global/shared state
* |f (x==0):

° y:x+1

 Lock.release()

Concurrency

* Video: Concurrency is not Parallelism by Rob Pike

» Concurrency:
« Compose independently executing things together
« Ability to deal with >1 thing happening simultaneously
« Mainly about program/system structure and communication

 Parallelism:
 Actually doing multiple things at the same time

« Ex: Massively parallel vector dot product, hardware level parallelism,
etc.

Distributed Operating Systems

Same interface everywhere

Middleware: The OS of Distributed Systems

* Commonly used components and functions for distributed applications

Computer 1 Computer 2 Computer 3 Computer 4
1 |
Appl. A Application B Appl. C
I I‘ XI I I I I
Distributed-system layer {middleware}
Local OS 1 Local OS 2 Local OS 3 Local OS 4

istributed Operating System

* An OS that spans multiple computers
* Same OS services, functionality, and abstractions as single-machine OS

o= H2 Com@g_.?r #H>
7 QS
I I 1 Network,

Distributed OS Challenges

* Providing the process abstraction and resource virtualization is hard

* Resource virtualization must be transparent

* But in distributed settings, there’s always a distinction between local and remote
resources

* In a single-machine OS, processes don’t care where their resources are coming
from:

* Which CPU cores, when they are scheduled, which physical memory pages they use, etc.
* In fact, providing abstract, virtual resources is one of the main OS services

Processes In Distributed OS

P@oéess

Process state:

* Code segment

* Memory pages

* Files

* Sockets

* Security permissions

Distributed OS

~——

- Comepoter (-Compo

-Ju

Transparency Issues In Distributed OS

* Where does code run?

PROCESS * Which memory is used!?
Process state: * Local vs. remote
* Code segment .
+ Memory pages * How are files accessed?
* Files
* Sockets

* Security permissions

Distributed OS

i e

_-Cemeoter -Compotel

Process Migration

* Move all process state from

?KOC;ESS one computer to another
* Process state can be vast

Process state:

+ Code segment * Also entangled with other
| pemory pages process states
° lnHes

* Security permissions

* |[PC (pipes etc)

OS OS

_-Comeoter -Compo el

Partial Process Migration

* Migrate some state

&)KOC;ESS « Other state, if required, is

accessed over the network

Process state: ° Example: migrate only fraction

* Code segment of pages. Other pages are

y L{llemory pages copied over the network on

* Files

. Sockets aCCesSsS.

* Security permissions e Can also be used to access
remote hardware devices
(GPUs)

OS OS

_-Comeoter -Compo el

