
Operating Systems: 
Concurrency



Programs and processes
• A program is a series of instructions

• code for a single “process” of control

• Process: running program + state
• State: Input, output, memory, code, files, etc. 

• Processes are one of the main abstractions provided by the operating system
• A “Thread” is an execution context with register state, a program counter 

(PC) and a stack
• “Thread of execution”

• Multiple processes can be running the same program, even sharing the code in 
the same memory space

• reduces memory overhead, which is important in limited memory environments like 
embedded OSes



Processes as Distributed System Components 
• Processes are isolated from each other,  and thus “independent and autonomous”
• Each process is running its own code, with its own memory address space (local variables 

etc)
• We will assume that the only way to communicate is explicit messages

• Using networking protocol
• Reading/writing to any shared object is communication!

• Any variables/data structures in memory
• Or files on disk

• If you don’t share (too much) state, then it doesn’t matter where they run
• For most assignments, all processes will be running on the same machine (for convenience)

• But, your design should work even if the processes run on different machines!



Concurrent Execution

# Alice.py
import os,sys,time

while True:
time.sleep(1)
print("Alice here!")

# Bob.py
import os,sys,time

while True:
time.sleep(1)
print(”Bob here!")

# main.py . Driver program
import os, subprocess

p1 = subprocess.Popen('python3 alice.py', shell=True)
p2 = subprocess.Popen('python3 bob.py', shell=True)

• Popen will launch in background and will 
not block

• Wait for p1 to finish using p1.wait()
• Can also grab output of p1 using 

capture_output
• See subprocess documentation!!

• Careful around full pathnames
• Best practice: os.getcwd()+’alice.py’
• Shell=True passes envmt variables 



Process Creation in UNIX/Bash
• >./my-program.o & 
• #This creates a process that runs my-program.o, and runs it in the background
• Typical setup: spawn multiple processes :
• >./dist-program --node-id=1 --type=primary-node & 
• >./dist-program --node-id=2 --type=primary-node & 
• >./dist-program --node-id=3 --type=secondary-node & 
• Exercise: Get comfortable with process creation and termination in your 

language/environment
• Python subprocess 



The process abstraction

• Multiprogramming of four programs in the same address space
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant



UNIX Process Address Space
• Memory locations a process is allowed to address
• Each process runs in its own virtual memory address space that consists of:

• Stack space – used for function and system calls
• Data space – static variables, initialized globals
• Heap space – dynamically allocated variables
• Text – the program code (usually read only)

• Invoking the same program multiple times results in the creation of multiple distinct address spaces

stack

text
data

Address
space heap



UNIX Process Creation
• Parent processes create child processes, which, in turn create other 

processes, forming a tree of processes
• Resource sharing options

• Parent and children share all resources
• Children share subset of parent’s resources
• Parent and child share no resources

• Execution options
• Parent and children execute concurrently
• Parent waits until children terminate



UNIX Process Creation (Cont.)
• Address space

• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork system call creates new process
• exec system call used after a fork to replace the process’ memory space with a 

new program



CPU Virtualization
• Processes create the illusion of multiple “virtual” CPUs that programs fully 

control 
• Process PCB contains program counter and other register state, allowing it 

to be “resumed”
• Timesharing: OS switches process running on physical CPU at high 

frequency (context switch)
• Virtualization is a key OS principle

• Applies to CPU, memory, I/O, … 



Example: process creation in UNIX

…

pid = fork()
if (pid == 0) {
// child…
…
exec();
}

else {
// parent
wait();
}

…

sh  (pid = 22)



Process creation in UNIX example

…

pid = fork()
if (pid == 0) {
// child…
…
exec();
}

else {
// parent
wait();
}

…

sh  (pid = 22)

…

pid = fork()
if (pid == 0) {
// child…
…
exec();
}

else {
// parent
wait();
}

…

sh (pid = 24)



UNIX Threads
• Creation of a process using fork() is expensive (time and machine 

effort)
• Memory copying to create a copy of the process

• In many cases just to call exec() and replace it
• There are ways to mitigate creating a complete copy

• Coordinating activities across process boundaries requires effort
• Threads are sometimes called lightweight processes

• What we have called a process is sometimes considered a heavyweight
process

• A thread contains the necessary state for a distinct activity (process in the 
most general sense)



Code

Heap

Code

Heap

Stack StackStack Stack Stack

Single and Multithreaded Processes

One Thread Multiple Threads



Benefits of Threads
• Efficiency / economy

• Less memory, fewer system resources
• Responsiveness

• Lower startup time
• Easier resource sharing

• Natural sharing of memory, open files, etc.
• With caveats that we will discuss

• Concurrency
• Utilization of multiple processors or cores

• You can use threads as distributed system nodes, as long as you don’t 
use shared memory 



Different Threading Models
• OS support for threads/kernel threads (pthreads):

• Linux sees threads as ‘tasks’ and treats them same as processes for 
scheduling etc. 

• Language runtime ‘userspace’ threads:
• Runtime switches the stack 
• Python: Threading.thread(target=thread_func, args=..) 
• Go and goroutines

• Other concurrency abstractions:
• Actor model (Erlang etc)



Application Layer 2-17

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
time.sleep(10) 
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for  
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new 
socket created on return

read bytes from socket (but 
not address as in UDP)

close connection to this 
client (but not welcoming 
socket)



Application Layer 2-18

Example app:  Threaded TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()
threading.thread(handle_client, connectionSocket)

sentence = connectionSocket.recv(1024)
time.sleep(10) 
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for  
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new 
socket created on return

read bytes from socket (but 
not address as in UDP)

close connection to this 
client (but not welcoming 
socket)



Race Conditions

• Thread 1
• x=’a’ 
• Print(x)

• Thread 2
• x=‘b’
• Print(x)

• Output depends on order of execution of the threads
• Data Race: Whichever thread “wins” the race decides outcome 



Synchronization Primitives: Mutual Exclusion
• Critical section: only one thread allowed at a time 
• Lock = Threading.Lock() 
• Lock.acquire()

• Manipulate global/shared state
• If (x==0):

• y = x + 1 

• Lock.release() 



Concurrency
• Video: Concurrency is not Parallelism by Rob Pike
• Concurrency:

• Compose independently executing things together
• Ability to deal with >1 thing happening simultaneously 
• Mainly about program/system structure and communication 

• Parallelism:
• Actually doing multiple things at the same time 
• Ex: Massively parallel vector dot product, hardware level parallelism, 

etc. 



Distributed Operating Systems



Middleware: The OS of Distributed Systems
• Commonly used components and functions for distributed applications 



Distributed Operating System
• An OS that spans multiple computers
• Same OS services, functionality, and abstractions as single-machine OS



Distributed OS Challenges
• Providing the process abstraction and resource virtualization is hard
• Resource virtualization must be transparent

• But in distributed settings, there’s always a distinction between local and remote 
resources

• In a single-machine OS, processes don’t care where their resources are coming 
from:

• Which CPU cores, when they are scheduled, which physical memory pages they use, etc.
• In fact, providing abstract, virtual resources is one of the main OS services



Processes In Distributed OS

Distributed OS

Process state:
• Code segment 
• Memory pages
• Files 
• Sockets
• Security permissions



Transparency Issues In Distributed OS
• Where does code run?
• Which memory is used?

• Local vs. remote

• How are files accessed? 

Distributed OS

Process state:
• Code segment 
• Memory pages
• Files 
• Sockets
• Security permissions



Process Migration
• Move all process state from 

one computer to another
• Process state can be vast
• Also entangled with other 

process states
• Shared files?
• IPC (pipes etc)

OS

Process state:
• Code segment 
• Memory pages
• Files 
• Sockets
• Security permissions

OS



Partial Process Migration
• Migrate some state 
• Other state, if required, is 

accessed over the network
• Example: migrate only fraction 

of pages. Other pages are 
copied over the network on 
access. 
• Can also be used to access 

remote hardware devices 
(GPUs)

OS

Process state:
• Code segment 
• Memory pages
• Files 
• Sockets
• Security permissions

OS


