
Operating Systems: The
Basics

What Are Distributed Systems Composed Of?

• Collection of nodes
• What are nodes?

• Servers of different sizes (Raspberry Pis, 128 core large servers, etc.)
• Conventional OS processes

Programs and processes
• A program is a series of instructions

• code for a single “process” of control

• Process: running program + state
• State: Input, output, memory, code, files, etc.

• Processes are one of the main abstractions provided by the operating system
• A “Thread” is an execution context with register state, a program counter

(PC) and a stack
• “Thread of execution”

• Multiple processes can be running the same program, even sharing the code in
the same memory space

• reduces memory overhead, which is important in limited memory environments like
embedded OSes

Processes as Distributed System Components
• Processes are isolated from each other, and thus “independent and autonomous”
• Each process is running its own code, with its own memory address space (local variables

etc)
• We will assume that the only way to communicate is explicit messages

• Using networking protocol
• Reading/writing to any shared object is communication!

• Any variables/data structures in memory
• Or files on disk

• If you don’t share (too much) state, then it doesn’t matter where they run
• For most assignments, all processes will be running on the same machine (for convenience)

• But, your design should work even if the processes run on different machines!

Concurrent Execution

Alice.py
import os,sys,time

while True:
time.sleep(1)
print("Alice here!")

Bob.py
import os,sys,time

while True:
time.sleep(1)
print(”Bob here!")

main.py . Driver program
import os, subprocess

p1 = subprocess.Popen('python3 alice.py', shell=True)
p2 = subprocess.Popen('python3 bob.py', shell=True)

• Popen will launch in background and will
not block

• Wait for p1 to finish using p1.wait()
• Can also grab output of p1 using

capture_output
• See subprocess documentation!!

• Careful around full pathnames
• Best practice: os.getcwd()+’alice.py’
• Shell=True passes envmt variables

Process Creation in UNIX/Bash
• >./my-program.o &
• #This creates a process that runs my-program.o, and runs it in the background
• Typical setup: spawn multiple processes :
• >./dist-program --node-id=1 --type=primary-node &
• >./dist-program --node-id=2 --type=primary-node &
• >./dist-program --node-id=3 --type=secondary-node &
• Exercise: Get comfortable with process creation and termination in your

language/environment
• Python subprocess

The process abstraction

• Multiprogramming of four programs in the same address space
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant

UNIX Process Address Space
• Memory locations a process is allowed to address
• Each process runs in its own virtual memory address space that consists of:

• Stack space – used for function and system calls
• Data space – static variables, initialized globals
• Heap space – dynamically allocated variables
• Text – the program code (usually read only)

• Invoking the same program multiple times results in the creation of multiple distinct address spaces

stack

text
data

Address
space heap

UNIX Process Creation
• Parent processes create child processes, which, in turn create other

processes, forming a tree of processes
• Resource sharing options

• Parent and children share all resources
• Children share subset of parent’s resources
• Parent and child share no resources

• Execution options
• Parent and children execute concurrently
• Parent waits until children terminate

UNIX Process Creation (Cont.)
• Address space

• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork system call creates new process
• exec system call used after a fork to replace the process’ memory space with a

new program

CPU Virtualization
• Processes create the illusion of multiple “virtual” CPUs that programs fully

control
• Process PCB contains program counter and other register state, allowing it

to be “resumed”
• Timesharing: OS switches process running on physical CPU at high

frequency (context switch)
• Virtualization is a key OS principle

• Applies to CPU, memory, I/O, …

Example: process creation in UNIX

…

pid = fork()
if (pid == 0) {
// child…
…
exec();
}

else {
// parent
wait();
}

…

sh (pid = 22)

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {
// child…
…
exec();
}

else {
// parent
wait();
}

…

sh (pid = 22)

…

pid = fork()
if (pid == 0) {
// child…
…
exec();
}

else {
// parent
wait();
}

…

sh (pid = 24)

Building Distributed Programs With Processes
• Remember that process === node
• Each process must have some “global” id === (machine-id, process-id)

• Machine-id === (ip-address, [port])

• Processes communicate through well-defined communication
channels

• Network sockets (covered in next class)

• Be careful with process management
• When to start/stop processes
• Clean-up state on termination/failure : Temporary files, open sockets, etc.

Common Knowledge

Two Generals Problem
• Two Roman Generals want to co-ordinate an attack on the enemy

• Both must attack simultaneously. Otherwise, both will lose

• Only way to communicate is via a messenger
• But messengers can get captured/lost.
• Perfectly-reliable communication system not available Task: Design a protocol

that ensures the two
generals always attack
simultaneously

Two generals problem, continued

B does not know if A knows about the agreement
A does not know if B
knows that A knows

Impossibility Proof of Two Generals Problem
• Claim: There is no non-trivial protocol that guarantees that the two generals

will always attack simultaneously
• Proof by induction on the number of messages
• Let d messages be delivered at the time of attack
• Base case: d=0. Claim holds (Impossible without any delivered messages)
• Suppose impossibility claim holds for d=n. Then, we’ll show for d=n+1
• Consider message n+1

• Sender attacks without knowing if message is delivered or not
• Receiver must then attack too, even if msg not received
• So the last message (n+1) was irrelevant, and n messages suffice
• But that’s a contradiction: since n+1 was supposed to be the smallest number of messages

Common Knowledge
• Solving the Two Generals Problem requires common knowledge
• Common knowledge cannot be achieved with unreliable communication

channels

Distributed Operating Systems

Middleware: The OS of Distributed Systems
• Commonly used components and functions for distributed applications

Distributed Operating System
• An OS that spans multiple computers
• Same OS services, functionality, and abstractions as single-machine OS

Distributed OS Challenges
• Providing the process abstraction and resource virtualization is hard
• Resource virtualization must be transparent

• But in distributed settings, there’s always a distinction between local and remote
resources

• In a single-machine OS, processes don’t care where their resources are coming
from:

• Which CPU cores, when they are scheduled, which physical memory pages they use, etc.
• In fact, providing abstract, virtual resources is one of the main OS services

Processes In Distributed OS

Distributed OS

Process state:
• Code segment
• Memory pages
• Files
• Sockets
• Security permissions

Transparency Issues In Distributed OS
• Where does code run?
• Which memory is used?

• Local vs. remote

• How are files accessed?

Distributed OS

Process state:
• Code segment
• Memory pages
• Files
• Sockets
• Security permissions

Process Migration
• Move all process state from

one computer to another
• Process state can be vast
• Also entangled with other

process states
• Shared files?
• IPC (pipes etc)

OS

Process state:
• Code segment
• Memory pages
• Files
• Sockets
• Security permissions

OS

Partial Process Migration
• Migrate some state
• Other state, if required, is

accessed over the network
• Example: migrate only fraction

of pages. Other pages are
copied over the network on
access.
• Can also be used to access

remote hardware devices
(GPUs)

OS

Process state:
• Code segment
• Memory pages
• Files
• Sockets
• Security permissions

OS

