Mutual Exclusion

L eader Election

Why Leader Election

* Given a group of processes, we want to elect a leader that is a “special”
designated process for certain tasks

* Who is the primary replica?

* Useful for implementing centralized algorithms, since leader can broadcast messages to
keep replicas in sync

* All processes must agree on who the leader is

* Any process can call for an election at any time

* A process can call for only one election at a time

* Multiple processes can call for an election simultaneously

* Result of the election should not depend on which process calls for it

Chang-Roberts Leader Election

* Processes arranged in a ring, first phase:
To start an election, send your id clockwise as part of “election” message

f received id is greater than your own, send the id clockwise

.

2

3. If received id is smaller, send your id clockwise

4. If received id is equal, then you are the leader (we assume unique id’s)
Second phase:

|. Leader sends an “elected” message along with id

2. Other processes forward it and can leave the election phase

Analysis

* Worst-case: 3N-| messages

* N-1 messages for everyone
to circulate their value

* N messages for election
candidate to be confirmed

* N ‘elected’ messages to
announce the winner

Locks

* Only one process allowed to execute the critical section at any given time

* Non-distributed settings: solved using locks or semaphores
* Both these approaches used shared variables

* Not directly applicable in distributed settings where message-passing is the sole
communication mechanism

Requirements

* Safety: At any instant, only one process can execute the critical section
* Nothing bad ever happens
* Liveness: Absence of deadlock and starvation. Processes should not wait

endlessly to enter the critical section
* Something good eventually happens

* Fairness: Processes get a fair chance to enter the CS.
* Usually, CS requests are granted on the order of their arrival

Metrics

* Message complexity: #messages exchanged per CS execution
* Synchronization delay: Time required before the next process enters the CS

* Response time: Time required between intial request and entering the CS

* Throughput: |/(sync-delay+critical-sec-time)

Token Based

* Similar to leader election
. . ({5 9
* Processes arranged in a ring and pass a “token

* |If token rcvd && dont want to enter CS — Pass token

Centralized

e Assume leader exists

* To enter CS§, seek permission from leader

Lamport’s Algorithm

* Similar to totally ordered multicast
* Requests to enter the CS are timestamped and broadcast

* Processes maintain a request queue

Lamport’s Mutual Exclusion Algorithm

* Requesting the CS:

|. If P_i wants to enter the CS, it broadcasts a Request message (ts,i) and places the
request on its own request queue

2. All processes place the request in their queue, ordered by timestamp, and send an ack
to P i

* Executing the CS: Process-i enters the CS when the following two conditions
hold:

|. P-i has received a message with timestamp larger than ts from all processes
2. P-i’s request is at the head of the request queue

* Releasing the CS:
|. Remove request from queue and broadcast a timestamped Release message
2. When process-j receives a release message, it deletes P-i’s request from its queue

Correctness proof

* Proof by contradiction
* Suppose P; and P; enter the CS at the same time.

* This implies that at some point in time (t), both P, and P, had their own
requests at the top of their respective queues

* Assume the timestamp of P, is smaller than P,.Recall that lamport timestamps
can be totally ordered .

* This means that when P-i’s request message was present in P-j’s request queue,
and P-j was already in the CS.

* But request queues are ordered by timestamps, and P-I's is smaller

* Assumes FIFO ordering of messages between proceses

Performance

* For each CS execution, need N-1| request messages, N-| replies,and N-|
release

Quorum based

* Processes do not request permission from all other sites, but only a subset

* Every pair of processes has a processes that mediates conflicts between that
pair

* Processes can send only one reply message at any time, and only after it has
received a release message for the previous reply message

* Quorums must be mutually pairwise intersecting

* Quorums cannot contain complete subsets

