Distributed Systems
CSCI-B 534/434/ ENGR E-510

Spring 2023

Instructor: Prateek Sharma

Welcome!

* What is a distributed system!?

* Where are distributed systems found?

* Why you should take this course?
* Small taste of challenges in distributed systems

* Course contents, outline, structure, etc.

What Is A Distributed System!?

* Collection of autonomous computing elements that appears to its users as a
single coherent system

* Computing elements: hardware devices or software processes

* Single coherent system: Users and applications perceive a single system

/ /Communication link

Nodes / Servers / Processes

> User

Distributed Systems Are Everywhere

* Large-scale Internet Services
* Web clusters for high-traffic websites

* Cloud storage
* Dropbox, Google Drive,...

* Large-scale data processing

* Map-reduce to process IB’s of data
* Graph processing

* Social network analysis

* Large-scale machine learning
* Model training and inference

e Sensor Networks
* Internet of Things

* Modern multi-core architectures

Where Distributed Systems Fit In

Abstraction Level Web Services

(e-commerce)

“Big Data”
Processing
Computer | Operating Distributed
Architecture Systems Systems
Cloud Storage
Computer
Networks
Machine
Learning
Internet of

Things

St

* Conventionally: application deployed on a single server
* Warehouse-scale computing: meet increasing computing needs of applications
* How to handle computing, storage, and networking needs of millions of users!?

Sports Analogy

* Soccer team comprising of multiple “autonomous” and independent players
~ There’s no single “puppet master” controlling the game
* Complex coordination problem
~ Players must act based on other players’ positions & intent
~ Information via visual and audio cues
~ Perfect information is not available

o Limited field of vision, noise

* And yet we see this! (Tiki Taka)

- https://www.youtube.com/watch?v=m | MZ]eevZ6E

https://www.youtube.com/watch?v=m1MZJeevZ6E

Course Prerequisites

* Almost all software systems are distributed systems
* This course will teach you the fundamental concepts
T

nrough programming exercises: build complex systems from scratch

This is a challenging course!

* “You can have a second computer if you can show you know
how to use the first one”

— ---Paul Barham

Course Combines Theory + Practice

* Distributed algorithms for fundamental problems

— Understand the problem, come up with an algorithm, and prove or provide some
justification about its correctness and other properties

— You should be comfortable with showing the correctness of algorithms using
induction and other techniques

e Eg: Prove QuickSort correct using induction

* Designing, building, and testing non-trivial distributed systems

— Proficient in “simple” user-space programming, systems programming (operating
systems and networks)

* Even “easy” problems in conventional non-distributed computing are hard
or even impossible in distributed settings

Learning Obijectives

- A fundamental shift in how you think about computing: from serial programs to
loosely coupled asynchronous distributed systems.

- Design and implement moderately complex distributed systems of your own

- Understand classic distributed algorithms for synchronization, consistency, fault-
tolerance, etc.

- Reason about correctness of distributed algorithms, and derive your your own
algorithms for special cases

- Understand how modern distributed systems are designed and engineered.

How To Succeed In This Course

Visit Course Web-page Regularly
neeprhomes.sice.indiana.edu/prateeks/dist-sys-course.html

&« c ® ® homessice.indiana.edu/prateeks/dist-sys-course.html B - w ¥y Iin @ =

~

Distributed Systems

CSCI-B 534/ENGR-E 510 (Spring 2019)

Announcements

Course Description

Distributed computing systems are complex, difficult to understand, and everywhere.

This course will cover the necessary principles, techniques, and tools for understanding, analyzing, and
building distributed applications and systems. We will be looking at both distributed computing fundamentals,
as well as study the design of popular distributed systems. We will also examine blockchains from an
academic distributed systems perspective.

We will look at how systems can communicate and coordinate through message passing, and study classical
distributed algorithms involving logical and vector clocks, leader election, fault-tolerance, and consensus.

Students will also learn about the design of large-scale distributed systems, and be expected to implement
many of the ideas studied in class as part of homework assignments and projects.

Prerequisites

Distributed systems build upon and extend many classical areas in Computer Science. Strong fundamentals in
Operating Systems, Computer Networks, and Algorithms are a must.

Text-books

We will use a combination of books and research papers.

e Required: Distributed Systems: Principles and Paradigms, 3rd Edition (Maarten Van Steen and Andrew
Tanenbaum) Online version

http://homes.sice.indiana.edu/prateeks/dist-sys-course.html

Attend Classes and Labs

* Lectures: In-person (prior recordings also on YouTube)
* Class discussions, and/or Canvas quizzes and Q&A

* Lab-sessions: For all assighment help.
* Check registrar website for exact details regarding your section
* Labs will be run by TA’s who will assist in:

e Programming assignments: how to get started, some initial debugging.

« Also serve as “office hours” and for grading all programming assignments

Read The Text Book

* Readings assigned for each lecture
* Read before coming to class!

* Text-book:“Distributed Systems”. Maarten van Steen and Andrew Tanenbaum
* Soft-copy available on the web

* Many lectures will also discuss research papers

* Reference book for distributed algorithms:
* “Elements of Distributed Computing”.Vijay Garg

Some Challenges In Distributed
Systems

|. Distributed reads and writes
2. How to build distributed systems --- Middleware

3. Two Generals Problem

Conventional Program Semantics
def foo():

* Writes take effect “in order’” of their issue
* Aka “Strong consistency”

Distributed Reads and Writes
¢‘::1. f@b&).—:i \\ma

User writes x=1 ‘

2
/ ®
O | | i
AN |/
A

o[

Users can retrieve from
any of the 3 servers

* How to ensure that data written can be
retrieved from any server?

Distributed Reads and Writes
to. Yo +° NaWe of K (ta, {”‘l citerarl ?\ ’\—\ma

*=O s : A
/

/ / \@\M&(\' gnt\ all
O/ S =0 senser s qpp\g-
7\\ _ the wnte aperation

A ncease n

a ' =0 @K—ﬁencg_ ofsp
@\I\)‘ﬂaj(i one
* How to ensure that data written can be secrel &ls™¢

retrieved from any server?
* Replication!
-» Broadcast values after a write

Tradeoffs In Distributed Systems

* Previous consistency example:
* Sacrifice latency for “strong consistency”
(1 9 .
* Or, have a “looser” consistency for lower latency-

 Another classic tradeoff is Cost vs. Performance:

Low Cost, High Performance High Cost, High Performance
(Doesn’t exist)

Low Cost, Low Performance High Cost, Low Performance
(Undesirable)

Middleware: The OS of Distributed Systems

* Commonly used components and functions for distributed applications

Same interface everywhere

Computer 1 Computer 2 Computer 3 Computer 4
| 1

Appl. A Application B Appl. C

I I‘ Ml I I I I

Distributed-system layer {middleware}

Local OS 1 Local OS 2 Local OS 3 Local OS 4

S I N E— 1

Middleware Goals

* Resource Sharing

* Distribution Transparency

* Openness (Other nodes can join)

* Scalability

Same interface everywhere

Computer 1 Computer 2 Computer 3 Computer 4
| |
Appl. A Application B Appl. C
I I‘ XI I I I I
Distributed-system layer {middleware}
Local OS 1 Local OS 2 Local OS 3 Local OS 4

Network

Two Generals Problem

* Two Roman Generals want to co-ordinate an attack on the enemy
* Both must attack simultaneously. Otherwise, both will lose

* Only way to communicate is via a messenger
* But messengers can get captured/lost.
* Perfectly-reliable communication system not available

]A % Task: Design a protocol

that ensures the two
generals always attack
simultaneously

< -

Impossibility Proof
* Claim:There is no non-trivial protocol that guarantees that the two generals
will always attack simultaneously

* Proof by induction on the number of messages

* Let d messages be delivered at the time of attack

* Base case: d=0. Claim holds (Impossible without any delivered messages)
* Suppose impossibility claim holds for d=n.Then, we’ll show for d=n+|

* Consider message n+|
* Sender attacks without knowing if message is delivered or not
* Receiver must then attack too, even if msg not received
* So the last message (n+1) was irrelevant, and n messages suffice
* But that’s a contradiction: since n+| was supposed to be the smallest number of messages

Common Knowledge

* Solving the Two Generals Problem requires common knowledge

* Common knowledge cannot be achieved with unreliable communication
channels

What if all entities shared a single global
clock?

. Common knowledge possible with global clock

. Message m sent at t, delivered within delay d
. Send event becomes common knol at t+d

Next Time

* Distributed systems building blocks
* Refresher on Operating System Processes and Threads

