
Distributed Systems
CSCI-B 534/434/ ENGR E-510

Spring 2023
Instructor: Prateek Sharma

Welcome!
• What is a distributed system?
• Where are distributed systems found?
• Why you should take this course?
• Small taste of challenges in distributed systems
• Course contents, outline, structure, etc.

What Is A Distributed System?
• Collection of autonomous computing elements that appears to its users as a

single coherent system
• Computing elements: hardware devices or software processes
• Single coherent system: Users and applications perceive a single system

Nodes / Servers / Processes

Communication link

User

Distributed Systems Are Everywhere
• Large-scale Internet Services

• Web clusters for high-traffic websites

• Cloud storage
• Dropbox, Google Drive,...

• Large-scale data processing
• Map-reduce to process TB’s of data

• Graph processing
• Social network analysis

• Large-scale machine learning
• Model training and inference

• Sensor Networks
• Internet of Things

• Modern multi-core architectures

Where Distributed Systems Fit In

Computer
Architecture

Operating
Systems

Computer
Networks

Distributed
Systems

Web Services
(e-commerce)

“Big Data”
Processing

Cloud Storage

Machine
Learning

Internet of
Things

Abstraction Level

Large-Scale Distributed Systems

• Conventionally: application deployed on a single server
• Warehouse-scale computing: meet increasing computing needs of applications
• How to handle computing, storage, and networking needs of millions of users?

Sports Analogy
• Soccer team comprising of multiple “autonomous” and independent players

- There’s no single “puppet master” controlling the game

• Complex coordination problem

- Players must act based on other players’ positions & intent

- Information via visual and audio cues

- Perfect information is not available
l Limited field of vision, noise

• And yet we see this! (Tiki Taka)

- https://www.youtube.com/watch?v=m1MZJeevZ6E

https://www.youtube.com/watch?v=m1MZJeevZ6E

Course Prerequisites

•“You can have a second computer if you can show you know
how to use the first one”
- ---Paul Barham

• Almost all software systems are distributed systems
• This course will teach you the fundamental concepts
• Through programming exercises: build complex systems from scratch

This is a challenging course!

Course Combines Theory + Practice
• Distributed algorithms for fundamental problems

- Understand the problem, come up with an algorithm, and prove or provide some
justification about its correctness and other properties

- You should be comfortable with showing the correctness of algorithms using
induction and other techniques

l Eg: Prove QuickSort correct using induction
• Designing, building, and testing non-trivial distributed systems

- Proficient in “simple” user-space programming, systems programming (operating
systems and networks)

• Even “easy” problems in conventional non-distributed computing are hard
or even impossible in distributed settings

Learning Objectives
- A fundamental shift in how you think about computing: from serial programs to
loosely coupled asynchronous distributed systems.
- Design and implement moderately complex distributed systems of your own
- Understand classic distributed algorithms for synchronization, consistency, fault-
tolerance, etc.
- Reason about correctness of distributed algorithms, and derive your your own
algorithms for special cases
- Understand how modern distributed systems are designed and engineered.

How To Succeed In This Course

Visit Course Web-page Regularly
http://homes.sice.indiana.edu/prateeks/dist-sys-course.html

http://homes.sice.indiana.edu/prateeks/dist-sys-course.html

Attend Classes and Labs
• Lectures: In-person (prior recordings also on YouTube)
• Class discussions, and/or Canvas quizzes and Q&A

• Lab-sessions: For all assignment help.

• Check registrar website for exact details regarding your section

• Labs will be run by TA’s who will assist in:

l Programming assignments: how to get started, some initial debugging.

l Also serve as “office hours” and for grading all programming assignments

Read The Text Book

• Readings assigned for each lecture
• Read before coming to class!

• Text-book: “Distributed Systems”. Maarten van Steen and Andrew Tanenbaum
• Soft-copy available on the web

• Many lectures will also discuss research papers
• Reference book for distributed algorithms:

• “Elements of Distributed Computing”. Vijay Garg

Some Challenges In Distributed
Systems
1. Distributed reads and writes
2. How to build distributed systems --- Middleware
3. Two Generals Problem

Conventional Program Semantics
def foo():
X=0 ;
X=1 ;
print(X);

• Writes take effect “in order” of their issue
• Aka “Strong consistency”

Distributed Reads and Writes

• How to ensure that data written can be
retrieved from any server?

x=0

x=0

x=0

User writes x=1

Users can retrieve from
any of the 3 servers

Distributed Reads and Writes

• How to ensure that data written can be
retrieved from any server?

• Replication!
• Broadcast values after a write

Tradeoffs In Distributed Systems
• Previous consistency example:
• Sacrifice latency for “strong consistency”
• Or, have a “looser” consistency for lower latency
• Another classic tradeoff is Cost vs. Performance:

Low Cost, High Performance
(Doesn’t exist)

High Cost, High Performance

Low Cost, Low Performance High Cost, Low Performance
(Undesirable)

Middleware: The OS of Distributed Systems
• Commonly used components and functions for distributed applications

Middleware Goals
• Resource Sharing
• Distribution Transparency
• Openness (Other nodes can join)
• Scalability

Two Generals Problem
• Two Roman Generals want to co-ordinate an attack on the enemy

• Both must attack simultaneously. Otherwise, both will lose

• Only way to communicate is via a messenger
• But messengers can get captured/lost.
• Perfectly-reliable communication system not available

Task: Design a protocol
that ensures the two
generals always attack
simultaneously

Impossibility Proof
• Claim: There is no non-trivial protocol that guarantees that the two generals

will always attack simultaneously
• Proof by induction on the number of messages
• Let d messages be delivered at the time of attack
• Base case: d=0. Claim holds (Impossible without any delivered messages)
• Suppose impossibility claim holds for d=n. Then, we’ll show for d=n+1
• Consider message n+1

• Sender attacks without knowing if message is delivered or not
• Receiver must then attack too, even if msg not received
• So the last message (n+1) was irrelevant, and n messages suffice
• But that’s a contradiction: since n+1 was supposed to be the smallest number of messages

Common Knowledge
• Solving the Two Generals Problem requires common knowledge
• Common knowledge cannot be achieved with unreliable communication

channels

l Common knowledge possible with global clock
l Message m sent at t, delivered within delay d
l Send event becomes common knol at t+d

What if all entities shared a single global
clock?

Next Time
• Distributed systems building blocks

• Refresher on Operating System Processes and Threads

