
Conflict Free Replicated Data Types

Distributed Systems Spring 2020

Lecture 16



Strong Eventual Consistency

• Two nodes can receive the same set of updates in a different order
• Their view of the shared state is identical

• No Conflicts!
• Any conflicting updates are merged automatically

• Possible to implement without centralized server/leader
• Local execution can proceed without waiting for other processes
• Intermittent connectivity useful for mobile devices, offline

operations, etc

How do collaborative editors like Google Doc work?



CRDTs

• (Conflict-free/Commutative/Convergent) Replicated Data Types
• Key idea: Use commutative operations for state convergence
• Provably converge to a sequentially consistent result
• States should form a “semi-lattice”

• Partial order, and Least Upper Bound always exists
• Values of different replicas merged using lattice-join operation
• Can be implemented with Last-writer-wins, but instead:
• CRDT’s allow using values and not causal-histories to merge

• State vs. Operation-based CRDT



Event counting with CRDT’s

• Simple growth counter (increment operations are commutative)
• All writes (updates) made only to local copy/version
• Each replica maintains a vector of values V [1..N]

• Similar to vector clock timestamps
• Value of the counter is sum of all local values (

�
V )

• Merge is pairwise max of the two vectors



General Counters with CRDT’s

• CRDT’s work when the states are monotonically increasing
• Value of object itself used for merging, no timestamps needed
• What if we want to support increment and decrement ops?

• State (value) can decrease, and hence not monotonic!

Since we take max, we dont get sequential consistency if there is a decrement
operationExample: P:1,1–>0,1 Q:1,1–>1,2



General Counters with CRDT’s

• CRDT’s work when the states are monotonically increasing
• Value of object itself used for merging, no timestamps needed
• What if we want to support increment and decrement ops?

• State (value) can decrease, and hence not monotonic!

• Maintain two monotonically increasing counters
• One (P) for increments, and another (N) for decrements
• Value is

�
P − �

N

Since we take max, we dont get sequential consistency if there is a decrement
operationExample: P:1,1–>0,1 Q:1,1–>1,2



Sets with CRDT’s

• Parition-tolerant sets: One each for added and deleted items
• Merge operation is the set union operation
• Actual set is Added−Deleted.
• Can prune sets by applying delete operations, when system is

unpartitioned

Collaborative shopping list example



Sets with CRDT’s

• Parition-tolerant sets: One each for added and deleted items
• Merge operation is the set union operation
• Actual set is Added−Deleted.
• Can prune sets by applying delete operations, when system is

unpartitioned

• Deep result: Combining two CRDT’s results is still a CRDT
• CRDT’s can be combined to form complex CRDT’s

• Sets, maps, counters, graphs, sequences
• JSON objects

• Popular usecase: Collaborative document editing

Collaborative shopping list example



Ordered Lists with CRDT’s

• Attach a unique location-id=(index, node-id) to each element
• “Hello” → H:0a, e:1a, l:2a,...

• Operation-based: Add/delete operations specified relative to
location

• Insert “!” after 4a
• Merge lists by replaying operations
• If conflict, skip over existing list elements with greater ID

Example: Both processes start with “x”. First process appends y, other process
appends z. Because process ids are totally ordered, both processes end up with
string xyz



References

• Martin Kleppmann: Automerge, lots of videos on CRDTs, ..
• CRDT papers by Marc Shapiro et.al.


