
CAP Theorem and Eventual Consistency

Distributed Systems Spring 2020

Lecture 15



Agenda

• Last time: How consistency models can be implemented
• Primary-based methods

• CAP theorem and its implications
• Most famous observation made about distributed systems in the last

2 decades
• Eventual Consistency
• Next time: CRDT’s



Recap: Primary based protocol

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2



Tradeoffs In Consistency Models

• Sequential Consistency: Blocking writes via multicasting
• Eventual Consistency: Non-blocking writes lazily propagated
• What if we cannot write to a replica?

• Perhaps due to Network or hardware failure
• Should the write operation continue?

• For strong consistency, we cannot allow write to proceed
• System becomes “unavailable” to the client



CAP Theorem

C, A, and P:
• Consistency: Strong Consistency (Linearizability)
• Availability: Clients can always perform operations
• Partition Tolerance: If some replicas are unreachable, system

function should not be compromised

CAP theorem: Pick any two*
With a few important caveats!

• CAP theorem is widely misunderstood and misapplied



CAP Theorem Details

• Partition tolerance usually cannot be sacrificed
• But, dont need to sacrifice either C or A when there are no

partitions.
• Partitions usually detected via timeouts
• System can enter “C” or “A” mode if partition detected

• Cancel operation and have reduced availability
• Continue operation and risk inconsistency

A more precise statement of the CAP Theorem:
If there is a network partition, you must choose either consistency or
availability.



Intuitive “Proof”

• System with two replicas P, Q.
• Client writes to P
• Network partition, so P cannot update Q
• Client reads from Q, but gets stale result. Hence not consistent.
• If P cannot update Q, it can refuse to process update. Hence not

available.



Distributed Storage Systems Tradeoffs



Partitions



Dealing with Partitions

• No global view of partitions: some replicas may be unreachable from
certain sources

• Can have a “one-sided” partition
• Offline-mode: long periods of unavailability
• Mask unavailability: log operations and replay later

• Credit-card machines
• “Merge” partitions using version vectors, or last-write-wins

• Source control systems typically use this
• Prohibit “risky” operations (such as deletes)



Compensating for Mistakes

• Mistakes made during partitions can be fixed in many ways
• Airline overbooking: compensation is literal $
• Amazon shopping carts: Union of two carts. Deleted items may

reappear, and customer manually corrects final cart, or escalates to
customer service

• ATMs: Withdrawals can proceed even when partitioned. But banks
place a hard-limit on withdrawals to limit the risk.



Eventual Consistency

• If no additional updates are made to a given data item, all reads to
that item will eventually return the same value.

• No guarantees about when the replicas will converge
• Usually implemented through async writebacks
• Conflicts merged/resolved asynchronously in the background
• On conflict: Arbitrate or roll-back

What are the safety and liveness properties?



Eventual Consistency In a Nutshell



PACELC

• If there is a Partition, how does the system tradeoff A and C
• Else, how does it tradeoff latency and C
• Generalization of CAP
• Latency differences between synchronous and async operations,

location of primary, etc.
Consistency Reads Writes Comments
Linearizability Slow Slow ToB for all ops
Sequential Fast Slow Local-read algo
Causal Fast-ish Fast Wait for causally preceeding ops
Eventual Fast Fast Easy to implement



More Eventual Consistency

• Can probabilistically bound the staleness
• New approaches can provide stricter consistency guarantees on top

of eventually consistent stores
• COPS, Eiger, Bolt-on causal Consistency, ...


