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Agenda

• Last time: How consistency models can be implemented
• Primary-based methods

• CAP theorem and its implications
• Most famous observation made about distributed systems in the last

2 decades
• Eventual Consistency
• Next time: CRDT’s



Recap: Primary based protocol
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Tradeoffs In Consistency Models

• Sequential Consistency: Blocking writes via multicasting
• Eventual Consistency: Non-blocking writes lazily propagated
• What if we cannot write to a replica?

• Perhaps due to Network or hardware failure
• Should the write operation continue?

• For strong consistency, we cannot allow write to proceed
• System becomes “unavailable” to the client



CAP Theorem

C, A, and P:
• Consistency: Strong Consistency (Linearizability)
• Availability: Clients can always perform operations
• Partition Tolerance: If some replicas are unreachable, system

function should not be compromised

CAP theorem: Pick any two*
With a few important caveats!

• CAP theorem is widely misunderstood and misapplied



CAP Theorem Details

• Partition tolerance usually cannot be sacrificed
• But, dont need to sacrifice either C or A when there are no

partitions.
• Partitions usually detected via timeouts
• System can enter “C” or “A” mode if partition detected

• Cancel operation and have reduced availability
• Continue operation and risk inconsistency

A more precise statement of the CAP Theorem:
If there is a network partition, you must choose either consistency or
availability.



Intuitive “Proof”

• System with two replicas P, Q.
• Client writes to P
• Network partition, so P cannot update Q
• Client reads from Q, but gets stale result. Hence not consistent.
• If P cannot update Q, it can refuse to process update. Hence not

available.



Distributed Storage Systems Tradeoffs



Partitions



Dealing with Partitions

• No global view of partitions: some replicas may be unreachable from
certain sources

• Can have a “one-sided” partition
• Offline-mode: long periods of unavailability
• Mask unavailability: log operations and replay later

• Credit-card machines
• “Merge” partitions using version vectors, or last-write-wins

• Source control systems typically use this
• Prohibit “risky” operations (such as deletes)



Compensating for Mistakes

• Mistakes made during partitions can be fixed in many ways
• Airline overbooking: compensation is literal $
• Amazon shopping carts: Union of two carts. Deleted items may

reappear, and customer manually corrects final cart, or escalates to
customer service

• ATMs: Withdrawals can proceed even when partitioned. But banks
place a hard-limit on withdrawals to limit the risk.



Eventual Consistency

• If no additional updates are made to a given data item, all reads to
that item will eventually return the same value.

• No guarantees about when the replicas will converge
• Usually implemented through async writebacks
• Conflicts merged/resolved asynchronously in the background
• On conflict: Arbitrate or roll-back

What are the safety and liveness properties?



Eventual Consistency In a Nutshell



PACELC

• If there is a Partition, how does the system tradeoff A and C
• Else, how does it tradeoff latency and C
• Generalization of CAP
• Latency differences between synchronous and async operations,

location of primary, etc.
Consistency Reads Writes Comments
Linearizability Slow Slow ToB for all ops
Sequential Fast Slow Local-read algo
Causal Fast-ish Fast Wait for causally preceeding ops
Eventual Fast Fast Easy to implement



More Eventual Consistency

• Can probabilistically bound the staleness
• New approaches can provide stricter consistency guarantees on top

of eventually consistent stores
• COPS, Eiger, Bolt-on causal Consistency, ...


