Distributed Systems Spring 2020

Lecture 15

40> «Fr « =)

<

DA

® |ast time: How consistency models can be implemented
® Primary-based methods
® CAP theorem and its implications

2 decades

® Eventual Consistency

® Most famous observation made about distributed systems in the last
® Next time: CRDT's

«O>» «Fr «=» <

DA

Client

Client
Primary server
for item x Backup server
w1 |ws R1| |R2 /
W4
U Data store
W2 W
w4 3

W1. Write request

R1. Read request
W2. Forward request to primary
W3. Tell backups to update

R2. Response to read
W4. Acknowledge update
W5. Acknowledge write completed

«O> «Fr o«

DA

Tradeoffs In Consistency Models

Sequential Consistency: Blocking writes via multicasting
Eventual Consistency: Non-blocking writes lazily propagated
What if we cannot write to a replica?

® Perhaps due to/www
Should the write operation continue?

® For strong consistency, we cannot allow write to proceed
® System becomes “unavailable” to the client

ClLient

® Consistency: Strong Consistency (Linearizability)
® Availability: Clients can always perform operations

® Partition Tolerance: If some replicas are unreachable, system
function should not be compromised

Na‘\rb CAP theorem: Pick any two*
With a few important caveats!

® CAP theorem is widely misunderstood and misapplied

«O>» «Fr «=» <

it
v

/

C, A
AP
c, ¥

L

DA

CAP Theorem Details

__-® Partition tolerance usually cannot be sacrificed
® But, dont need to sacrifice either C or A when there are no
partitions.
® Partitions usually detected via timeouts
® System can enter “C" or “A" mode if partition detected
® Cancel operation and have reducedim

® Continue operation and risk inconsistency
A more precise statement of the CAP Theorem:

If there is a network partition, you must choose either consistency or
availability.

Intuitive “Proof”

® System with two replicas P, Q.
® Client writes to P
® Network partition, so P cannot update Q
lient reads from Q, but gets stale result. Hence not consistent.

® |f P cannot update Q, it can refuse to process update. Hence not

available.
VedbE

0ED

Availability

Each client can always
read and write

Total Redundancy

A

Consensus Protocols Eventual Consistency ?}
MySQL CouchDB

Hypergraph Cassandra

Neodj

Consistency

All clients always have the
same view of the data
ACID, Transactions

Pick Two ;; C\bu’z@) N o\
C—-—0P

Enforced Consistency Partition Tolerance
HBase System works well despite
MongoDb physical network partitions
Redis Infinite Scale Out

v
[

DA

\peol kst NP Spsieme

(O S <=

(=

DA

Dealing with Partitions

No global view of partitions: some replicas may be unreachable from
certain sources

® Can have a “one-sided” partition

Offline-mode: long periods of unavailability

Mask unavailability: log operations and replay later
® Credit-card machines

“Merge" partitions using version vectors, or last-write-wins

. WLce/throl/gﬁt_gms typically use this

Prohibit “risky” operations (such as deletes)

Compensating for Mistakes

Mistakes made during partitions can be fixed in many ways
Airline overbooking: compensation is literal $

Amazon shopping carts: Union of two carts. Deleted items may
reappear, and customer manually corrects final cart, or escalates to
customer service

ATMs: Withdrawals can proceed even when partitioned. But banks
place a hard-limit on withdrawals to limit the risk.

Cop =460

@ dbodcadr =24

Cltenr

Eventual Consistency

If no additional updates are made to a given data item, all reads to

that item will eventually return the same value. ~\
® No guarantees about when the replicas will converge K (b ~

® Usually implemented through async writebacks) t “n
® Conflicts merged/resolved asynchronously in the background C \AQV\ O K LN
® On conflict: Arbitrate or roll-back e\uer

What are the safety and liveness properties?

e
wﬁ*‘\“&f%\’ﬁi otes

Eventual Consistency In a Nutshell

E - € .
PACELC CPAP Thm o ssepph el n
o — Cyerfved (d‘f";ﬁ*cr\g‘

If there is a Partition, how does the system tradeoff A and C

Else, how does it tradeoff latency and C
® Generalization of CAP

Latency differences between synchronous and async operations,
location of primary, etc.

Consistency ‘ Reads Writes Comments

Linearizability | Slow Slow ToB for all ops

Sequential Fast Slow Local-read algo

Causal Fast-ish Fast Wait for causally preceeding ops
/ Eventual Fast Fast Easy to implement

CA\)S@\ P05‘51\0\ e eaen M\”"\ Pa 1 Q‘W\'\U‘nS

—

® New approaches can provide stricter consistency guarantees on top

R
® Can probabilistically bound the staleness
of eventually consistent stores

® COPS, Eiger, Bolt-on causal Consistency,

Crusx\ /z“sr\s'\s&ercé_

«O> «Fr o«

Er «

3

DA

