
Elastic Scaling

1 / 18



Holy Grail: Linear Scaling

Linear Scaling
Performance increases linearly with resources

Reality
Hard to achieve in practice
Most scaling is sub-linear

Key Question
What is the performance as more resources are added?

2 / 18



Amdahl’s Law

For conventional parallel applications, what is running time on n
servers?

Ideal, linear scaling: T (n) = T (1)
n

In practice, only a fraction of the program can be parallelized, the
rest is sequential
Let p be the parallel fraction.
T (n) ≥ (1 − p) + p

n

Parallel speedup of a program: S(n) = T (1)
T (n)

What can’t be parallelized?
Sequential file access
Waiting for user input
Communication synchronization

3 / 18



Amdahl’s Law

Insights
Useful for “what-if” scenarios about performance
Diminishing returns
Cost = number of servers X running time
Cost = n ∗ T (n) = n ∗ [(1 − p) + (p/n)]
Amdahl’s law gives minimum running time at “infinite” scaling

4 / 18



More On Scaling

In perfect scaling, throughput X(n) = λn

Contention for resources causes a slowdown by σ(n − 1)

X(n) = λn

1 + σ(n − 1)
Amdahl’s law: Serialization is main form of contention
Consistency or coherence penalty grows with square of number of
nodes
Broadcast-based strict consistency example: each SET request
involves n2 communication
Coherence penalty also common in human systems (adding more
programmers to a project makes it slower, etc.)

“Universal scalability law”: X(n) = λn

1 + σ(n) + κn(n − 1)

5 / 18



Horizontal Scaling

Add more servers
Often for stateless services that do not have consistency problems
Enabled by cloud’s utility computing model
Servers are behind a “load balancer” that routes client requests.

6 / 18



Application Architecture

7 / 18



Scope of Scaling

Vertical scaling: Make machines bigger
Single tier/ multi-tier
Infrastructure: VMs or containers
Purpose:

Performance
Cost
Energy
Availability of Service

Centralized/decentralized

8 / 18



Elastic scaling

Servers change with workload
Especially relevant in cloud
Cost is function of resources used

9 / 18



When To Scale

Key:Match available resources to the workload
Under-provisioning: Load on individual servers is high
Leads to SLA violations for applications

Over-provisioning: Excess amount of servers
Servers cost money, so need to be careful with overprovisioning.

10 / 18



Scaling Indicators/Triggers

CPU utilization
Workload timeseries.
Application SLA violations
Scheduled (more during day, etc.)

11 / 18



Diversity In Workload Patterns

12 / 18



How much to scale

Add/remove servers until desired outcome is reached
Want to “right size” the cluster to handle current workload
Capacity planning: Can use queueuing theory models
M/M/1 system gives us response time distribution for single server
M/M/c system for c servers

13 / 18



Elastic Scaling Approaches

Reactive Scaling
Looks at current values of scaling metrics to determine scaling
action.
Challenge: Scaling operations are not instantaneous and take time
(up to few minutes).

Proactive Scaling
Predict future workload and scale accordingly

14 / 18



Reactive Scaling

Threshold based policies: if metric above/below some threshold, then
scale.

Key challenges: How to determine threshold?
In most cases, heuristics work OK.
If CPU > 90%, add server

Difference between metric and threshold can also be used to
determine how much to scale.

Δn = c × (metric − threshold)
c is determined based on server capacity and workload
“Model-based” scaling, because this needs a server performance
model

Usually, metric is smoothed (exponential moving average), to
prevent transient spikes from affecting scaling decisions.
If CPU spikes to 100% for 1 second, and comes back down to 5%,
we don’t want to launch an armada of servers.

15 / 18



More Reactive Scaling

Dynamic thresholds
Machine learning approaches such as reinforcement learning
Control theory. Use feedback loops

16 / 18



Proactive Scaling

Key: Predict future workload to scale ahead of time

Workload time series analysis to predict workload in some future
time interval (say, 5 minutes).
Common time-series techniques: moving averages,
auto-regression, ARIMA, etc.
Can build complex machine learning models for time series
predictions (RNNs)

17 / 18



Practical Considerations

Key problem: Instability
1 Metric crosses threshold
2 Add more servers
3 Load on servers decreases below scale-down threshold
4 Scale down
5 Goto step 1

Solution: Hystersis and Inertia
Don’t scale down if reduced load is due to recent scale-up action
Same principle used in thermostats etc.

18 / 18


