Elastic Scaling

Holy Grail: Linear Scaling

Linear Scaling

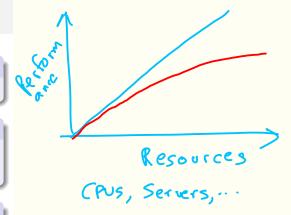
Performance increases linearly with resources

Reality

- Hard to achieve in practice
- Most scaling is sub-linear

Key Question

What is the performance as more resources are added?



)

Amdahl's Law

For conventional parallel applications, what is running time on \boldsymbol{n} servers?

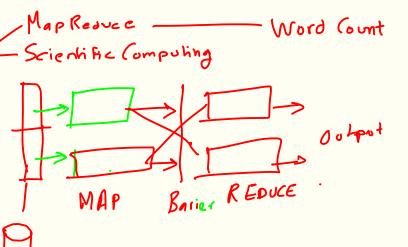
- Ideal, linear scaling: $T(n) = \frac{T(1)}{n}$
- In practice, only a fraction of the program can be parallelized, the rest is sequential
- \blacksquare Let p be the parallel fraction.

$$T(n) \ge \left((1-p) + \frac{p}{n}\right)$$

Parallel speedup of a program: S(n) =

What can't be parallelized?

- Sequential file access
- Waiting for user input
- Communication synchronization



Amdahl's Law

Insights

- Useful for "what-if" scenarios about performance
- Diminishing returns
- Cost = number of servers X running time
- Cost = n * T(n) = n * [(1 n) + (n/n)]
- Cost = n * T(n) = n * [(1 p) + (p/n)]
- Amdahl's law gives minimum running time at "infinite" scaling

Ly Pay-per-hour X # Servers

1(n)=(1-p)+ P n = # cpus, # servers,

More On Scaling

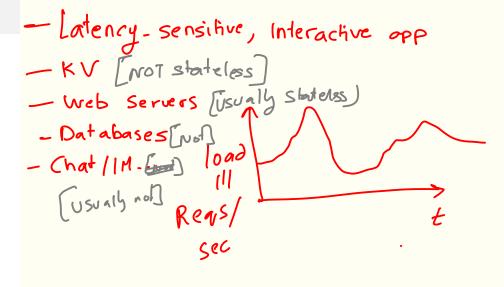
- In perfect scaling, throughput $X(n) = \lambda n$
- Contention for resources causes a slowdown by $\sigma(n-1)$

- Amdahl's law: Serialization is main form of contention
- Consistency or coherence penalty grows with square of number of nodes
- Broadcast-based strict consistency example: each SET request involves n^2 communication
- Coherence penalty also common in human systems (adding more programmers to a project makes it slower, etc.)
- "Universal scalability law": $X(n) = \frac{\lambda n}{1 + \sigma(n) + \kappa n(n-1)}$

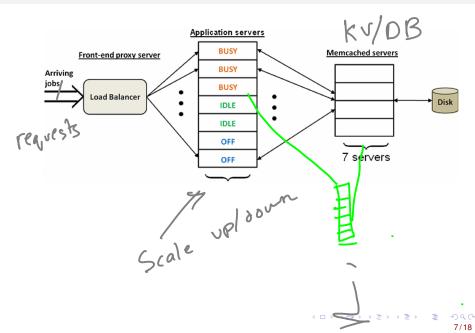
Barrier — only one server — Locks (mutual exclusion) only one server Replicated Setup > Group Project

Horizontal Scaling

- Add more servers
- Often for stateless services that do not have consistency problems
- Enabled by cloud's utility computing model
- Servers are behind a "load balancer" that routes client requests.



Application Architecture



Scope of Scaling

■ Vertical scaling: Make machines bigger → Sometimes possible in virtualiz cloud servers

- handle worklood spikes

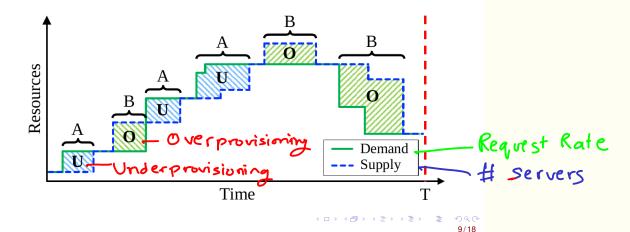
- Single tier/ multi-tier
- Infrastructure: VMs or containers
- Purpose:
 - Performance
 - Cost
 - Energy
 - Availability of Service —
- Centralized/decentralized

Horiz

~~~

### Elastic scaling

- Servers change with workload
- Especially relevant in cloud
- Cost is function of resources used



#### When To Scale

#### Key:Match available resources to the workload

- Under-provisioning: Load on individual servers is high
- Leads to SLA violations for applications
- Over-provisioning: Excess amount of servers
- Servers cost money, so need to be careful with overprovisioning.

Degraded performance

Service Level Agreement

- Avg Response time < 100 ms Target

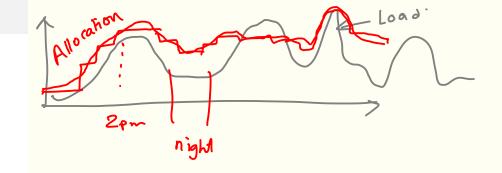
Else, pays \$1000/serond

# Scaling Indicators/Triggers

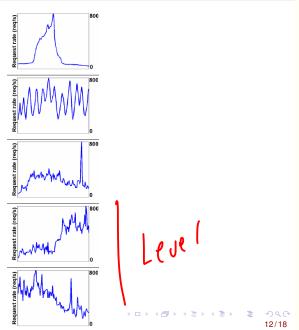
- CPU utilization [if CPU on all seres >90%,

  Workload timeseries.

  - Application SLA violations
  - Scheduled (more during day, etc.)

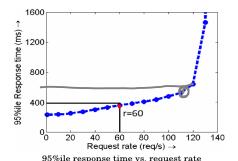


# Diversity In Workload Patterns



#### How much to scale

- Add/remove servers until desired outcome is reached
- Want to "right size" the cluster to handle current workload
- Capacity planning: Can use queueuing theory models
- M/M/1 system gives us response time distribution for single server
- M/M/c system for c servers



Response Time
Online: Only past workload
is known

### Elastic Scaling Approaches

#### Reactive Scaling

- Looks at current values of scaling metrics to determine scaling action.
- Challenge: Scaling operations are not instantaneous and take time (up to few minutes).

#### **Proactive Scaling**

Predict future workload and scale accordingly

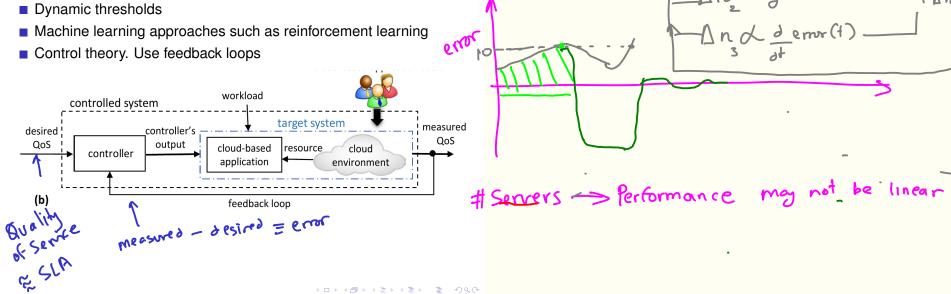
### **Reactive Scaling**

Threshold based policies: if metric above/below some threshold, then scale.

- Key challenges: How to determine threshold?
  - In most cases, heuristics work OK.
  - If CPU > 90%, add server
- Difference between metric and threshold can also be used to
  - - c is determined based on server capacity and workload
    - "Model-based" scaling, because this needs a server performance model
- Usually, metric is smoothed (exponential moving average), to prevent transient spikes from affecting scaling decisions.
- If CPU spikes to 100% for 1 second, and comes back down to 5%, we don't want to launch an armada of servers.



# More Reactive Scaling



PID Controllers

### **Proactive Scaling**

Key: Predict future workload to scale ahead of time

- Workload time series analysis to predict workload in some future time interval (say, 5 minutes).
- Common time-series techniques: moving averages, auto-regression, ARIMA, etc.
- Can build complex machine learning models for time series predictions (RNNs)



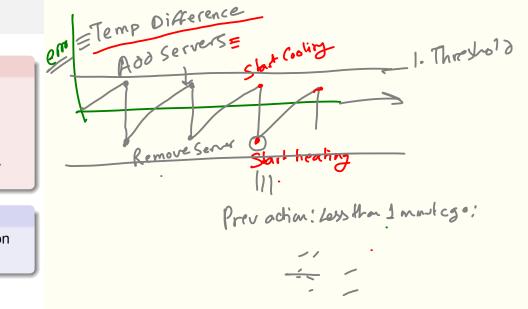
#### **Practical Considerations**

### Key problem: Instability

- Metric crosses threshold
- 2 Add more servers
- 3 Load on servers decreases *below* scale-down threshold
- 4 Scale down
- 5 Goto step 1

#### Solution: Hystersis and Inertia

- Don't scale down if reduced load is due to recent scale-up action
- Same principle used in thermostats etc.



Memory