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Holy Grail: Linear Scaling

Linear Scaling
Performance increases linearly with resources

Reality
m Hard to achieve in practice
m Most scaling is sub-linear

Key Question
What is the performance as more resources are added?
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Amdahl,s LaW / 4 P «eJ\Jc_ c Wofd (D Lm‘t
S{Wen‘n he (OV"‘P""‘“a

For conventional parallel applications, what is running time on n
servers?

m Ideal, linear scaling: T'(n) = ) ,l/ fied Gmount 6F worlk I i”‘} o
0o

n
m In practice, only a fraction of the program can be parallelized, the
rest is sequential Q

m Let p be the parallel fraction. .
1T( n) @A,+_>T(ﬁ—> Lineac’ l MﬂP gnrio.( K Eouc
Parallel beedup of - program:\S(n) = S(v\'); N 8

What can’t be parallelized?

m Sequential file access

m Waiting for user input

m Communication synchronization

A
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Amdahl’s Law

Insights

m Useful for “what-if” scenarios about performance

m Diminishing returns

m Cost = number of servers X running time

m Cost=n+T(n)=nx*[(1—p)+ (p/n)

m Amdahl’s law gives minimum running time at “infinite” scaling
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More On Scaling ,__N\Wf"*—t

P

m In perfect scaling, throughput X (n) = An — NN
m Contention for resources causes a slowdown by o(n — 1) Ba" (\e_ « \3 e Se b

An D) . ~pas EN
" X0) = oo U geme “;ifw"—/ Locks ( b exi can act at A hme

m Amdahl’s law: Serialization is maln form of contention A
m Consistency or coherence penalty grows with square of number of @ Ky ser ve -« | Kz plrca 9
=\

v
nodes \barou?eﬂuecjf e Sehe
. o6
involves n? communication & / . ‘\
m Coherence penalty also common in human systems (adding more V E, \ﬁ

m Broadcast-based strict consistency example: each SET request

programmers to a project makes it slower, etc.)
AN ‘\) o
1+o(n)+rkn(n—1) —>

JullUantos . (o€
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m “Universal scalability law”: X (n) =



Horizontal Scaling _ Lﬂdeﬂ(g—’ sensthve  (nlecachve opp

m Add more servers — KV [NOT SLU"I"((GSS‘]
m Often for stateless services that do not have consistency problems | longt

ually Sktelss
m Enabled by cloud’s utility computing model — Web Serwss [&S b J
m Servers are behind a “load balancer” that routes client requests. — Dat abﬂSe SEN .
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Application Architecture

Application servers K \r/ D 6

Front-end proxy server BUSY Memcached servers
Arriving BUSY
BUSY
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Scope of Scaling
. e 'z cleud
m Vertical scaling: Make machines bigger =, Sem ehmues (osslble_ M~ W hyali
m Single tier/ multi-tier
[ mure: VMs or containers

m Purpose:
m Performance

m Cost \ looD spkes
m Energy \\m‘a e \AY
m Availability of Service —

m Centralized/decentralized ’ ! -
AN~

Novrz
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Elastic scaling

m Servers change with workload
m Especially relevant in cloud
m Cost is function of resources used

Resources
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When To Scale

Key:Match available resources to the workload
m Under-provisioning: Load on individual servers is high
m Leads to SLA violations for applications

it Deﬂrﬁdea ()er\%rwar\cc

m Over-provisioning: Excess amount of servers § .
m Servers cost money, so need to be careful with overprovisioning. ervnice [ewvel Agfeem nt

— p“’g Responge time <[(400 ms Targe+
Else, P2ys $1060/ cemnd
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Scaling Indicators/Triggers M>q0/_ X
o EF cPu enall se

m CPU utilization | | Me.n a0 7 j

m Workload timeseries.

m Application SLA violations

m Scheduled (more during day, etc.)
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Diversity In Workload Patterns

Request rate (reqs) | Request rate (req/s) | Requestrate (reqls) | Requestrate (reqis) | Request rate regfs)
2

S
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How much to scale P b SLA
¢ (10w ance

m Add/remove servers until desired outcome is reached

m Want to “right size” the cluster to handle current workload 45'/_ K@ g‘;m\ Sée Tim e

m Capacity planning: Can use queueuing theory models .IIC 0“ ,Ifl e On ,ﬁ Pag/ wor € (040
(s /Cn oW

m M/M/1 system gives us response time distribution for single server

m M/M/c system for ¢ servers
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Elastic Scaling Approaches

Reactive Scaling

m Looks at current values of scaling metrics to determine scaling
action.

m Challenge: Scaling operations are not instantaneous and take time
(up to few minutes).

Proactive Scaling
m Predict future workload and scale accordingly
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Reactive Scaling

Threshold based policies: if metric above/below some threshold, then
scale.
m Key challenges: How to determine threshold? Q/
m In most cases, heuristics work OK. 0 ™S
m If CPU > 90%, add server \0 )
m Difference between metric and threshold can also be used to >~ '¢ )
determine how much to scale. ™ Ve (tﬁ("a,_ O VP Wiy
(@ An = ¢ x (metric — threshold) SLR AN 4 server: 10 T4s /second -
B cis determined based on server capacity and workload
m “Model-based” scaling, because this needs a server performance e the SLA C'm m S
model as . |(¢J
m Usually, metric is smoothed (exponential moving average), to
prevent transient spikes from affecting scaling decisions. ) \

m If CPU spikes to 100% for 1 second, and comes back down to 5%,

-

we don’t want to launch an armada of servers. >

15/18



More Reactive Scaling PID  (ontwllers l&n, oL ervoe —
" An ok_Jeer)é‘(' A

m Dynamic thresholds

m Machine learning approaches such as reinforcement learning {D( n 0(_ _a_mw @) ____,
m Control theory. Use feedback loops AN 7\ ./
| .\ " =
workload —_— -
_controlled system___ o ____C | .
desiredi controller's —- —-—- L____tqr_ge_t_s_yit_ein --------- . | measured
QoS i controller output -I cIouc!-ba.sed resource .CIOUd LE_.ELS _
h I application [¢— environment I:
! [ . 1t : —
P ' 1 e’
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Proactive Scaling

Key: Predict future workload to scale ahead of time
m Workload time series analysis to predict workload in some future
time interval (say, 5 minutes).

m Common time-series techniques: moving averages,
auto-regression, ARIMA, etc.

m Can build complex machine learning models for time series
predictions (RNNs)

17/18




Practical Considerations

Key problem: Instability

Metric crosses threshold

Add more servers

Load on servers decreases below scale-down threshold

Scale down
_ s\ o \N\O(a/

Goto step 1
— Tz
Solution: Hystersis and Inertia -

m Don’t scale down if reduced load is due to recent scale-up action
m Same principle used in thermostats etc.
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