
Client-Server Systems
Performance Modeling

Engineering Cloud Computing

Week 4

1 / 19



Client-Server Architecture

Clients: Remote programs and users
Servers can support multiple clients
Servers implement one or more services
Centralized services implemented on single servers
Distributed: service implemented across multiple servers

2 / 19



Server Capacity

Servers can become a bottleneck with increasing number of
requests

Computational capacity, limited by the CPUs
Storage capacity: I/O transfer rate
Network between user and server

3 / 19



Computation Inside Servers

Packet processing
Data from NIC to CPU via DMA
Interrupt handling
Packet travels up the network stack
Processes blocked on socket woken up

Application level processing
Parse data from socket
Process/store data

4 / 19



Server performance

Key Metrics
Response time: Time between request initiation and response
Throughput: Number of requests handled by server (per second)

Server Performance Considerations
How many concurrent clients can be served?
What is the maximum throughput that can be sustained?
What is the response times for clients?

5 / 19



Queuing Theory Model

A centralized service can be modeled as a simple queuing
system

Queue Process

Requests Response

Assumptions and notations
The queue has infinite capacity ⇒ arrival rate of requests is not
influenced by current queue length or what is being processed.
Arrival rate of requests: λ

Processing capacity service: µ requests per second

6 / 19



Quick Quiz

Bob finds his friend, Alice, at the bus-stop. It turns out both Alice and
Bob are waiting for the same bus.
Alice has been waiting for the bus for 10 minutes. The bus is
scheduled to arrive every 30 minutes.
Assume that there is no other information available about the bus (no
real-time GPS etc.). What is Bob’s expected waiting time for the bus?

7 / 19



Distribution of Requests and Service Times

Requests arrive according to a random process
Typically, arrival process is modeled as a Poisson distribution
Arrival rate: λ per second
Request service rate: µ per second

P (n arrivals in interval T) = (λT )ne−λT

n!
E[n] = λT

Inter-arrival time: Time between successive events

P (IA ≤ t) = 1 − P (IA > t) (1)
= 1 − P (0 arrivals in time t) (2)

= 1 − e−λt (3)
(4)

1 − e−λt is the CDF of the exponential distribution!

Service Time: Exponentially distributed with parameter µ
8 / 19



Exponential Distribution

CDF: F (t) = 1 − e−λt

Probability distribution: f(t) = λe−λt

Memoryless: P (X ≤ T + a|X > a) = P (X ≤ T )
Proof:

P (X ≤ T + a|X > a) = P (a ≤ X ≤ T + a)
P (X > a) (5)

=
� T +a

a λe−λtdt� ∞
a λe−λtdt

(6)

= 1 − e−λT = P (X ≤ T ) (7)

Previous history does not help in predicting future events
Waiting for the bus example: Waiting time of others doesn’t matter if
bus arrivals are exponentially distributed.

9 / 19



M/M/1 Queue Properties

ρ = λ/µ

λ < µ

Probability that system is idle = 1 − ρ

Utilization = ρ

Mean number of objects in the system = ρ/(1 − ρ)

Fraction of time having k requests in the system

pk =
�
1 − λ

µ

��λ

µ

�k

10 / 19



Little’s Law

N: Number of items in the system
S: Response time (Time to leave the system)

Little’s Law
E[N ] = λE[T ]

Proof outline
1 Plot N vs. time, for a total time T
2 Area of the ’ribbon’, A = Time spent by all items
3 λ = N/T

4 Mean time spent in the system, E[T ] = A/N

5 Mean number in the system, E[N ] = A/T

6 Counting the area in two ways = E[N ] = λE[T ]

11 / 19



Little’s Law Applications

Very general. Multiple queueing disciplines, network of queues, etc!
Average response time of server, E[S] = E[T ] = E[N ]/λ

E[N ] = �∞
0 kPk = ρ/1 − ρ

E[S] = 1
µ − λ

Scenarios
1 Is it better to have one queue with 2 servers or 2 separate queues?
2 What happens when processing power is doubled?

12 / 19



Server Performance Implications

Average Response Time = 1/µ − λ

Useful to identify saturating load
What to do if incoming traffic rate (λ) is close to µ?

Scaling techniques. Next class!

13 / 19



Throughput

X: Rate at which events are processed
C events processed in total time T

X = C

T
Events are only processed if system is busy
Rate at which events are processed when system is busy = µ

X = ρ · µ = λ

Independent of µ !
Throughput of server doesn’t improve if its performance improves!?!
Why do we want faster servers?

14 / 19



Closed-loop Systems

Looked at open systems so far
Many systems are closed, or atleast have some feedback
Processed items feed back into the queue
Web server example: people view a sequence of web-pages, based
on what is served

15 / 19



Queue Networks

Can represent system as a network of queues
One queue for CPU, one for disk, etc.
Or for different parts of the application
Little’s law is applicable!

16 / 19



Closed Networks

Items feed back into queue after some “thinking time” E[Z]
Total number of items = N
E[R] is the response time
Little’s law: N = XE[T ]
But E[T ] = E[R] + E[Z]

Throughput X ≤ N

E[R] + E[Z]
For small N, the equality holds
In practice, throughput converges to 1/E[R] for high N. (system is
saturated)
Closed systems useful for measuring the service rate µ

17 / 19



Markov Chains

States with transition probabilities Pij between state i and j
Represented by a matrix P
Pij is probability of going from j to i in 1 step
(P2)ij denotes probability of being in j after starting at i after 2
steps.
We are interested in P n for n → ∞
For markov chains, P n

ij is in a row and column
That is, the limiting probability of being in a state doesn’t depend on
where you start.
Limiting distribution of being in state j: πj = limn→∞P n

ij�
πi = 1

18 / 19



M/M/1 Queue Markov Chains

Balance equations:
λπ0 = µπ1

(λ + µ)π1 = λπ0 + µπ2

(λ + µ)πn = λπn−1 + µπn+1

π1 = λ

µ
π0

πn =
�

λ

µ

�n

π0

Let ρ = λ/µ and ρ < 1

1 =
∞�

i=0
πi = π0

∞�

0
ρi = π0

1 − ρ
(8)

Last step is using the geometric series sum for ρ
π0 = 1 − ρ

19 / 19


