Client-Server Systems Performance Modeling

Engineering Cloud Computing

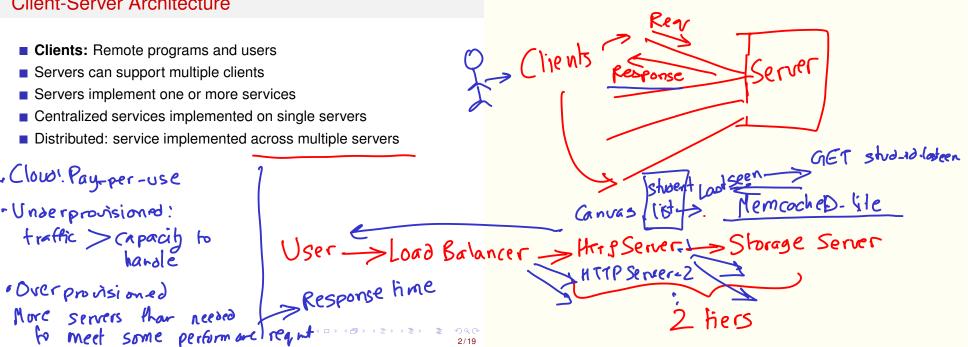
Week 4

▲□▶▲@▶▲理▶▲理▶ 理 のQで

Client-Server Architecture

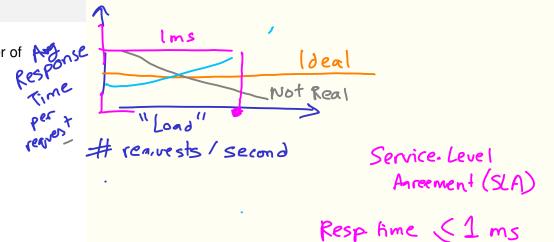
- Clients: Remote programs and users
- Servers can support multiple clients
- Servers implement one or more services
- Centralized services implemented on single servers
- Distributed: service implemented across multiple servers

· Cloud'. Pay-per-use



Server Capacity

- Servers can become a bottleneck with increasing number of requests
 Computational canacity limited by the CPU is
 - Computational capacity, limited by the CPUs
 - Storage capacity: I/O transfer rate
 - Network between user and server



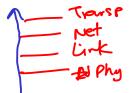
Server

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

Computation Inside Servers

Network Interface Gra

- Packet processing
 - Data from NIC to CPU via DMA
 - Interrupt handling
 - Packet travels up the network stack
 - Processes blocked on socket woken up
- Application level processing
 - Parse data from socket
 - Process/store data



Server performance

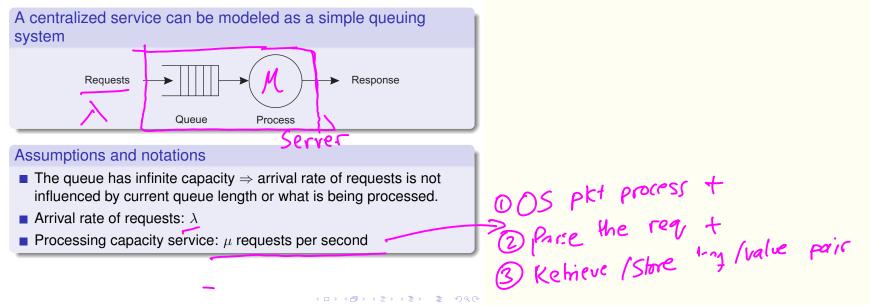
Key Metrics

Response time: Time between request initiation and response Throughput: Number of requests handled by server (per second)

Server Performance Considerations

- How many concurrent clients can be served?
- What is the maximum throughput that can be sustained?
- What is the response times for clients?

Queuing Theory Model



Quick Quiz

 $E[w] = [wP(w) \partial u$ Bob finds his friend, Alice, at the bus-stop. It turns out both Alice and Bob are waiting for the same bus. $W \leq 30 \text{ mins}$ Alice has been waiting for the bus for 10 minutes. The bus is _arrival rate scheduled to arrive every 30 minutes. Assume that there is no other information available about the bus (no w P(W no bus for 10 mins) real-time GPS etc.). What is Bob's expected waiting time for the bus? Bus arrival 20 mile 1 Uniform Prob

Distribution of Requests and Service Times

Requests arrive according to a random process
Typically, arrival process is modeled as a **Poisson distribution**Arrival rate: \(\lambda\) per second
Request service rate: \(\mu\) per second
P(n arrivals in interval T) = \(\frac{(\lambda T)^n e^{-\lambda T}}{n!}\)

Inter-arrival time: Time between successive events

CDF
$$P(IA \le t) = 1 - P(IA > t)$$
$$= 1 - P(0 \text{ arrivals in time t})$$
$$= 1 - e^{-\lambda t}$$

N= 2 reg/second P(5 regs in 10 seconds) = (2.10) = 2.10E[Reas in Iminute] = 2×60= 120 (1)(2)Time -> Exponentially distribut (3)(4)

 $1 - e^{-\lambda t}$ is the CDF of the **exponential distribution**!

Service Time: Exponentially distributed with parameter μ^*

Exponential Distribution

CDF: $F(t) = 1 - e^{-\lambda t}$ Probability distribution: $f(t) = \lambda e^{-\lambda t}$ Memoryless: $P(X \le T + a | X > a) = P(X \le T)$

Proof:

$$P(X \le T + a | X > a) = \frac{P(a \le X \le T + a)}{P(X > a)}$$

$$= \frac{\int_{a}^{T+a} \lambda e^{-\lambda t} dt}{\int_{a}^{\infty} \lambda e^{-\lambda t} dt}$$

$$= 1 - e^{-\lambda T} = P(X \le T)$$
(5)
(7)

Previous history does not help in predicting future events

Waiting for the bus example: Waiting time of others doesn't matter if bus arrivals are exponentially distributed.

Markov Chains

- States with transition probabilities P_{ij} between state i and j
- Represented by a matrix P
- P_{ij} is probability of going from j to i in 1 step
- (P²)_{ij} denotes probability of being in j after starting at i after 2 steps.
- \blacksquare We are interested in P^n for $n \to \infty$
- For markov chains, P_{ij}^n is in a row and column
- That is, the limiting probability of being in a state doesn't depend on where you start.
- Limiting distribution of being in state j: $\pi_j = lim_{n\to\infty}P_{ij}^n$

 $\square \sum \pi_i = 1$

M/M/1 Queue Markov Chains

Balance equations:

 $\lambda \pi_0 = \mu \pi_1$

- $(\lambda + \mu)\pi_1 = \lambda \pi_0 + \mu \pi_2$
- $(\lambda + \mu)\pi_n = \lambda \pi_{n-1} + \mu \pi_{n+1}$

$$\begin{aligned} \pi_1 &= \frac{\lambda}{\mu} \pi_0 \\ \pi_n &= \left(\frac{\lambda}{\mu}\right)^n \pi_0 \\ \text{Let } \rho &= \lambda/\mu \text{ and } \rho < 1 \end{aligned}$$

$$1 = \sum_{i=0}^{\infty} \pi_i = \pi_0 \sum_{i=0}^{\infty} \rho^i = \frac{\pi_0}{1-\rho}$$
(8)

Last step is using the geometric series sum for ρ $\pi_0=1-\rho$

Properties

Mean number of objects in the system = $\rho/(1-\rho)$ Utilization = ρ

Fraction of time having *k* requests in the system

$$p_k = (1 - \frac{\lambda}{\mu})(\frac{\lambda}{\mu})^k$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

12/19

Little's Law

- N: Number of items in the system
- S: Response time (Time to leave the system)

Little's Law

 $E[N] = \lambda E[T]$

Proof outline

- 1 Plot N vs. time, for a total time T
- 2 Area of the 'ribbon', A = Time spent by all items

3 $\lambda = N/T$

- 4 Mean time spent in the system, E[T] = A/N
- **5** Mean number in the system, E[N] = A/T
- **6** Counting the area in two ways = $E[N] = \lambda E[T]$

Little's Law Applications

Very general. Multiple queueing disciplines, network of queues, etc!
Average response time of server, E[S] = E[T] = E[N]/\lambda
E[N] = \sum_0^\infty kP_k = \rho/1 - \rho
E[S] = \frac{1}{\mu - \lambda}

Scenarios

Is it better to have one queue with 2 servers or 2 separate queues?
 What happens when processing power is doubled?

Server Performance Implications

- Average Response Time = $1/\mu \lambda$
- Useful to identify saturating load
- What to do if incoming traffic rate (λ) is close to μ ?
 - Scaling techniques. Next class!

・ロト・雪・・雪・・雪・ のへの

Throughput

- *X*: Rate at which events are processed
- C events processed in total time T
- $\blacksquare X = \frac{C}{T}$
- Events are only processed if system is busy
- \blacksquare Rate at which events are processed when system is busy = μ
- $\blacksquare \ X = \rho \cdot \mu = \lambda$
- $\blacksquare \text{ Independent of } \mu \text{ !}$
- Throughput of server doesn't improve if its performance improves!?! Why do we want faster servers?

Closed-loop Systems

- Looked at **open** systems so far
- Many systems are closed, or atleast have some feedback
- Processed items feed back into the queue
- Web server example: people view a sequence of web-pages, based on what is served

Queue Networks

- Can represent system as a network of queues
- One queue for CPU, one for disk, etc.
- Or for different parts of the application
- Little's law is applicable!

Closed Networks

Items feed back into queue after some "thinking time" E[Z]

- Total number of items = N
- E[R] is the response time
- Little's law: N = XE[T]
- But E[T] = E[R] + E[Z]
- Throughput $X \leq \frac{N}{E[R] + E[Z]}$
- For small N, the equality holds
- In practice, throughput converges to 1/*E*[*R*] for high N. (system is saturated)
- \blacksquare Closed systems useful for measuring the service rate μ