
Operating Systems

Background

Overview

• Last time: Clouds are efficient because of

resource sharing and multiplexing

• Multiple applications share computing resources

• This lecture: building block of safe multiplexing
● Operating Systems

• Also useful in writing programs

Operating Systems

• Operating Systems: Easier to run applications

• OS provides a convenient interface to run

multiple programs in a secure manner

• Portability: Decouple applications from hardware

– Changing your USB keyboard => No need to rewrite

and recompile programs

• Resource allocation and multiplexing

• OS provides all these features by:

– Different abstractions & services

– Interfacing with hardware features designed to help OS

OS Services

• Programs: Sequence of CPU instructions

– Mov, add, jmp,…

• Programs often build on top of and make use of

other programs (“libraries”)

• OS provides a wide range of services to

applications

Application

send(socket, “Hi.”,3)

Operating System

Hardware

Operating System Services

– User interface - Almost all operating systems have a
user interface (UI)

• Command-Line (CLI), Graphical User Interface (GUI), Batch

– Program execution - The system must be able to load a
program into memory and to run that program, end
execution, either normally or abnormally (indicating
error)

– I/O operations - A running program may require I/O,
which may involve a file or an I/O device.

– File-system manipulation - The file system is of
particular interest. Obviously, programs need to read
and write files and directories, create and delete them,
search them, list file Information, permission
management.

Operating System Services (Cont.)

– Communications – Processes may exchange
information, on the same computer or between
computers over a network

• Communications may be via shared memory or
through message passing (packets moved by the OS)

– Error detection – OS needs to be constantly
aware of possible errors

• May occur in the CPU and memory hardware, in I/O
devices, in user program

• For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

• Debugging facilities can greatly enhance the user’s
and programmer’s abilities to efficiently use the system

Operating System Services (Cont.)
• Another set of OS functions exists for ensuring the efficient

operation of the system itself via resource sharing
– Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them

• Many types of resources - Some (such as CPU cycles, main memory, and
file storage) may have special allocation code, others (such as I/O devices)
may have general request and release code.

– Accounting - To keep track of which users use how much and what
kinds of computer resources

– Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other

• Protection involves ensuring that all access to system resources is
controlled

• Security of the system from outsiders requires user authentication, extends
to defending external I/O devices from invalid access attempts

• If a system is to be protected and secure, precautions must be instituted
throughout it. A chain is only as strong as its weakest link.

System Calls

• Applications access OS services by making

system calls

– A function call that invokes the kernel

• This is the view of what the OS is and does from

the application perspective

Library fread

Kernel Space

User Space

Program

Code

read user

read

kernel

System Calls

• Programming interface to OS services

• Small, well-defined set of function calls into the
OS kernel
– Applications not allowed to call arbitrary kernel

functions

– Syscall implementation can change over time, but the
semantics and API remains the same

• Linux fork() implementation optimized by > 10x, but
same 40 year old semantics.

• System calls are NOT typical library API calls
– Privilege separation between OS and applications

– Syscalls involve a user --> kernel “mode
switch” for the CPU

API – System Call – OS Relationship

Application

Hardware

Memory

Management

Process

Management

I/O File System IPC Networking

System Call Gate
OS

Programs and processes
• A program is a series of instructions

– code for a single “process” of control

• Process: running program + state

• State: Input, output, memory, code, file, etc.

• A Thread is an execution context with register

state, a program counter (PC) and a stack

– “Thread of execution”

• Multiple processes can be running the same

program, even sharing the code in the same

memory space

– reduces memory overhead, which is important in

limited memory environments like embedded OSes

The process abstraction

• Multiprogramming of four programs in the same address space

• Conceptual model of 4 independent, sequential processes

• Only one program active at any instant

• Multiple processes can run “simultaneously”

• Number of processes >> Number of CPUs

 How?

• Time-sharing: Run processes briefly

• Periodically, the OS ‘context-switches’ to a

different process

 OS saves process state (CPU registers etc)

• Each process under the illusion that it has full

access to the CPU

Concurrency

CPU Virtualization

• Processes create the illusion of multiple

“virtual” CPUs that programs fully control

• Process PCB contains program counter and

other register state, allowing it to be “resumed”

• Timesharing: OS switches process running on

physical CPU at high frequency (context

switch)

• Virtualization is a key OS principle

– Applies to CPU, memory, I/O, …

Concurrency and Parallelism

• Concurrency: Independent execution of

multiple processes

• Ability to deal with multiple things at a time

• Parallelism: Actually doing things

simultaneously on different hardware

Process Control Block

• OS stores all process state and “meta” data

• Process Id

• Process State : Running, Suspended, etc.

• CPU State: Program counter, registers

• Memory/Address space information

• Accounting Info: cycles running, sleeping

• IO: Open files, sockets, etc

• Scheduling class, priority

• Linux task_struct
https://github.com/torvalds/linux/blob/master/includ
e/linux/sched.h

UNIX Process Address Space
• Memory locations process is allowed to address

• Each process runs in its own virtual memory address space that
consists of:

– Stack space – used for function and system calls

– Data space – static variables, initialized globals

– Heap space – dynamically allocated variables

– Text – the program code (usually read only)

• Invoking the same program multiple times results in the creation of
multiple distinct address spaces

stack

text

data

Address

space heap

UNIX Process Creation
• Parent processes create child processes,

which, in turn create other processes,
forming a tree of processes

• Resource sharing options
– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution options
– Parent and children execute concurrently

– Parent waits until children terminate

UNIX Process Creation (Cont.)

• Address space

– Child duplicate of parent

– Child has a program loaded into it

• UNIX examples

– fork system call creates new process

– exec system call used after a fork to replace the

process’ memory space with a new program

Process hierarchies

• Parent creates a child process,
– System calls for communicating with and

waiting for child processes

– Each process is assigned a unique identifying
number or process ID (PID)

• Child processes can create their own child
processes
– Forms a hierarchy

– UNIX calls this a "process group"

– Windows has no concept of process hierarchy
• all processes are created equal

Process creation in UNIX
• All processes have a unique process id

– getpid(), getppid() system calls allow processes
to get their information

• Process creation

– fork() system call creates a copy of a process
and returns in both processes, but with a
different return value

– exec() replaces an address space with a new
program

• Process termination, signaling

– signal(), kill() system calls allow a process to be
terminated or have specific signals sent to it

Example: process creation in UNIX

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

sh (pid = 22)

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

sh (pid = 22)

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

sh (pid = 24)

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

sh (pid = 22)

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

sh (pid = 24)

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

sh (pid = 22)

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

sh (pid = 24)

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

sh (pid = 22)

//ls program

main(){

 //look up dir

 …

}

ls (pid = 24)

C Program Forking Separate Process

int main()
{
Pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

Process Fork In Linux

• https://elixir.bootlin.com/linux/latest/source/ke
rnel/fork.c#L1604

• Address space marked copy on write, for

impending exec

• PCB copied (dup_task_struct)

• New address space created (new page

tables)

Process States

/Sleeping

Files

• Files: Sequence of bytes

• Great UNIX Idea: (Almost) Everything is a file

descriptor

– Files on disk

– I/O devices such as keyboards, consoles, (cat /dev/tty)

– Network sockets

– Pipes

– Pseudo file systems to interact with OS (procfs, sysfs)

• Simple, yet powerful OS abstraction and service

• Same open, read, write, close operations

UNIX read syscall

int file_flags = O_RDONLY ; //defined in fcntl.h

int file_desc = open(“/home/foo.txt”, file_flags) ;

void* buffer = malloc(2048); //2KB buffer

ssize_t num_read = read(file_desc, buf, 200); //read only 200 bytes

//do something with data in buf

close(fd) ;

• Reading from a file on disk into an in-memory buffer using read

• Unix system calls are described in the manual (man) pages

• man 2 read , man 2 open, …

• Reading a file:

• Note: Real programs must incorporate error handling.
– What if file doesn’t exist? What if we didn’t read 200 bytes?

Default File Descriptors

• By convention, Unix processes associate

certain file descriptors with roles

• 0 - STDIN_FILENO (or stdin)

• 1 - STDOUT_FILENO (or stdout)

• 2 - STDERR_FILENO

• Just convention (not a feature of the kernel)

but many things would break if it weren’t

followed

I/O Redirection

• The shell has mechanisms to control the initial
associations of these descriptors

• < -- attach stdin to a file
– Process reading from stdin will read from the file

– Can be anywhere in the input

– wc < /dev/stdin

• > -- attach stdout to a file
– If it does not exist, it is created (with permission)

• >> -- attach stdout to a file and append all writes to
end of the file
– Just like > if the file doesn’t exist

I/O Redirection and Pipes
• Many programs read from either a file

specified as an argument or stdin

– Again, only a convention

– Thus “wc file” == “wc < file” == “cat file | wc”

• You can connect the stdout of one command

to the stdin of another with the symbol |

– Called a pipe

• Pass the output file from one program as

input to another.

• Pipes alleviate need for temporary files

– grep foo file > temp ; wc –l temp

– cat file | grep foo | wc –l

I/O Redirection

• You can send two file descriptors to one

– In *sh 2>&1 will redirect stderr to stdout

– command1 2>&1 | command2

– In *csh, you can send both to a file with >& and to

another process with |&

• cat < file | sort > output

Pipes

• Combination of “Everything a file” + pipes is a

powerful “service” provided by UNIX

• Doug McIlroy in 1964: “ We should have some

ways of coupling programs like garden hose--

screw in another segment when it becomes when

it becomes necessary to massage data in

another way.”

Knuth vs. McIlroy
• Task: Read a file of text, determine the n most

frequently used words, and print out a sorted list

of those words along with their frequencies.

• Knuth: 8 pages program

• McIlroy used common UNIX utilities and pipes:

cat $file | # Feed input \
tr -sc ’A-Za-z’ ’\n’ | # Translate non-alpha to
newline \
tr ’A-Z’ ’a-z’ | # Upper to lower case \
sort | # Duh \
uniq -c | # Merge repeated, add counts \
sort -rn | # Sort in reverse numerical order \
head -n $K # Print only top 10 lines

• Note that typical “Map-Reduce” programs aim to

solve the same type of problems

Pipe System Call

man -s 2 pipe or man 2 pipe

int

pipe(int filedes[2]);

The pipe() function creates a pipe, which is an

object allowing unidirectional data flow, and

allocates a pair of file descriptors.

filedes[1] is the write end, filedes[0] is the read end

• Python’s subprocess module

• subprocess.run([“ls”, “-l”]) (new in 3.5)

• subprocess.call(), check_call()

• subprocess.Popen([prog, args], stdin=,

stdout=)

Processes In Python

UNIX Threads

• Creation of a process using fork() is expensive

(time and machine effort)

– Memory copying to create a copy of the process

• In many cases just to call exec() and replace it

• There are ways to mitigate creating a complete copy

– Coordinating activities across process boundaries

requires effort

• Threads are sometimes called lightweight

processes

– What we have called a process is sometimes

considered a heavyweight process

– A thread contains the necessary state for a distinct

activity (process in the most general sense)

Benefits of Threads
• Efficiency / economy

– Less memory, fewer system resources

• Responsiveness

– Lower startup time

• Easier resource sharing

– Natural sharing of memory, open files, etc.

– With caveats that we will discuss

• Concurrency

– Utilization of multiple processors or cores

CodeCode

DataData

CodeCode

DataData

StackStack StackStackStackStack StackStack StackStack

Single and Multithreaded Processes

One Thread Multiple Threads

The UNIX Thread Model

• Memory mapping

• Global variables

• Signal handlers

• Open files and file

pointers

• Program Counter

• Registers

• Stack

• Thread State

[Running/Blocked]

Per-Process Items Per-Thread Items

Process B

Text/Code

Heap

Stack

Stack

Process A

Text/Code

Heap

Stack

fork() Process A

Text/Code

Heap

Stack

thread_create()

Single and Multithreaded Processes

Pthreads
• In the old days, there were a variety of thread

systems
– Purely user-level systems

– C Threads, -lthread

• A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization

• API specifies behavior of the thread library,

implementation is up to developers of the library

• Common in UNIX-like operating systems

– Linux, Mac OS X

– Available in Windows

Creating a new process with fork

if ((pid = fork()) < 0) {

/*fork system call failed*/

…

perror(“fork”);

exit(-1);

}

else if (pid == 0) {

/*child process*/

…

}

else {

/* parent process, pid is newly created

child/*

…

}

Creating a new thread

pthread_t thr_1, thr_2;

pthread_create(&thr_1, NULL, (void *)one, (void *)arg1);

• Pointer to a pthread_t

– foo_t is POSIX convention for “of type foo”

– pthread_t is a handle for the created thread

• Pointer to pthread_attr_t

– Attributes of the thread, NULL gets the default

– More in a bit

• Pointer to the entry function

• Pointer to the input data (void *)

Termination and joining (waiting)

• pthread_t is the handle of the thread to be joined

• The 2nd argument is void **thread_return which

will be filled with the value the thread gave to

pthread_exit() or = to PTHREAD_CANCELLED

pthread_t thr_1, thr_2;

pthread_join(&thr_1, void **status_ptr);

 Pthreads terminate when the function returns, or

the thread calls pthread_exit()

 int pthread_exit (void *status);

One thread can wait on the termination of another

by using pthread_join()

Complete Example

void f_one(int *);

void f_two(int *);

int result1, result2, arg1, arg2;

main(void) {

 pthread_t thr_1, thr_2;

 pthread_create(&thr_1, NULL, (void *)f_one, (void

*)&arg1);

 pthread_create(&thr_2, NULL, (void *)f_two, (void

*)&arg2);

 pthread_join(thr_1, NULL);

 pthread_join(thr_2, NULL);

 return 0;

}

Yielding and Blocking

• Sometimes a thread needs to yield execution
to another thread (more often in a user-level
implementation)
– Draft 4 - pthread_yield()

– Final - sched_yield()

• With a kernel-level pthread implementation,
various system calls block only the thread, not
the process
– The standard lists over 50 routines that may block

– Signal functions and most I/O system calls (open(),
close(), read(),write() must block the thread

– sleep() and nanosleep() also must block

Non-joining threads

• Detached threads run to completion and the

system cleans up after them

– Often don’t want to have to wait explicitly for threads

– Yet not leak memory or leave zombies

• Joinable: on thread termination the thread ID

and exit status are saved by the OS. One thread

can "join" another by calling pthread_join - which

waits (blocks) until a specified thread exits.

• Detached: on termination all thread resources

are released by the OS. A detached thread

cannot be joined

Detached State Threads

• pthread_detach(pthread_t *)

– pthread_self()

– Detach some thread

– Fail if a thread is already joining

• pthread_attr_setdetachedstate(&attr,…)

Thread Attributes

• Threads can be created specifying a thread

attribute structure

– Our initial examples passed NULL

• The thread attribute provides a way to set

options for the created thread and can be

reused for multiple new threads

• Initialize a thread attribute object to the

default:
pthread_attr_t attr; // create

pthread_attr_init(&attr); //pass pointer

returns 0 for success, error otherwise

Pthread Attributes

• Detach state attribute example

pthread_attr_t attr;

int detachstate = PTHREAD_CREATE_DETACHED;

// default is PTHREAD_CREATE_JOINABLE

…

pthread_attr_setdetachstate(&attr, int detachstate);

pthread_create(&thr_1, &attr, (void *)f_one,

 (void *)&arg1);

Pthreads Summary

• Very useful programming tool

– Changes the way all sorts of programs can be

written – thread pools, etc.

• Include the header in a C program

– #include <pthread.h>

– Link with -lpthread

• pthread_create(&thr_1, NULL, (void *)one, (void *)arg1);

• pthread_join(&thr_1, NULL);

• sched_yield()
– sleep will cause the thread to yield as well

• pthread_exit(void *retval)

• pthread_once
– One-time initialization

Linux Threads

• The Linux scheduler deals with threads internally

– refers to them as tasks rather than threads

• A thread is simply a new process that happens to

share the same address space as its parent

• In this sense, Linux tasks are lightweight

processes

• Linux processes are (heavyweight) processes

–Groups of one or more tasks share

–Memory map

–Files

Linux Threads

• Thread creation is done through the clone()

system call

• clone() allows a child task to share the

address space of the parent task

• fork() creates a new process with its own

entirely new process context

– fork() is a wrapper for clone()

• Using clone() gives an application fine-

grained control over exactly what is shared

between two threads

Function return and process exit

• When a process returns from its topmost

function, it exits

– Distinct from a normal function being called and

returning

• However, it uses the same mechanism

• When a function is called, an activation

record is pushed on the stack

• When the function returns, its activation

record is popped off the stack

• When the last activation record is popped off,

the process exits

Process exit with kill()

• The system call kill() terminates a process

without waiting for it to exit

– it is the inverse of create()

• This must remove the entire stack

– all the activation records for other functions

– all the local variables

• kill() takes a pid as an argument, getpid()

returns a process’s own pid

 kill(getpid());

